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Introduction

Motivation

Many modern systems are large-scale, consist of agents with local
information and involve collection and processing of data in a decentralized
manner.

This motivated much interest in developing distributed algorithms for
processing of large-scale data, and control and optimization of multi-agent
networked systems.

Routing and
congestion control in
wireline and wireless
networks

Parameter estimation
in sensor networks

Multi-agent
cooperative control

Smart grid systems
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Introduction

Distributed Multi-agent Optimization

Many of these problems can be represented within the general formulation:

A set of agents (nodes) {1, . . . ,N} connected through a network.

The goal is to cooperatively solve

min
x

N∑
i=1

fi (x)

s.t. x ∈ Rn,

fi (x) : Rn → R is a convex
(possibly nonsmooth) function,
known only to agent i .

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

Since such systems often lack a centralized processing unit, algorithms for
this problem should involve each agent performing computations locally and
communicating this information according to the underlying network.
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Introduction

Machine Learning Example

A network of 3 sensors.

Data is collected at different sensors: temperature t, electricity demand d .

System goal: learn a
degree 3 polynomial
electricity demand model:

d(t) = x3t
3+x2t

2+x1t+x0.

System objective:

min
x

3∑
i=1

||A′ix − di ||
2
2 .

where Ai = [1, ti , t
2
i , t

3
i ]′ at

input data ti .
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Introduction

Machine Learning General Set-up

A network of agents i = 1, . . . ,N.

Each agent i has access to local feature vectors Ai and output bi .

System objective: train weight vector x to

min
x

N∑
i=1

L(A′ix − bi ) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

min
x

N∑
i=1

||A′ix − bi ||
2
2 + λ ||x ||1 .
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Introduction

Literature: Parallel and Distributed Optimization

Lagrangian relaxation and dual optimization methods:

Dual gradient ascent, (single) coordinate ascent methods.

Parallel computation and optimization:

[Tsitsiklis 84], [Bertsekas and Tsitsiklis 95].

Consensus and cooperative control:

Averaging algorithms: Deterministic averaging of all neighbor
estimates.
[Jadbabaie, Lin, and Morse 03], [Olfati-Saber and Murray 04],
[Olshevsky and Tsitsiklis 07], [Tahbaz-Salehi and Jadbabaie 08], [Kar
and Moura 09], [Frasca, Carli, Fagnani and Zampieri 09], [Bullo,
Cortes, Martinez 09],[Oreshkin, Coates, and Rabbat 10].
Gossip algorithms: Random pairwise averaging.
[Boyd, Ghosh, Prabhakar, and Shah 05], [Dimakis, Sarwate, and
Wainwright 08], [Fagnani, Zampieri 09], [Aysal, Yildiz, Sarwate, and
Scaglione 09].
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Introduction

Literature: Distributed Multi-agent Optimization

Distributed first order primal subgradient methods [Nedic, Ozdaglar 09].

Various extensions:

Local and global constraints [Nedic, Ozdaglar, Parrilo 10], [Zhu and
Martinez 10].
Randomly varying communication networks[Lobel, Ozdaglar 09], [Baras
and Matei 10], [Lobel, Ozdaglar, and Feijer 10].
Network effects [Nedic, Olshevsky, Ozdaglar, Tsitsiklis 09]
Random gradient errors [Ram, Nedic, Veeravalli 09].

Ordinary-Augmented Lagrangian primal-dual subgradient methods

[Jakovetic, Xavier, Moura 11], [Zhu, Giannakakis, Cano 09],[Mota,
Xavier, Aguiar, Puschel 13]

Distributed second order methods (for more specialized problems)

[Wei, Ozdaglar, Jadbabaie 11], [Liu, Sherali 12 ]
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Introduction

This Lecture

Brief overview of distributed primal subgradient methods [Nedic,
Ozdaglar 09].

Other distributed optimization methods.

Decentralized strategic decision making.

Decentralized control.
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Introduction

Distributed Subgradient Method

Recall problem formulation:

min
x

N∑
i=1

fi (x)

s.t. x ∈ Rn

f ∗: optimal value.

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

We assume agents are connected through a “time-varying” graph.

Key idea: Each agent maintains a local estimate of the optimal solution, and
updates it by taking a (sub)gradient step along his local objective function
and averaging with neighbors’ estimates.

9



Distributed Subgradient Method

Distributed Subgradient Method

Let x i (k) ∈ Rn denote agent i ’s estimate of the solution at time k.

Agent Update Rule:

At each time k , agent i updates its estimate as:

xi (k + 1) =
N∑
j=1

aij(k)xj(k)− α(k)di (k),

aij(k) ≥ 0: weights, α(k) > 0: stepsize, di (k): a subgradient of fi at xi (k).

