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Introduction

Motivation

@ Many modern systems are large-scale, consist of agents with local
information and involve collection and processing of data in a decentralized
manner.

@ This motivated much interest in developing distributed algorithms for
processing of large-scale data, and control and optimization of multi-agent
networked systems.

Routing and
congestion control in
wireline and wireless
networks

Parameter estimation
in sensor networks

Smart grid systems

Multi-agent
cooperative control



Distributed Multi-agent Optimization

@ Many of these problems can be represented within the general formulation:

@ A set of agents (nodes) {1,..., N} connected through a network.

@ The goal is to cooperatively solve

N
min Zf;(x) / ~Jo(w1, ..., @)
i=1

X

s.t. x € R",

fi(x) : R” — R is a convex
(possibly nonsmooth) function,
known only to agent /.

@ Since such systems often lack a centralized processing unit, algorithms for
this problem should involve each agent performing computations locally and
communicating this information according to the underlying network.



Introduction

Machine Learning Example

A network of 3 sensors.

@ Data is collected at different sensors: temperature t, electricity demand d.

@ System goal: learn a
degree 3 polynomial
electricity demand model:

Least square fit with polynomial max degree 3
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d(t) = xat3 fxot? fxpt+xp. - 2
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@ System objective: 20

Electricity Demand
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Introduction

Machine Learning General Set-up

@ A network of agents i =1,..., N.
@ Each agent / has access to local feature vectors A; and output b;.

@ System objective: train weight vector x to
N
min Z L(Aix — b)) + p(x),
i=1

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

o Example: Least-Absolute Shrinkage and Selection Operator (LASSO):
u 2
min (1A — b2+ Al

i=1



Literature: Parallel and Distributed Optimization

@ Lagrangian relaxation and dual optimization methods:

Dual gradient ascent, (single) coordinate ascent methods.

@ Parallel computation and optimization:

[Tsitsiklis 84], [Bertsekas and Tsitsiklis 95].

@ Consensus and cooperative control:

Averaging algorithms: Deterministic averaging of all neighbor
estimates.

[Jadbabaie, Lin, and Morse 03], [Olfati-Saber and Murray 04],
[Olshevsky and Tsitsiklis 07], [Tahbaz-Salehi and Jadbabaie 08], [Kar
and Moura 09], [Frasca, Carli, Fagnani and Zampieri 09], [Bullo,
Cortes, Martinez 09],[Oreshkin, Coates, and Rabbat 10].

Gossip algorithms: Random pairwise averaging.

[Boyd, Ghosh, Prabhakar, and Shah 05], [Dimakis, Sarwate, and
Wainwright 08], [Fagnani, Zampieri 09], [Aysal, Yildiz, Sarwate, and
Scaglione 09].



Literature: Distributed Multi-agent Optimization

@ Distributed first order primal subgradient methods [Nedic, Ozdaglar 09].
@ Various extensions:

o Local and global constraints [Nedic, Ozdaglar, Parrilo 10], [Zhu and
Martinez 10].

e Randomly varying communication networks[Lobel, Ozdaglar 09], [Baras
and Matei 10], [Lobel, Ozdaglar, and Feijer 10].

o Network effects [Nedic, Olshevsky, Ozdaglar, Tsitsiklis 09]

o Random gradient errors [Ram, Nedic, Veeravalli 09].

@ Ordinary-Augmented Lagrangian primal-dual subgradient methods

o [Jakovetic, Xavier, Moura 11}, [Zhu, Giannakakis, Cano 09],[Mota,
Xavier, Aguiar, Puschel 13]

@ Distributed second order methods (for more specialized problems)
o [Wei, Ozdaglar, Jadbabaie 11], [Liu, Sherali 12 ]



This Lecture

@ Brief overview of distributed primal subgradient methods [Nedic,
Ozdaglar 09].

Other distributed optimization methods.

Decentralized strategic decision making.

Decentralized control.



Distributed Subgradient Method

@ Recall problem formulation: =

N
mXin Z fi(x)
i=1
s.t. x € R”
. f"l‘/rﬁ"‘7‘r7'l
f*: optimal value. (= )

@ We assume agents are connected through a “time-varying” graph.

@ Key idea: Each agent maintains a local estimate of the optimal solution, and

updates it by taking a (sub)gradient step along his local objective function
and averaging with neighbors’ estimates.



