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empirical mean: empirical variance: 

Yes!
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What about errors in the 
model itself? (1960)



ROBUST PARAMETER ESTIMATION
Given corrupted samples from a 1-D Gaussian:

can we accurately estimate its parameters?

=+
ideal model noise observed model



How do we constrain the noise?



How do we constrain the noise?

Equivalently:

L1-norm of noise at most O(ε)



How do we constrain the noise?

Equivalently:

L1-norm of noise at most O(ε) Arbitrarily corrupt O(ε)-fraction
of samples (in expectation)



How do we constrain the noise?

Equivalently:

This generalizes Huber’s Contamination Model: An adversary can
add an ε-fraction of samples

L1-norm of noise at most O(ε) Arbitrarily corrupt O(ε)-fraction
of samples (in expectation)



How do we constrain the noise?

Equivalently:

This generalizes Huber’s Contamination Model: An adversary can
add an ε-fraction of samples

L1-norm of noise at most O(ε) Arbitrarily corrupt O(ε)-fraction
of samples (in expectation)

Outliers: Points adversary has corrupted, Inliers: Points he hasn’t
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In what norm do we want the parameters to be close?

estimate observed

Definition: The total variation distance between two distributions
with pdfs f(x) and g(x) is

Equivalently, find a 1-D Gaussian that satisfies
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Do the empirical mean and empirical variance work?

No!

=+
ideal model noise observed model

But the median and median absolute deviation do work
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where
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What about robust estimation in high-dimensions?

e.g. microarrays with 10k genes

Fact [Folklore]: Given samples from a distribution that is ε-close
in total variation distance to a 1-D Gaussian

the median and MAD recover estimates that satisfy

where
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Main Problem: Given samples from a distribution that is ε-close
in total variation distance to a d-dimensional Gaussian

give an efficient algorithm to find parameters that satisfy



Main Problem: Given samples from a distribution that is ε-close
in total variation distance to a d-dimensional Gaussian

give an efficient algorithm to find parameters that satisfy

Special Cases:

(1) Unknown mean

(2) Unknown covariance
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A COMPENDIUM OF APPROACHES

Error 

Guarantee

Running 

Time

Tukey Median O(ε) NP-Hard

Geometric Median O(ε√d) poly(d,N)

Tournament O(ε) NO(d)

O(ε√d)Pruning O(dN)

Unknown
Mean

…
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The Price of Robustness?

All known estimators are hard to compute or
lose polynomial factors in the dimension

Equivalently: Computationally efficient estimators can only handle

fraction of errors and get non-trivial (TV < 1) guarantees

Is robust estimation algorithmically possible in high-dimensions?
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OUR RESULTS

Theorem [Diakonikolas, Li, Kamath, Kane, Moitra, Stewart ‘16]: 
There is an algorithm when given                           samples from a 
distribution that is ε-close in total variation distance to a 
d-dimensional Gaussian                finds parameters that satisfy

Robust estimation is high-dimensions is algorithmically possible!

Moreover the algorithm runs in time poly(N, d)



OUR RESULTS

Theorem [Diakonikolas, Li, Kamath, Kane, Moitra, Stewart ‘16]: 
There is an algorithm when given                           samples from a 
distribution that is ε-close in total variation distance to a 
d-dimensional Gaussian                finds parameters that satisfy

Robust estimation is high-dimensions is algorithmically possible!

Moreover the algorithm runs in time poly(N, d)

Extensions: Can weaken assumptions to sub-Gaussian or bounded
second moments (with weaker guarantees) for the mean
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Simultaneously [Lai, Rao, Vempala ‘16] gave agnostic algorithms
that achieve:

When the covariance is bounded, this translates to:

Subsequently many works handling more errors via list decoding, 
giving lower bounds against statistical query algorithms, 
weakening the distributional assumptions, exploiting sparsity, 
working with more complex generative models



A GENERAL RECIPE

Robust estimation in high-dimensions:

� Step #1: Find an appropriate parameter distance

� Step #2: Detect when the naïve estimator has been 
compromised 

� Step #3: Find good parameters, or make progress
Filtering: Fast and practical
Convex Programming: Better sample complexity
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Robust estimation in high-dimensions:

� Step #1: Find an appropriate parameter distance

� Step #2: Detect when the naïve estimator has been 
compromised 

� Step #3: Find good parameters, or make progress
Filtering: Fast and practical
Convex Programming: Better sample complexity

Let’s see how this works for unknown mean…
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This can be proven using Pinsker’s Inequality
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PARAMETER DISTANCE

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact: 

(1)

Corollary: If our estimate (in the unknown mean case) satisfies

then

Our new goal is to be close in Euclidean distance
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DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised

= uncorrupted
= corrupted

There is a direction of large (> 1) variance
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Key Lemma: If X1, X2, … XN come from a distribution that is ε-close
to                 and                                             then for 

(1) (2)

with probability at least 1-δ

Take-away: An adversary needs to mess up the second moment
in order to corrupt the first moment 
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A WIN-WIN ALGORITHM

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

We can throw out more corrupted than uncorrupted points

If we continue too long, we’d have no corrupted points left!