The weights aij(k) represents i ’s time-varying neighbors at time k:
aij(k) > 0 only for agent j that communicate with agent i at time k.

When all fi = 0, the method reduces to the consensus algorithm [Vicsek 95],
[Jadbabaie, Lin, Morse 03].
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Distributed Subgradient Method

Linear Dynamics and Transition Matrices

We let A(k) denote the weight matrix [aij(k)]i,j=1,...,N , and define transition
matrices

Φ(k, s) = A(k)A(k − 1) · · ·A(s + 1)A(s) for all k ≥ s

We use these matrices to relate xi (k + 1) to xj(s) at time s ≤ k:

xi (k + 1) =
N∑

j=1

[Φ(k, s)]ijxj(s) −
k−1∑

r=s

N∑

j=1

[Φ(k, r + 1)]ijα(r)dj(r) − α(k) di (k).

We analyze convergence properties of the distributed method by
establishing:

Convergence of transition matrices Φ(k , s) (consensus part)
Convergence of an approximate subgradient method (effect of
optimization)
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Distributed Subgradient Method

Assumptions: Weights and Connectivity

Assumption (Weights)

(a) There exists a scalar η ∈ (0, 1) s.t. aii (k) ≥ η and if aij(k) > 0, aij(k) ≥ η.

(b) The weight matrix A(k) is doubly stochastic,
∑N

j=1 aij(k) = 1 for all i and∑N
i=1 aij(k) = 1 for all j .

Double stochasticity ensures agent estimates equally influential in the limit.
This guarantees minimizing the sum of the local objective functions.

Represent information exchange by (V ,Ek),

Ek = {(j , i) | aij(k) > 0, i , j = 1, . . . ,m}.

Assumption (Connectivity)

There exists an integer B ≥ 1 such that the directed graph(
M,Ek ∪ · · · ∪ Ek+B−1

)
is strongly connected for all k ≥ 0.
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Distributed Subgradient Method

Convergence Analysis – Idea

Recall the evolution of the estimates (with α(s) = α):

xi (k + 1) =
N∑
j=1

[Φ(k, s)]ijxj(s)− α
k−1∑
r=s

N∑
j=1

[Φ(k , r + 1)]ijdj(r)− αdi (k).

Proof method: We define an auxiliary sequence: y(k) = 1
N

∑N
i=1 xi (k).

The sequence y(k) evolves as

y(k + 1) = y(k)− α

N

N∑
i=1

di (k),

where di (k) is a subgradient of fi at xi (k).

This corresponds to an approximate subgradient method for minimizing∑
j fj(x) (subgradients computed at xi (k) instead of y(k)).
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Distributed Subgradient Method

Convergence Analysis – Idea

But y(k) evolution can be written as:

y(k + 1) =
1

N

N∑
j=1

xj(s)− α

N

k−1∑
r=s

N∑
j=1

dj(r)− α

N

N∑
i=1

di (k).

Using the below result, this shows that y(k) and xi (k) get close to each
other in the limit: agent “disagreements” disappear and the method behaves
as a centralized subgradient method.

Theorem (Nedic, Olshevsky, Ozdaglar, Tsitsiklis 09)

For all i , j and all k , s with k ≥ s, we have∣∣∣∣[Φ(k , s)]ij −
1

N

∣∣∣∣ ≤ (1− η

4N2

)d k−s+1
B e−2

.
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Distributed Subgradient Method

Convergence

We assume set of subgradients of fi uniformly bounded by some L > 0.

Let x̂i (k) = 1
k

∑k
h=1 xi (h): ergodic average of estimates.

Proposition

For all k ≥ 1,

f (x̂i (k)) ≤ f ∗ +
αL2C

2
+

m

2αk
dist(y(0),X ∗),

where β = 1− η
4N2 and C = 1 + 8N

(
2 + NB

β(1−β)

)
.

With constant stepsize, this achieves:

lim sup
k→∞

f (x̂i (k)) ≤ f ∗ +
αL2C

2
for all i .

By choosing α(k) = 1/
√
k , this achieves a convergence rate of O(1/

√
k).
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Other Distributed Methods

Other Distributed Optimization Methods

We can also use Alternating Direction Method of Multipliers (ADMM)-type
methods for distributed optimization.

Involves reformulation into a separable problem and sequential updates
of subcomponents of the decision vector.

Introduce a “local copy” xi in Rn for each i and write

min
x∈Rmn

m∑
i=1

fi (xi )

s.t. (1) or (2).

(1) Edge-based reformulation: xi = xj for (i , j) ∈ E .

