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High-Level Goals
q Selection bias in data collection

⇒ train distribution ≠ test distribution 

⇒ prediction bias (a.k.a. “ML bias”)

q Our Work: decrease bias, by developing machine learning 
methods more robust to censored and truncated samples

Truncated Statistics: samples falling outside of observation “window” are 
hidden and their count is also hidden
Censored Statistics: ditto, but count of hidden data is provided

o limitations of measurement devices
o limitations of data collection 

o experimental design, ethical or privacy considerations,…



Goal: Regress (IQ, Training, Education) vs Earnings [Wolfle&Smith’56, Hause’71,…]

Data Collection: survey families whose income is smaller than 1.5 times the poverty 
line; collect data 𝑥$, 𝑦$ $ where
• 𝑥$: (IQ, Training, Education,…) of individual 𝑖
• 𝑦$: earnings of individual 𝑖

Regression: fit some model 𝑦 = ℎ+ 𝑥 + 𝜀, e.g. 𝑦 = 𝜃/𝑥 + 𝜀

Obvious Issue: thresholding incomes may introduce bias

It does, as pointed out by [Hausman-Wise, Econometrica’76] debunking prior 
results “showing” effects of education are strong, while of IQ and training are not

Motivating Example: IQ vs Income



Goal: Regress Height vs Basketball Performance

Data Collection: use NBA data 𝑥$, 𝑦$ $ where
• 𝑥$: height of individual 𝑖
• 𝑦$: average number of points per game scored by individual 𝑖

Regression: fit some model 𝑦 = ℎ+ 𝑥 + 𝜀

Obvious Issue: by using NBA data, we might infer that height is neutral or even 
negatively correlated with performance

Motivating Example 2: Height vs Basketball



Mental Picture:

What Happened?

Vanilla Linear Regression Data truncated on the Y-axis

Truth: 𝑦$ = 𝜃 ⋅ 𝑥$ + 𝜀$, for all 𝑖



Motivating Eg 3: Truncation on the X-axis
Explanation: Training data contains 
more faces that are of lighter skin tone, 
male gender, Caucasian

⇒ Training loss of gender classifier pays 
less attention to faces that are of darker 
skin tone, female gender, non-Caucasian

⇒ Test loss on faces that are of darker 
skin tone, female gender, non-Caucasian 
is worse

Classical example of bias in ML 
systems

Buolamwini, Gebru, FAT 2018
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Problem 1: Truncation on the Y-Axis
(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regression Model:
• (unknown) distribution 𝐷 over covariates 𝑥

• (unknown) response mechanism ℎ+: 𝑥 ↦ 𝑦, 𝜃 ∈ Θ

• (unknown) noise distribution 𝑁6, 𝑤 ∈ Ω

• (known) filtering mechanism 𝜙: 𝑦 ↦ 𝑝 ∈ [0,1]
• (𝑥$, 𝑦$) included in train set with probability 𝜙(𝑦$)

𝒙 ∼ 𝐷

𝒚 = ℎ+(𝒙) + 𝜀,
𝜀 ∼ 𝑁6

add(𝒙, 𝒚) to 
training set

throw (𝒙, 𝒚) 
to the trash

w. pr. 
𝜙(𝑦)

w. pr. 
1 − 𝜙(𝑦)

production of training data



Truncated Regression Model:
• (unknown) distribution 𝐷 over ℝF
• data-point covariate vectors 𝑥 ∼ 𝐷

• (unknown) response mechanism ℎ+: 𝑥 ↦ 𝑦
• responses 𝑦 = ℎ+ 𝑥 + 𝜀,where 𝜀 ∼ 𝒩 0,1

• (known) filtering mechanism 𝜙:ℝF → [0,1]
• (𝑥, 𝑦) included in train set with probability 𝜙(𝑦)

𝒙 ∼ 𝐷

𝒚 = 𝜃/𝒙 + 𝜀,
𝜀 ∼ 𝒩 0, 𝜎J

add(𝒙, 𝒚) to 
training set

throw (𝒙, 𝒚) 
to the trash

w. pr. 
𝜙(𝑦)

w. pr. 
1 − 𝜙(𝑦)

production of training data
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(recall: IQ vs Earnings, Height vs Basketball)



Truncated Regression Model:
• (unknown) distribution 𝐷 over covariates 𝑥
• (unknown) response mechanism ℎ+: 𝑥 ↦ 𝑦, 𝜃 ∈ Θ
• (unknown) noise distribution 𝑁6
• (known) filtering mechanism 𝜙: 𝑦 ↦ 𝑝 ∈ [0,1]