Eventually we find (certifiably) good parameters 

Running Time: Sample Complexity: 
Concentration of LTFs
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A GENERAL RECIPE

Robust estimation in high-dimensions:

� Step #1: Find an appropriate parameter distance
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A GENERAL RECIPE

Robust estimation in high-dimensions:

� Step #1: Find an appropriate parameter distance

� Step #2: Detect when the naïve estimator has been 
compromised 

� Step #3: Find good parameters, or make progress
Filtering: Fast and practical
Convex Programming: Better sample complexity

How about for unknown covariance?
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PARAMETER DISTANCE

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact: 

Again, proven using Pinsker’s Inequality

(2)

Our new goal is to find an estimate that satisfies:

Distance seems strange, but it’s the right one to use to bound TV



UNKNOWN COVARIANCE

What if we are given samples from              ?



UNKNOWN COVARIANCE

What if we are given samples from              ?

How do we detect if the naïve estimator is compromised?



UNKNOWN COVARIANCE

What if we are given samples from              ?

How do we detect if the naïve estimator is compromised?

Key Fact: Let and

Then restricted to flattenings of d x d symmetric matrices



UNKNOWN COVARIANCE

What if we are given samples from              ?

How do we detect if the naïve estimator is compromised?

Key Fact: Let and

Then restricted to flattenings of d x d symmetric matrices

Proof uses Isserlis’s Theorem



UNKNOWN COVARIANCE

need to project out

What if we are given samples from              ?

How do we detect if the naïve estimator is compromised?

Key Fact: Let and

Then restricted to flattenings of d x d symmetric matrices



Key Idea: Transform the data, look for restricted large eigenvalues



Key Idea: Transform the data, look for restricted large eigenvalues



Key Idea: Transform the data, look for restricted large eigenvalues

If     were the true covariance, we would have 
for inliers



Key Idea: Transform the data, look for restricted large eigenvalues

If     were the true covariance, we would have 
for inliers, in which case:

would have small restricted eigenvalues



Key Idea: Transform the data, look for restricted large eigenvalues

If     were the true covariance, we would have 
for inliers, in which case:

would have small restricted eigenvalues

Take-away: An adversary needs to mess up the (restricted) fourth
moment in order to corrupt the second moment 
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ASSEMBLING THE ALGORITHM

Given samples that are ε-close in total variation distance to a 
d-dimensional Gaussian

Step #1: Doubling trick

Now use algorithm for unknown covariance

Step #2: (Agnostic) isotropic position

Now use algorithm for unknown mean
right distance, in general case
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SYNTHETIC EXPERIMENTS

Error rates on synthetic data (unknown covariance, isotropic):

+ 10% noise
close to identity
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Error rates on synthetic data (unknown covariance, anisotropic):

+ 10% noise
far from identity
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Famous study of [Novembre et al. ‘08]: Take top two singular
vectors of people x SNP matrix (POPRES)
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“Genes Mirror Geography in Europe”
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Can we find such patterns in the presence of noise? 

10% noise

What robust PCA (via SDPs) finds
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What our methods find

no noise

The power of provably robust estimation:
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LOOKING FORWARD

Can algorithms for agnostically learning a Gaussian help in
exploratory data analysis in high-dimensions?

Isn’t this what we would have been doing with robust statistical
estimators, if we had them all along?
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Let me tell you a story about the tension between sharp thresholds
and robustness
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THE STOCHASTIC BLOCK MODEL

Introduced by Holland, Laskey and Leinhardt (1983):

� k communities

� connection probabilities

Q =
Q11 Q12   Q13

Q12 Q22   Q32

Q13 Q32   Q33

probability Q13

probability Q11

� edges independent

Ubiquitous model studied in statistics, computer science,
information theory, statistical physics
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Testbed for diverse range of algorithms

(1) Combinatorial Methods
e.g. degree counting [Bui, Chaudhuri, Leighton, Sipser ‘87]

(2) Spectral Methods e.g. [McSherry ‘01]

(3) Markov chain Monte Carlo (MCMC) e.g. [Jerrum, Sorkin ‘98]

(4) Semidefinite Programs e.g. [Boppana ‘87]

Can we reach the fundamental limits of the SBM?

These algorithms succeed in some ranges of parameters
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Following Decelle, Krzakala, Moore and Zdeborová (2011), 
let’s study the sparse regime:

Remark: The degree of each node is Poi(a/2+b/2) hence there
are many isolated nodes whose community we cannot find

Goal (Partial Recovery): Find a partition that has agreement 
better than ½ with true community structure 
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let’s study the sparse regime:

a
n

a
n

b
n

where a, b = O(1) so that there are O(n) edges

Conjecture: Partial recovery is possible iff (a-b)2 > 2(a+b) 

Conjecture is based on fixed points of belief propagation…
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BELIEF PROPAGATION

Introduced by Judea Pearl (1982):

“For fundamental 
contributions … to 

probabilistic and causal
reasoning”
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u

v
Adapted to community detection:

Message vèu
Probability I think
I am community #1,
community #2, …

…
…

…

u

v

Message uèv
New probability I think
I am community #1,
community #2, …

update
beliefs

Do same for all nodesDo same for all nodes
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Belief propagation has a trivial fixed point where it gets stuck

u
Pr[red] = ½
Pr[blue] = ½

Pr[red] = ½
Pr[blue] = ½

Pr[red] = ½
Pr[blue] = ½

Pr[red] = ½
Pr[blue] = ½

Claim: No one knows anything, so you never have to update
your beliefs
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THE TRIVIAL FIXED POINT
Belief propagation has a trivial fixed point where it gets stuck

Fact: If (a-b)2 > 2(a+b) then the trivial fixed point is unstable 

Hope: Whatever it finds, solves partial recovery

And if (a-b)2 ≤ 2(a+b) and it does get stuck, then maybe partial
recovery is information theoretically impossible?   

