
6.S979 Topics in Deployable Machine Learning
Lecture: Decentralized Optimization, Decision Making

and Control

Asu Ozdaglar Pablo A. Parrilo
MIT

October 3, 2019

1

Introduction

Motivation

Many modern systems are large-scale, consist of agents with local
information and involve collection and processing of data in a decentralized
manner.

This motivated much interest in developing distributed algorithms for
processing of large-scale data, and control and optimization of multi-agent
networked systems.

Routing and
congestion control in
wireline and wireless
networks

Parameter estimation
in sensor networks

Multi-agent
cooperative control

Smart grid systems

2

Introduction

Distributed Multi-agent Optimization

Many of these problems can be represented within the general formulation:

A set of agents (nodes) {1, . . . ,N} connected through a network.

The goal is to cooperatively solve

min
x

N∑
i=1

fi (x)

s.t. x ∈ Rn,

fi (x) : Rn → R is a convex
(possibly nonsmooth) function,
known only to agent i .

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

Since such systems often lack a centralized processing unit, algorithms for
this problem should involve each agent performing computations locally and
communicating this information according to the underlying network.

3

Introduction

Machine Learning Example

A network of 3 sensors.

Data is collected at different sensors: temperature t, electricity demand d .

System goal: learn a
degree 3 polynomial
electricity demand model:

d(t) = x3t
3+x2t

2+x1t+x0.

System objective:

min
x

3∑
i=1

||A′ix − di ||
2
2 .

where Ai = [1, ti , t
2
i , t

3
i]′ at

input data ti .

10 20 30 40 50 60 70 80 90 100 110
12

14

16

18

20

22

24

26

28

30

Temperature

E
le

ct
ric

ity
 D

em
an

d

Least square fit with polynomial max degree 3

4

Introduction

Machine Learning General Set-up

A network of agents i = 1, . . . ,N.

Each agent i has access to local feature vectors Ai and output bi .

System objective: train weight vector x to

min
x

N∑
i=1

L(A′ix − bi) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

min
x

N∑
i=1

||A′ix − bi ||
2
2 + λ ||x ||1 .

5

Introduction

Literature: Parallel and Distributed Optimization

Lagrangian relaxation and dual optimization methods:

Dual gradient ascent, (single) coordinate ascent methods.

Parallel computation and optimization:

[Tsitsiklis 84], [Bertsekas and Tsitsiklis 95].

Consensus and cooperative control:

Averaging algorithms: Deterministic averaging of all neighbor
estimates.
[Jadbabaie, Lin, and Morse 03], [Olfati-Saber and Murray 04],
[Olshevsky and Tsitsiklis 07], [Tahbaz-Salehi and Jadbabaie 08], [Kar
and Moura 09], [Frasca, Carli, Fagnani and Zampieri 09], [Bullo,
Cortes, Martinez 09],[Oreshkin, Coates, and Rabbat 10].
Gossip algorithms: Random pairwise averaging.
[Boyd, Ghosh, Prabhakar, and Shah 05], [Dimakis, Sarwate, and
Wainwright 08], [Fagnani, Zampieri 09], [Aysal, Yildiz, Sarwate, and
Scaglione 09].

6

Introduction

Literature: Distributed Multi-agent Optimization

Distributed first order primal subgradient methods [Nedic, Ozdaglar 09].

Various extensions:

Local and global constraints [Nedic, Ozdaglar, Parrilo 10], [Zhu and
Martinez 10].
Randomly varying communication networks[Lobel, Ozdaglar 09], [Baras
and Matei 10], [Lobel, Ozdaglar, and Feijer 10].
Network effects [Nedic, Olshevsky, Ozdaglar, Tsitsiklis 09]
Random gradient errors [Ram, Nedic, Veeravalli 09].

Ordinary-Augmented Lagrangian primal-dual subgradient methods

[Jakovetic, Xavier, Moura 11], [Zhu, Giannakakis, Cano 09],[Mota,
Xavier, Aguiar, Puschel 13]

Distributed second order methods (for more specialized problems)

[Wei, Ozdaglar, Jadbabaie 11], [Liu, Sherali 12]

7

Introduction

This Lecture

Brief overview of distributed primal subgradient methods [Nedic,
Ozdaglar 09].

Other distributed optimization methods.

Decentralized strategic decision making.

Decentralized control.

8

Introduction

Distributed Subgradient Method

Recall problem formulation:

min
x

N∑
i=1

fi (x)

s.t. x ∈ Rn

f ∗: optimal value.

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

We assume agents are connected through a “time-varying” graph.

Key idea: Each agent maintains a local estimate of the optimal solution, and
updates it by taking a (sub)gradient step along his local objective function
and averaging with neighbors’ estimates.

9

Distributed Subgradient Method

Distributed Subgradient Method

Let x i (k) ∈ Rn denote agent i ’s estimate of the solution at time k.

Agent Update Rule:

At each time k , agent i updates its estimate as:

xi (k + 1) =
N∑
j=1

aij(k)xj(k)− α(k)di (k),

aij(k) ≥ 0: weights, α(k) > 0: stepsize, di (k): a subgradient of fi at xi (k).