Goal: given filtered data 𝑥$, 𝑦$ $ recover 𝜃

Results [w/ Gouleakis, Tzamos, Zampetakis COLT’19, w/ Ilyas, Rao, Zampetakis’19] :
- Practical, SGD-based likelihood optimization framework
- Computationally and statistically efficient recovery of true parameters for 

truncated linear/probit*/logistic regression* 
- prior work: inefficient algorithms, and error rates exponential in dimension

𝒙 ∼ 𝐷

𝒚 = ℎ+(𝒙) + 𝜀,
𝜀 ∼ 𝑁6

add(𝒙, 𝒚) to 
training set

throw (𝒙, 𝒚) 
to the trash

w. pr. 
𝜙(𝑦)

w. pr. 
1 − 𝜙(𝑦)

production of training data

Problem 1: Truncation on the Y-Axis
(recall: IQ vs Earnings, Height vs Basketball)



Comparison to Prior Work On Truncated 
Regression

Asymptotic Analysis of Truncated/Censored Regression 
[Tobin 1958], [Amemiya 1973], [Hausman, Wise 1976], [Breen 1996], 
[Hajivassiliou-McFadden’97], [Balakrishnan, Cramer 2014], Limited 
Dependent Variables models, Method of Simulated Scores, GHK Algorithm

Technical Bottlenecks:
• Convergence rates: 𝑂F

L
M

• Computationally inefficient algorithms

Our work: optimal rates 𝑂 F
M , efficient algorithms, arbitrary truncation sets

Assumptions:  whatever needed for standard regression + roughly that the 
average 𝑥$ in the training set has  ≥ 𝑐 probability of resulting in some 𝑦$ that 
won’t be pruned



Technical Vignette: Truncated Linear Regression
Data distribution: 𝑝+ 𝑥, 𝑦 = L

PQ
⋅ 𝐷 𝑥 ⋅ 𝑒S

TUQVW
X

X ⋅ 𝜙(𝑦)
Population Log-Likelihood: 

LL 𝜃 = 𝔼 [,\ ∼]Q∗
log𝐷 𝑥 −

𝑦 − 𝜃/𝑥 J

2
+ log𝜙 𝑦 − log 𝑍+

Issue: LL 𝜃 involves stuff we don’t know (𝐷), and even if 
we did it involves stuff that is difficult to calculate 𝑍+
Yet, Stochastic Gradient Descent (SGD) can be performed 
on negative log-likelihood!
In particular, easy to define random variable whose 
expectation is the gradient at a given 𝜃, without knowledge 
of 𝐷 and no need to compute 𝑍+

𝒙 ∼ 𝐷

𝒚 = 𝜃/𝒙 + 𝜀,
𝜀 ∼ 𝒩 0,1

add(𝒙, 𝒚) to 
training set

throw (𝒙, 𝒚) 
to the trash

w. pr. 
𝜙(𝑦)

w. pr. 
1 − 𝜙(𝑦)

production of training data



Technical Vignette: Truncated Linear Regression

Easy* to sample r.v. whose expectation is the gradient at a given 𝜃, 
with no need to compute 𝑍+

Summary: We cannot run blue or green, but we can run purple

LL 𝜃 = 𝔼 [,\ ∼]Q∗
log𝐷 𝑥 −

𝒚 − 𝜽𝑻𝒙 𝟐

𝟐 + log𝜙 𝑦 − 𝐥𝐨𝐠𝒁𝜽

Issue 2: this random variable better be efficiently 
samplable, have small variance

Requires restricting optimization in appropriately 
defined space

Issue 3: for parameter estimation need neg. log-
likelihood to be strongly convex

Requires anti-concentration of measure

𝛻+LL 𝜃 = 𝔼 𝒙,𝒚 ∼𝒑𝜽∗
− 𝒚 − 𝜽𝑻𝒙 𝒙 − 𝔼 𝒙,𝒚 ∼𝒑𝜽

− 𝒚 − 𝜽𝑻𝒙 𝒙

𝒙 ∼ 𝐷

𝒚 = 𝜃/𝒙 + 𝜀,
𝜀 ∼ 𝒩 0,1

add(𝒙, 𝒚) to 
training set

throw (𝒙, 𝒚) to 
the trash

w. pr. 
𝜙(𝑦)

w. pr. 
1 − 𝜙(𝑦)

production of training data



E.g. Application: Learning Single-layer Relu
Nets

Direct corollary: In the realizable setting, given input-

output pairs, obtain 𝑂 $MmnoSF$pqMr$sM
M error rate

= Noisy-Relu = max{0, 𝑤/ ⋅ 𝑥 + 𝜀},
where 𝜀~𝒩(0,1)