(2) Node-based reformulation: xi = 1
di

∑
j∈N (i) xj for i ∈ V

Rate guarantees for the convex and strongly convex/smooth case
[Makhdoumi, Ozdaglar 15].
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Other Distributed Methods

Other Distributed Optimization Methods

Standard distributed gradient method [Nedic, Ozdaglar 09].

[Yuan, Lin, Yin 16] considered this algorithm for when the local
functions are smooth and when they are convex or strongly convex.
For the convex case, they show the network-wide mean estimate
converges at rate O(1/k) to an O(α) neighborhood of the optimal
solution, and for the strongly convex case, all local estimates converge
at a linear rate O(exp(−k/Θ(κ))) to an O(α) neighborhood of the
optimal solution (κ is the condition number).

Extra: [Shi, Ling, Wu, Yin 15] provides a novel algorithm which can be
viewed as a primal-dual algorithm for the constrained reformulation of the
problem.

Gradient Tracking: [Qu and Li 18] proposes to update the DG method such
that agents also maintain, exchange, and combine estimates of gradients of
the local objective functions.

See [Jakovetic 19] for a unified analysis of these methods, and [Fallah et al.
19] for accelerated and noisy versions of these algorithms.
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Games

From Distributed Optimization to Games

Early 2000: Resource allocation among strategic/self-interested agents.

Selfish Routing [Roughgarden, Tardos 00]

Source-based routing in
communication networks, efficiency
of traffic flows in transport systems.

Price of Anarchy: quantification of
efficiency losses

no congestion effects

delay depends on congestion

1 unit of traffic

Service Provider Incentives in Traffic Engineering

Pricing and Efficiency in Congested Markets [Acemoglu, Ozdaglar 07].
Partially Optimal Routing (optimal routing within subnetworks is
overlaid with selfish routing across domains) [Acemoglu, Johari,
Ozdaglar 07].
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Games

From Distributed Optimization to Games

Paradoxes of strategic decision making:

Informational Braess’s Paradox

Impact of Extra Information on Equilibrium Cost

Key Question: Does expansion of information sets lead to improved
equilibrium costs?

Related questions in literature:

E↵ect of decreasing cost functions on equilibrium cost (with only one
type of motorist).
Braess paradox: Equilibrium cost increases by decreasing cost funcs.
Braess paradox occurs in a Wheatstone graph [Braess 68], [Arnott,
Small 94], [Milchtaich 06].
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11Information and Learning in Traffic Networks

Effect of information in congested traffic [Acemoglu, Makhdoumi,
Malekian, Ozdaglar 17].
Information Design!
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Games

Games and equilibria

Multiple decision makers, with possibly competing goals

A common model for strategic interactions among different agents

Two-player, zero-sum case is very special (minimax theorem).

General case requires a different solution concept: Nash equilibrium
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Games

Games and equilibria

Finite games in normal (strategic) form:

G = 〈M, {Em}m∈M, {um}m∈M〉

where

M is the set of players
Em are the possible strategies of player m
um is the utility (payoff) of player m

Players choose their actions simultaneously and independently

Typically, may need to consider mixed strategies, where players
randomize among possible actions according to specific probabilities
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Games

Nash equilibria

Natural solution concept, extends usual minimax (zero-sum games)

Key idea: No player should benefit from unilateral deviations

Definition

A strategy profile p = {p1, . . . , pM} is a Nash equilibrium if

um(pm, p−m) ≥ um(qm, p−m)

for all players m ∈M and every strategy qm ∈ Em.

Nash equilibria always exist

May not be unique.

May require mixed strategies
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Games

Potential Games

A nice class of games, with appealing mathematical properties

G is an exact potential game if ∃Φ : E → R (“potential”) such that

Φ(xm, x−m)− Φ(ym, x−m) = um(xm, x−m)− um(ym, x−m),

Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

Potential Φ aggregates and explains incentives of all players.

Examples: congestion games, etc.

In potential games, finding equilibria reduces to optimization!
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Games

Potential Games
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Games

Potential Games and Learning

A global maximum of an ordinal potential is a pure Nash equilibrium.

Every finite potential game has a pure equilibrium.

Many decentralized learning dynamics (such as better-reply dynamics,
fictitious play, spatial adaptive play) “converge” to a pure Nash
equilibrium [Monderer and Shapley 96], [Young 98], [Marden, Arslan,
Shamma 06, 07].

24



Games

Potential Games

When is a given game a potential game?

More important, what are the obstructions, and what is the
underlying structure?

Can we “approximate” general games with potential games?

Geometric characterization, connections to Helmholtz decomposition
[Candogan et. al 11]

Convergence of learning dynamics in near-potential games [Candogan,
Ozdaglar, Parrilo 13]
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