The weights aij(k) represents i ’s time-varying neighbors at time k:
aij(k) > 0 only for agent j that communicate with agent i at time k.

When all fi = 0, the method reduces to the consensus algorithm [Vicsek 95],
[Jadbabaie, Lin, Morse 03].

10

Distributed Subgradient Method

Linear Dynamics and Transition Matrices

We let A(k) denote the weight matrix [aij(k)]i,j=1,...,N , and define transition
matrices

Φ(k, s) = A(k)A(k − 1) · · ·A(s + 1)A(s) for all k ≥ s

We use these matrices to relate xi (k + 1) to xj(s) at time s ≤ k:

xi (k + 1) =
N∑

j=1

[Φ(k, s)]ijxj(s) −
k−1∑

r=s

N∑

j=1

[Φ(k, r + 1)]ijα(r)dj(r) − α(k) di (k).

We analyze convergence properties of the distributed method by
establishing:

Convergence of transition matrices Φ(k , s) (consensus part)
Convergence of an approximate subgradient method (effect of
optimization)

11

Distributed Subgradient Method

Assumptions: Weights and Connectivity

Assumption (Weights)

(a) There exists a scalar η ∈ (0, 1) s.t. aii (k) ≥ η and if aij(k) > 0, aij(k) ≥ η.

(b) The weight matrix A(k) is doubly stochastic,
∑N

j=1 aij(k) = 1 for all i and∑N
i=1 aij(k) = 1 for all j .

Double stochasticity ensures agent estimates equally influential in the limit.
This guarantees minimizing the sum of the local objective functions.

Represent information exchange by (V ,Ek),

Ek = {(j , i) | aij(k) > 0, i , j = 1, . . . ,m}.

Assumption (Connectivity)

There exists an integer B ≥ 1 such that the directed graph(
M,Ek ∪ · · · ∪ Ek+B−1

)
is strongly connected for all k ≥ 0.

12

Distributed Subgradient Method

Convergence Analysis – Idea

Recall the evolution of the estimates (with α(s) = α):

xi (k + 1) =
N∑
j=1

[Φ(k, s)]ijxj(s)− α
k−1∑
r=s

N∑
j=1

[Φ(k , r + 1)]ijdj(r)− αdi (k).

Proof method: We define an auxiliary sequence: y(k) = 1
N

∑N
i=1 xi (k).

The sequence y(k) evolves as

y(k + 1) = y(k)− α

N

N∑
i=1

di (k),

where di (k) is a subgradient of fi at xi (k).

This corresponds to an approximate subgradient method for minimizing∑
j fj(x) (subgradients computed at xi (k) instead of y(k)).

13

Distributed Subgradient Method

Convergence Analysis – Idea

But y(k) evolution can be written as:

y(k + 1) =
1

N

N∑
j=1

xj(s)− α

N

k−1∑
r=s

N∑
j=1

dj(r)− α

N

N∑
i=1

di (k).

Using the below result, this shows that y(k) and xi (k) get close to each
other in the limit: agent “disagreements” disappear and the method behaves
as a centralized subgradient method.

Theorem (Nedic, Olshevsky, Ozdaglar, Tsitsiklis 09)

For all i , j and all k , s with k ≥ s, we have∣∣∣∣[Φ(k , s)]ij −
1

N

∣∣∣∣ ≤ (1− η

4N2

)d k−s+1
B e−2

.

14

Distributed Subgradient Method

Convergence

We assume set of subgradients of fi uniformly bounded by some L > 0.

Let x̂i (k) = 1
k

∑k
h=1 xi (h): ergodic average of estimates.

Proposition

For all k ≥ 1,

f (x̂i (k)) ≤ f ∗ +
αL2C

2
+

m

2αk
dist(y(0),X ∗),

where β = 1− η
4N2 and C = 1 + 8N

(
2 + NB

β(1−β)

)
.

With constant stepsize, this achieves:

lim sup
k→∞

f (x̂i (k)) ≤ f ∗ +
αL2C

2
for all i .

By choosing α(k) = 1/
√
k , this achieves a convergence rate of O(1/

√
k).

15

Other Distributed Methods

Other Distributed Optimization Methods

We can also use Alternating Direction Method of Multipliers (ADMM)-type
methods for distributed optimization.

Involves reformulation into a separable problem and sequential updates
of subcomponents of the decision vector.

Introduce a “local copy” xi in Rn for each i and write

min
x∈Rmn

m∑
i=1

fi (xi)

s.t. (1) or (2).

(1) Edge-based reformulation: xi = xj for (i , j) ∈ E .

(2) Node-based reformulation: xi = 1
di

∑
j∈N (i) xj for i ∈ V

Rate guarantees for the convex and strongly convex/smooth case
[Makhdoumi, Ozdaglar 15].

16

Other Distributed Methods

Other Distributed Optimization Methods

Standard distributed gradient method [Nedic, Ozdaglar 09].