E.g. Application 2: NBA data
NBA player data after year 2000:
𝑥$: height of player 𝑖
𝑦$: number of points per game of player 𝑖

Points per Game are negatively 
correlated with height!
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Truncated Classification Model:
• (unknown) distribution 𝐷 over uncensored

image-label pairs 𝑥, 𝑦 ∼ 𝐷
• (unknown) filtering mechanism 𝜙6,	𝑤 ∈ Ω,	s.t. (𝑥, 𝑦) is 

included in train set with probability 𝜙6(𝑥)
• (sample access) unlabeled image distribution 𝐷[ i.e. big 

enough set of test images

• Goals:  given labeled but biased data 𝑥$, 𝑦$ $ and unbiased but unlabeled data,
• find image-to-label classifier minimizing classification loss on uncensored data

• Results: practical, SGD-based likelihood optimization framework [w/ 
Kontonis,Tzamos,Zampetakis]
• alternative to other domain adaptation approaches

Problem 2: (Unknown) Truncation on the X-Axis
(recall: gender classification viz-a-viz skin tone)

(𝒙, 𝒚) ∼ 𝐷

add(𝒙, 𝒚) to 
training set

throw (𝒙, 𝒚) 
to the trash

w. pr. 
𝜙6(𝑥)

w. pr. 
1 − 𝜙6(𝑥)

production of training data



Example Application: Gender Classification
Train set: wildly gender-unbalanced subset of CelebA
Test set: gender-balanced subset of CelebA
No knowledge that train set was censored according to label variable

Compare: (i) Naïve classifier; (ii) our classifier; (iii) omniscient classifier (does 
accurate propensity scoring of train set – c.f. David Sontag’s class) 
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Example Application: Gender Classification 2
Train gender classifier on an adversarially constructed gender-balanced subset 
of CelebA, which however predominantly contains “hard images” (images 
that a 95% accurate gender classifier trained on CelebA misclassifies)



Example Application: Gender Classification 2
Train gender classifier on an adversarially constructed gender-balanced subset 
of CelebA, which however predominantly contains “hard images” (images 
that a 95% accurate gender classifier trained on CelebA misclassifies)
• use 1000 “hard” images, and 100 “easy” images

Test classifier on a random balanced subset of CelebA dataset
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Training Epochs
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Problem 3: Truncated Density Estimation
Model:
• (unknown) parametric distribution 𝐷+ over ℝF
• uncensored data-points are vectors 𝑥 ∼ 𝐷+

• (known) filtering mechanism 𝜙:ℝF → [0,1]
• 𝑥 included in train set with probability 𝜙(𝑥)

Goal: given filtered data 𝑥$ $ recover 𝜃

Results: practical SGD & MLE based framework [w/ Ilyas, Zampetakis]
• Fast rates + rigorous recovery of true parameters for Gaussians and other 

exponential families [w/ Gouleakis, Tzamos, Zampetakis FOCS’18]
• Unknown 0/1 filtering: [Kontonis, Tzamos, Zampetakis FOCS’19]

𝒙 ∼ 𝐷+

add 𝒙 to 
training set

throw 𝒙 to 
the trash

w. pr. 
𝜙(𝑥)

w. pr. 
1 − 𝜙(𝑥)

production of training data



Comparison to Prior Work On Truncated 
Density Estimation

Learning Truncated/Censored Distributions
[Galton 1897], [Pearson 1902], [Pearson, Lee 1908], [Lee 1914], 
[Fisher 1931], [Hotelling 1948, [Tukey 1949],…,[Cohen’16]

Technical Bottlenecks:
• Convergence rates: 𝑂F

L
M

• Computationally inefficient algorithms

Our work: optimal rates 𝑂 #]�����
M , efficient algorithms, 

arbitrary truncation sets



Example Application: Query Optimization

Query Optimization:
• Given list of predicates/queries, 𝑄1, 𝑄2, 𝑄3, … , 𝑄M , want to efficient 

return all elements satisfying all predicates, i.e. 𝑄L ∧ 𝑄J ∧ ⋯∧ 𝑄M

• More efficient to schedule the queries in order of selectivity
• more selective = fewer elements satisfy it

• Need cardinality estimates (how selective is each query?)