Evidence based on simulations
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Mossel, Neeman and Sly (2013) and Massoulie (2013):

Theorem: It is possible to find a partition that is correlated
with true communities iff (a-b)2 > 2(a+b) 

(a-b)2 > C(a+b), for some C > 2 

Are nonconvex methods better than convex programs?

How do predictions of statistical physics and SDPs compare?

Later attempts based on SDPs only get to

Robustness will be a key player in the answers
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SEMI-RANDOM MODELS

Introduced by Blum and Spencer (1995), Feige and Kilian (2001):

(1) Sample graph from SBM 

(2) Adversary can add edges 
within community
and delete edges crossing

Algorithms can no longer over tune to distribution
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Monotone changes break most algorithms, in fact something
more fundamental is happening:

Theorem [Moitra, Perry, Wein ‘16]: It is information theoretically
impossible to recover a partition correlated with true communities
for (a-b)2 ≤ Ca,b(a+b) for some Ca,b > 2 in the semirandom model

But SDPs continue to work in semirandom model

Being robust can make the problem strictly harder, but why?

Reaching the sharp threshold for community detection requires 
exploiting the structure of the noise
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Semi-random models: When SDPs work, they’re not exploiting
the structure of the noise

Models are a measuring stick to compare algorithms, but 
are we studying the right ones?

Average-case models: When we have many algorithms, can
we find the best one?
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BETWEEN WORST-CASE AND AVERAGE-CASE

“Explain why algorithms work well in 
practice, despite bad worst-case behavior”

Spielman and Teng (2001): 

Usually called Beyond Worst-Case Analysis

Semirandom models as Above Average-Case Analysis? 

What else are we missing, if we only study problems in the 
average-case?
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LOOKING FORWARD

Are there nonconvex methods that match the robustness
guarantees of convex relaxations?

What models of robustness make sense for your favorite 
problems?
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Let M be an unknown, low-rank matrix 

≈ + … +M +

comedydrama sports

Model: We are given random observations Mi,j for all i,j Ω

Is there an efficient algorithm to recover M?

THE NETFLIX PROBLEM
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[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht],
[Candes, Tao], [Candes, Plan], [Recht], 

min   X     s.t.
*

(i,j)   Ω

|Xi,j–Mi,j| ≤ η (P)

Theorem: If M is n x n and has rank r, and is C-incoherent then (P) 
recovers M exactly from C6nrlog2n observations  

Here 
*

X is the nuclear norm, i.e. sum of the singular values of X

CONVEX PROGRAMMING APPROACH



ALTERNATING MINIMIZATION

U
(i,j)   Ω

|(UVT)i,j–Mi,j|
2

argmin
U

Repeat:

V
(i,j)   Ω

|(UVT)i,j–Mi,j|
2

argmin
V

[Keshavan, Montanari, Oh], [Jain, Netrapalli, Sanghavi], [Hardt]



ALTERNATING MINIMIZATION

U

(i,j)   Ω

|(UVT)i,j–Mi,j|
2

argmin
U

Repeat:

V

(i,j)   Ω

|(UVT)i,j–Mi,j|
2

argmin
V

[Keshavan, Montanari, Oh], [Jain, Netrapalli, Sanghavi], [Hardt]

Theorem: If M is n x n and has rank r, and is C-incoherent then 

alternating minimization approximately recovers M from 

Cnr2 F
M

2

σr
2

observations
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U

(i,j)   Ω

|(UVT)i,j–Mi,j|
2

argmin
U

Repeat:

V

(i,j)   Ω

|(UVT)i,j–Mi,j|
2

argmin
V

[Keshavan, Montanari, Oh], [Jain, Netrapalli, Sanghavi], [Hardt]

Theorem: If M is n x n and has rank r, and is C-incoherent then 

alternating minimization approximately recovers M from 

Cnr2 F
M

2

σr
2

observations

Running time and space complexity are better
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min   X     s.t.
*

(i,j)   Ω

|Xi,j–Mi,j| ≤ η (P)

What if an adversary reveals more entries of M?

still works, it’s just more constraints

Convex program:

Alternating minimization:

Are there variants that work in semi-random models?



Thanks! Any Questions?

Summary:
� Nearly optimal algorithm for agnostically learning

a high-dimensional Gaussian
� General recipe using restricted eigenvalue problems
� Is practical, robust statistics within reach?
� Tension between nonconvex methods and being

robust