[Yuan, Lin, Yin 16] considered this algorithm for when the local
functions are smooth and when they are convex or strongly convex.
For the convex case, they show the network-wide mean estimate
converges at rate O(1/k) to an O(α) neighborhood of the optimal
solution, and for the strongly convex case, all local estimates converge
at a linear rate O(exp(−k/Θ(κ))) to an O(α) neighborhood of the
optimal solution (κ is the condition number).

Extra: [Shi, Ling, Wu, Yin 15] provides a novel algorithm which can be
viewed as a primal-dual algorithm for the constrained reformulation of the
problem.

Gradient Tracking: [Qu and Li 18] proposes to update the DG method such
that agents also maintain, exchange, and combine estimates of gradients of
the local objective functions.

See [Jakovetic 19] for a unified analysis of these methods, and [Fallah et al.
19] for accelerated and noisy versions of these algorithms.

17

Games

From Distributed Optimization to Games

Early 2000: Resource allocation among strategic/self-interested agents.

Selfish Routing [Roughgarden, Tardos 00]

Source-based routing in
communication networks, efficiency
of traffic flows in transport systems.

Price of Anarchy: quantification of
efficiency losses

no congestion effects

delay depends on congestion

1 unit of traffic

Service Provider Incentives in Traffic Engineering

Pricing and Efficiency in Congested Markets [Acemoglu, Ozdaglar 07].
Partially Optimal Routing (optimal routing within subnetworks is
overlaid with selfish routing across domains) [Acemoglu, Johari,
Ozdaglar 07].

18

Games

From Distributed Optimization to Games

Paradoxes of strategic decision making:

Informational Braess’s Paradox

Impact of Extra Information on Equilibrium Cost

Key Question: Does expansion of information sets lead to improved
equilibrium costs?

Related questions in literature:

E↵ect of decreasing cost functions on equilibrium cost (with only one
type of motorist).
Braess paradox: Equilibrium cost increases by decreasing cost funcs.
Braess paradox occurs in a Wheatstone graph [Braess 68], [Arnott,
Small 94], [Milchtaich 06].

O D

1
2

x

x 1

1
1 unit

C(f) = 3
2

1
2

O D

x 1

1 unit

C(f̃) = 2

x

1

0

1

1

11Information and Learning in Traffic Networks

Effect of information in congested traffic [Acemoglu, Makhdoumi,
Malekian, Ozdaglar 17].
Information Design!

19

Games

Games and equilibria

Multiple decision makers, with possibly competing goals

A common model for strategic interactions among different agents

Two-player, zero-sum case is very special (minimax theorem).

General case requires a different solution concept: Nash equilibrium

20

Games

Games and equilibria

Finite games in normal (strategic) form:

G = 〈M, {Em}m∈M, {um}m∈M〉

where

M is the set of players
Em are the possible strategies of player m
um is the utility (payoff) of player m

Players choose their actions simultaneously and independently

Typically, may need to consider mixed strategies, where players
randomize among possible actions according to specific probabilities

21

Games

Nash equilibria

Natural solution concept, extends usual minimax (zero-sum games)

Key idea: No player should benefit from unilateral deviations

Definition

A strategy profile p = {p1, . . . , pM} is a Nash equilibrium if

um(pm, p−m) ≥ um(qm, p−m)

for all players m ∈M and every strategy qm ∈ Em.

Nash equilibria always exist

May not be unique.

May require mixed strategies

22

Games

Potential Games

A nice class of games, with appealing mathematical properties

G is an exact potential game if ∃Φ : E → R (“potential”) such that

Φ(xm, x−m)− Φ(ym, x−m) = um(xm, x−m)− um(ym, x−m),

Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

Potential Φ aggregates and explains incentives of all players.

Examples: congestion games, etc.

In potential games, finding equilibria reduces to optimization!

23

Games

Potential Games

A nice class of games, with appealing mathematical properties

G is an exact potential game if ∃Φ : E → R (“potential”) such that

Φ(xm, x−m)− Φ(ym, x−m) = um(xm, x−m)− um(ym, x−m),

Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

Potential Φ aggregates and explains incentives of all players.

Examples: congestion games, etc.

In potential games, finding equilibria reduces to optimization!

23

Games

Potential Games and Learning

A global maximum of an ordinal potential is a pure Nash equilibrium.

Every finite potential game has a pure equilibrium.

Many decentralized learning dynamics (such as better-reply dynamics,
fictitious play, spatial adaptive play) “converge” to a pure Nash
equilibrium [Monderer and Shapley 96], [Young 98], [Marden, Arslan,
Shamma 06, 07].

24

Games

Potential Games

When is a given game a potential game?

More important, what are the obstructions, and what is the
underlying structure?

Can we “approximate” general games with potential games?

Geometric characterization, connections to Helmholtz decomposition
[Candogan et. al 11]

Convergence of learning dynamics in near-potential games [Candogan,
Ozdaglar, Parrilo 13]

25

	Introduction
	Distributed Subgradient Method
	Other Distributed Methods
	Games