Distributed Subgradient Method

@ Let x/(k) € R" denote agent i's estimate of the solution at time k.

Agent Update Rule:

@ At each time k, agent / updates its estimate as:
N
xi(k+1) =) ay(k)x(k) — a(k)di(k),
j=1

ajj(k) > 0: weights, (k) > 0: stepsize, dj(k): a subgradient of f; at x;(k).

@ The weights aj;(k) represents i's time-varying neighbors at time k:
ajj(k) > 0 only for agent j that communicate with agent / at time k.

® When all f; =0, the method reduces to the consensus algorithm [Vicsek 95],
[Jadbabaie, Lin, Morse 03].
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Distributed Subgradient Method

Linear Dynamics and Transition Matrices

@ We let A(k) denote the weight matrix [a;j(k)]i j=1,....n, and define transition
matrices

®(k,s) = A(k)A(k —1)---A(s + 1)A(s) forall k >s

@ We use these matrices to relate x;(k + 1) to xj(s) at time s < k:

xi(k+1) = Z[‘b(k’S)linj(S) - E_: Z[d’(k» r+ D]ja(r)di(r) — a(k) di(k).

@ We analyze convergence properties of the distributed method by
establishing:

o Convergence of transition matrices ®(k,s) (consensus part)
o Convergence of an approximate subgradient method (effect of
optimization)

11



Assumptions: Weights and Connectivity

Assumption (Weights)
(a) There exists a scalar ) € (0,1) s.t. aji(k) > n and if aj(k) > 0, a;j(k) > 7.

(b) The weight matrix A(k) is doubly stochastic, ZJN:;l aj(k) =1 for all i and
Z,,-Vzl ajj(k) =1 for all j.

@ Double stochasticity ensures agent estimates equally influential in the limit.
This guarantees minimizing the sum of the local objective functions.

@ Represent information exchange by (V, Ex),
Ex={(,i) | aj(k) >0, i,j=1,...,m}.

Assumption (Connectivity)
There exists an integer B > 1 such that the directed graph
(M, E,U---U Ek+B—1)

is strongly connected for all k > 0.
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Distributed Subgradient Method

Convergence Analysis — Idea

@ Recall the evolution of the estimates (with a(s) = «):

k=1 N
i(k+1) Z[CD (ko $)ixi(s) — a Y Y [d(k, r + 1)]di(r) — adi(k).
r=s j=1
@ Proof method: We define an auxiliary sequence: y(k) = % vazl xi(k).

@ The sequence y(k) evolves as
N
«
k+1)=y(k)— = > di(k),
D =00~ ok

where d;(k) is a subgradient of f; at x;(k).

@ This corresponds to an approximate subgradient method for minimizing
>_; fi(x) (subgradients computed at x;(k) instead of y(k)).



Distributed Subgradient Method

Convergence Analysis — Idea

@ But y(k) evolution can be written as:

1 N O[k71 N a N
Y+ = 5D x08) = 5 20 > d(n = 5 D dik).

@ Using the below result, this shows that y(k) and x;(k) get close to each
other in the limit: agent “disagreements” disappear and the method behaves
as a centralized subgradient method.

Theorem (Nedic, Olshevsky, Ozdaglar, Tsitsiklis 09)
For all i,j and all k,s with k > s, we have

) [ -2

otsl - | < (1- 41
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Distributed Subgradient Method

Convergence

@ We assume set of subgradients of f; uniformly bounded by some L > 0.
o Let Xi(k) = %Zﬁzl x;(h): ergodic average of estimates.

Proposition

For all k > 1,

al?C
c. < * il o *
f(xi(k)) <+ >t kd/st( y(0), X*),

@ With constant stepsize, this achieves:

2
al”C for all i.

limsup f(%i(k)) < f* +

k— 00 -

@ By choosing a(k) = 1/vk, this achieves a convergence rate of O(1/vk).



Other Distributed Optimization Methods

@ We can also use Alternating Direction Method of Multipliers (ADMM)-type
methods for distributed optimization.

e Involves reformulation into a separable problem and sequential updates
of subcomponents of the decision vector.

@ Introduce a “local copy” x; in R” for each i/ and write

m
min > fi(x)
i=1

s.t. (1) or (2).