• Cardinality Estimation: Given a query 𝑄 to a table, estimate the 
proportion of elements in the table satisfying the query

Height (cm) Age Weight (lbs)

150 16 120

155 18 140

153 15 137

160 19 150

165 18 155

163 17 200

… … … 

e.g. Q: height < 162, age > 17, weight < 153  

Example Application: Query Optimization



Height (cm) Age Weight (lbs)

150 16 120

155 18 140

153 15 137

160 19 150

165 18 155

163 17 200

… … … 

e.g. Q: height < 162, age > 17, weight < 153  

Selectivity: 33.33%

• Cardinality Estimation: Given a query 𝑄 to a table, estimate the 
proportion of elements in the table satisfying the query

Example Application: Query Optimization



• Cardinality Estimation: Given a query 𝑄 to a table, estimate the 
proportion of elements in the table satisfying the query

• Our Approach:
• model database elements as sampled from a parametric distribution D�
• use results of previously seen queries and truncated density estimation 

to learn 𝜃, and use that to estimate cardinality of future queries

Example Application: Query Optimization



Number of queries seen

Results: Cardinality Estimation

DMV dataset: estimating cardinality of random queries

Number of queries seen

Re
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Naïve: assume each element in DB 
samples its features (zip, model, 
year, etc.) independently from 
uniform distributions over 
corresponding ranges (no learning)

Adaptive: use query feedback to 
build a histogram over the possible 
elements

Gaussian: assume elements are 
sampled from a Gaussian mixture, 
learned using truncated density 
estimation



Menu

• Motivation
• Flavor of Models, Techniques, Results
• Supervised learning: known truncation on the y-axis

• small dive into techniques
• Supervised learning: unknown truncation on the x-axis
• Unsupervised learning: learning truncated densities

• bigger dive into techniques



Estimating a truncated Normal
[w/ Gouleakis, Tzamos, Zampetakis FOCS’18]



Truncated Normal



Estimation from Truncated Samples
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1. Only axes-aligned truncation
2. Known truncation
3. No sample complexity analysis
4. No efficient algorithm

We don’t need full knowledge
of the set but we only need 
oracle access to it!

Prior work and Comparison to ours
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1. Only axes-aligned truncation
2. Known truncation
3. No sample complexity analysis
4. No efficient algorithm

We prove that the problem admits
a convex programming formulation
which can be solved efficiently!
1. Applies to general exponential

families,

2. yields very simple algorithms!
(compared to moment methods)

Prior work and Comparison to ours



1. Only for axes aligned box!
2. Known set.
3. No sample complexity analysis.
4. No efficient algorithm.

We get # of samples that are optimal
up to polylogarithmic factors.

Prior work and Comparison to ours



Estimation from Truncated Samples
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Truncation Set

Impossible for unknown C!



Truncation Set



Estimation from Truncated Samples



In the remaining of this talk: focus Σ = 𝐼
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The Estimation Algorithm (untruncated)

Maximize Sample Likelihood

Prove Consistency
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The Estimation Algorithm

Maximize Population Likelihood Consistency

Reality check: we don’t have access
to infinitely many samples.

(fantasy)
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The Estimation Algorithm

Maximize Population Likelihood Consistency

Proof of Convergence

Stochastic Gradient Descent

Proof of Fast Convergence
in parameter space

population likelihood is strongly convex!

(fantasy)

(can still pretend)
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The Estimation Algorithm



Convergence Analysis



Convergence Analysis
Algorithm: Stochastic Gradient Descent in the population 

negative log-likelihood function.
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Convergence Analysis

High variance in
every direction.

Proof idea:
we use anti-concentration of polynomials 
under the Gaussian measure.

How to show strong convexity around 𝜇∗?
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q Missing Observations

⇒ train set dist’n ≠ test set distribution 

⇒ prediction bias (a.k.a. “AI bias”)

q Our Work: decrease bias, by developing machine learning methods more robust to 
censored and truncated samples

q General Framework: SGD on Population Log-Likelihood

q End-to-end guarantees: optimal rates and efficient algorithms for truncated Gaussian 
estimation, and truncated linear/logistic/probit regression

q Many Open Problems: 

• make fewer parametric assumptions; identifiability?

• Statistical inference problem X – (untruncated samples) + (truncated samples)

• Bias in ML applications

The End

Summary
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Unknown Covariance Matrix

Additional difficulties

Ø Log-likelihood is not convex.

Ø The strong convexity set is not a ball.

o Difficult to prove that the initial estimators lie in the set.

o Difficult to project to this set. 

Ø Anti-concentration of degree 4 polynomials is needed.