(1) Edge-based reformulation: x; = x; for (i,) € E.
(2) Node-based reformulation: x; = dl/_ jen(n X forieV
@ Rate guarantees for the convex and strongly convex/smooth case
[Makhdoumi, Ozdaglar 15].
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Other Distributed Optimization Methods

@ Standard distributed gradient method [Nedic, Ozdaglar 09].

e [Yuan, Lin, Yin 16] considered this algorithm for when the local
functions are smooth and when they are convex or strongly convex.

e For the convex case, they show the network-wide mean estimate
converges at rate O(1/k) to an O(«) neighborhood of the optimal
solution, and for the strongly convex case, all local estimates converge
at a linear rate O(exp(—k/©(k))) to an O(«) neighborhood of the
optimal solution (k is the condition number).

@ Extra: [Shi, Ling, Wu, Yin 15] provides a novel algorithm which can be
viewed as a primal-dual algorithm for the constrained reformulation of the
problem.

@ Gradient Tracking: [Qu and Li 18] proposes to update the DG method such
that agents also maintain, exchange, and combine estimates of gradients of
the local objective functions.

@ See [Jakovetic 19] for a unified analysis of these methods, and [Fallah et al.
19] for accelerated and noisy versions of these algorithms.
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Games

From Distributed Optimization to Games

@ Early 2000: Resource allocation among strategic/self-interested agents.

@ Selfish Routing [Roughgarden, Tardos 00]

[+ ] Source_based routing in ll(:c) =z delay depends on congestion
communication networks, efficiency ////’r\\\/\\
of traffic flows in transport systems. —0_ o=
-
@ Price of Anarchy: quantification of b(@) =1 congostion effects

efficiency losses

@ Service Provider Incentives in Traffic Engineering

o Pricing and Efficiency in Congested Markets [Acemoglu, Ozdaglar 07].

o Partially Optimal Routing (optimal routing within subnetworks is
overlaid with selfish routing across domains) [Acemoglu, Johari,
Ozdaglar 07].

18



Games

From Distributed Optimization to Games

@ Paradoxes of strategic decision making:

—

1 unit

@ Information and Learning in Traffic Networks

o Effect of information in congested traffic [Acemoglu, Makhdoumi,
Malekian, Ozdaglar 17].
o Information Design!

19



Games

Games and equilibria

Multiple decision makers, with possibly competing goals
@ A common model for strategic interactions among different agents

@ Two-player, zero-sum case is very special (minimax theorem).

General case requires a different solution concept: Nash equilibrium

20



Games and equilibria

o Finite games in normal (strategic) form:

G = (M {E™}mem, {u"tmer)
where

o M is the set of players
o E™ are the possible strategies of player m
e u™ is the utility (payoff) of player m

@ Players choose their actions simultaneously and independently

@ Typically, may need to consider mixed strategies, where players
randomize among possible actions according to specific probabilities

21



Nash equilibria

e Natural solution concept, extends usual minimax (zero-sum games)

o Key idea: No player should benefit from unilateral deviations
Definition
A strategy profile p = {p1,...,pm} is a Nash equilibrium if
u™(p™, p~") = u"(q", p7")

for all players m € M and every strategy q" € E™.

@ Nash equilibria always exist
e May not be unique.

@ May require mixed strategies

22




Potential Games

A nice class of games, with appealing mathematical properties

@ G is an exact potential game if 3¢ : E — R (“potential”) such that

@ Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.
@ Potential ® aggregates and explains incentives of all players.

@ Examples: congestion games, etc.

23



Potential Games

A nice class of games, with appealing mathematical properties

@ G is an exact potential game if 3¢ : E — R (“potential”) such that

@ Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

@ Potential ® aggregates and explains incentives of all players.

@ Examples: congestion games, etc.

In potential games, finding equilibria reduces to optimization!
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Games

Potential Games and Learning

@ A global maximum of an ordinal potential is a pure Nash equilibrium.
o Every finite potential game has a pure equilibrium.

e Many decentralized learning dynamics (such as better-reply dynamics,
fictitious play, spatial adaptive play) “converge” to a pure Nash
equilibrium [Monderer and Shapley 96], [Young 98], [Marden, Arslan,
Shamma 06, 07].
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Potential Games

When is a given game a potential game?

More important, what are the obstructions, and what is the
underlying structure?

Can we “approximate” general games with potential games?

Geometric characterization, connections to Helmholtz decomposition
[Candogan et. al 11]

Convergence of learning dynamics in near-potential games [Candogan,
Ozdaglar, Parrilo 13]
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