6.S979 Topics in Deployable ML, Fall 2019

Causal Inference and Predicting Counterfactuals

David Sontag

Acknowledgement: many slides made by Uri Shalit for our ICML 2016 tutorial

Is smoking dangerous?

Do stricter gun laws lead to safer communities?

Is prekindergarten beneficial for children?

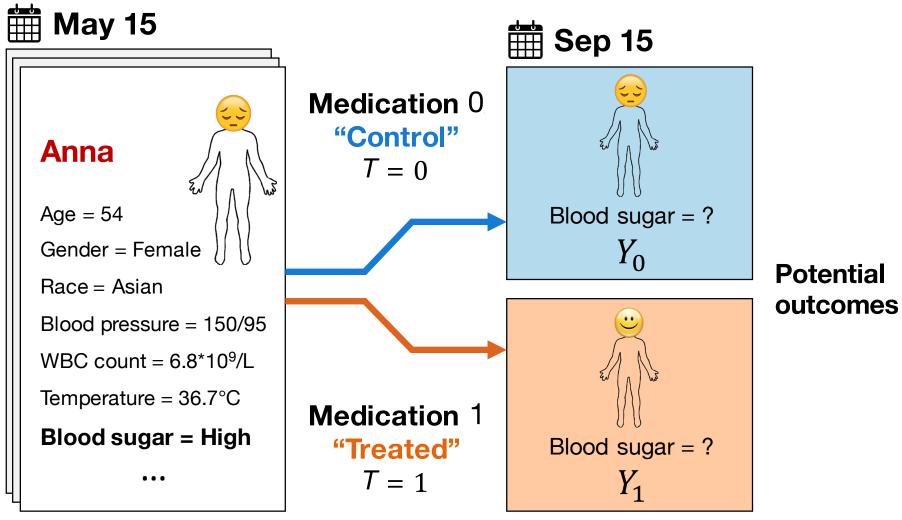
Will running an ad-campaign increase sales?

SALE

Hurry! Catch before they drain off Hurry! Limited period offer

Did a company discriminate against job applicants?

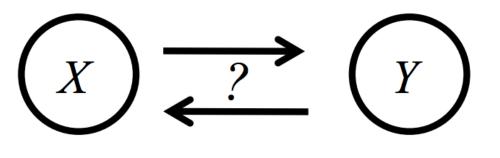
Which medication to prescribe?



Patient history, *X*

Machine learning "causals" that we won't discuss:

Identifying causal direction between two variables:



Bernhard Schölkopf

- Assumptions on noise process
- Work by Schölkopf, Janzing, Guyon, Mooij, Peters, Geiger, Lopez-Paz and others

Machine learning "causals" that we won't discuss:

- Learning causal graph structure from data:
 - Distinguishes between direct and indirect effects
 - Makes different set of assumptions, such as "faithfulness"
- Bühlmann, Geng, Maathuis, Pearl, Meinshausen, Tsamardinos...

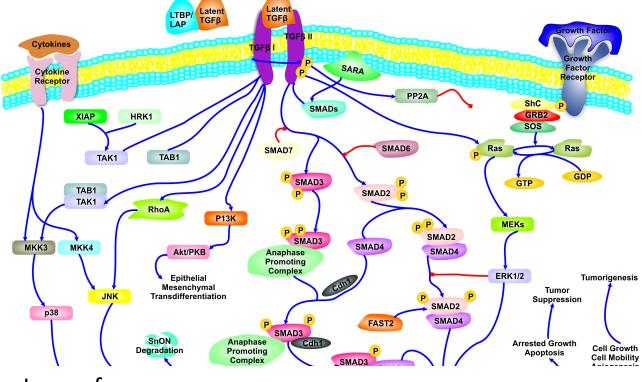
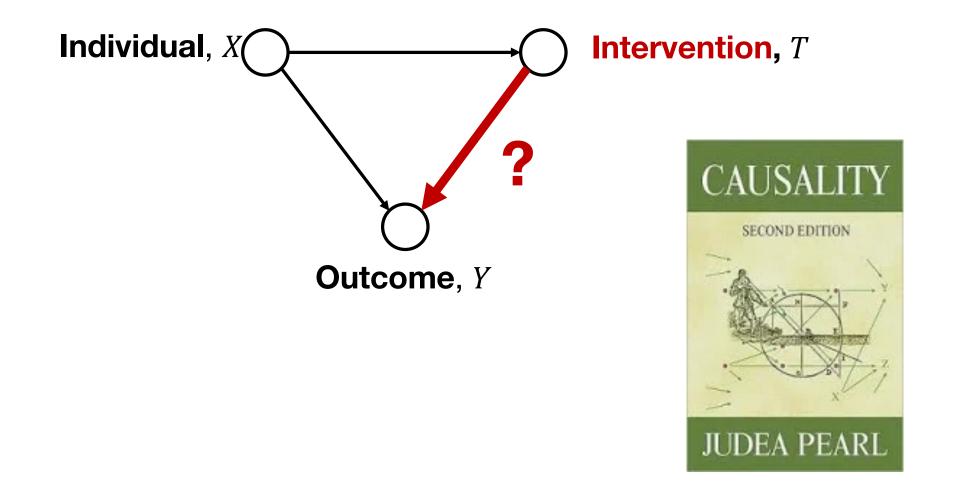


Image from:

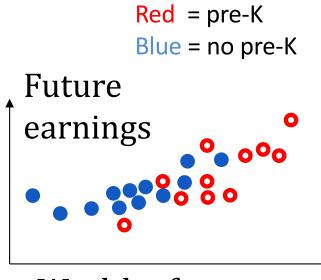
http://www.mensxmachina.org/causalpath/state.html

Formalization using language of causality



Key challenge: bias in data

- Here, wealth of parent is a confounder.
 If not corrected for, would obtain a biased estimate of causal effect
- If *no* young patients treated, lack
 treatment group overlap—estimation impossible without strong assumptions



Wealth of parent

Potential Outcomes Framework (Rubin-Neyman Causal Model)

- Each unit (individual) x_i has two potential outcomes:
 - $Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Conditional average treatment effect for unit *i*: $CATE(x_i) = \mathbb{E}_{Y_1 \sim p(Y_1|x_i)} [Y_1|x_i] - \mathbb{E}_{Y_0 \sim p(Y_0|x_i)} [Y_0|x_i]$
- Average Treatment Effect:

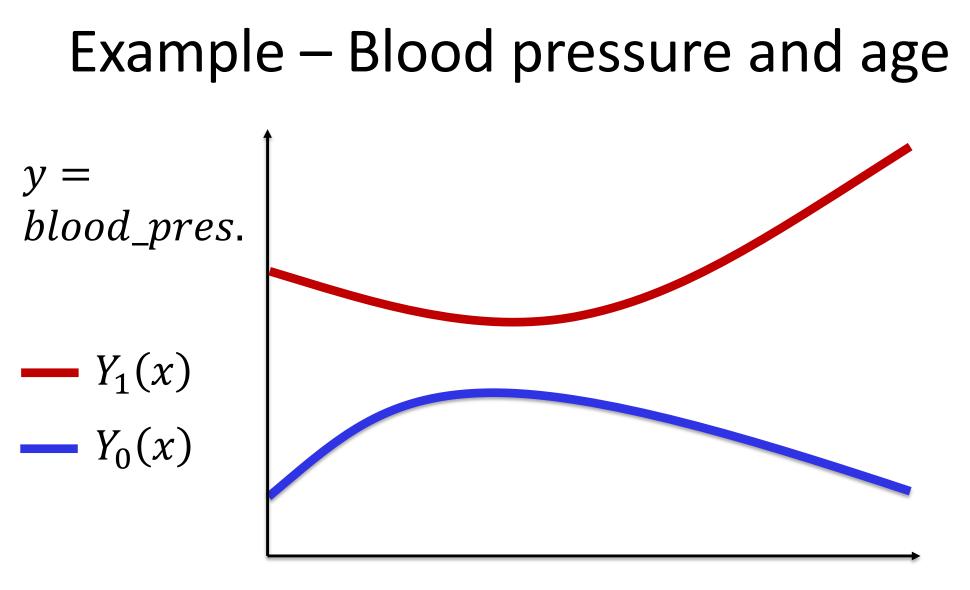
$$ATE := \mathbb{E}[Y_1 - Y_0] = \mathbb{E}_{x \sim p(x)}[CATE(x)]$$

Potential Outcomes Framework (Rubin-Neyman Causal Model)

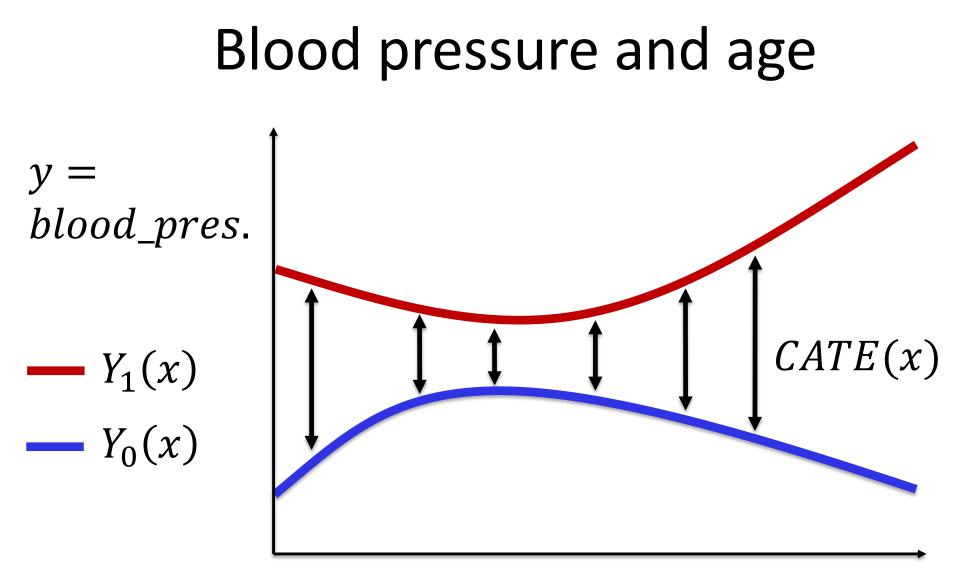
- Each unit (individual) x_i has two potential outcomes:
 - $Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Observed factual outcome: $y_i = t_i Y_1(x_i) + (1 - t_i) Y_0(x_i)$
- Unobserved counterfactual outcome: $y_i^{CF} = (1 - t_i)Y_1(x_i) + t_iY_0(x_i)$

"The fundamental problem of causal inference"

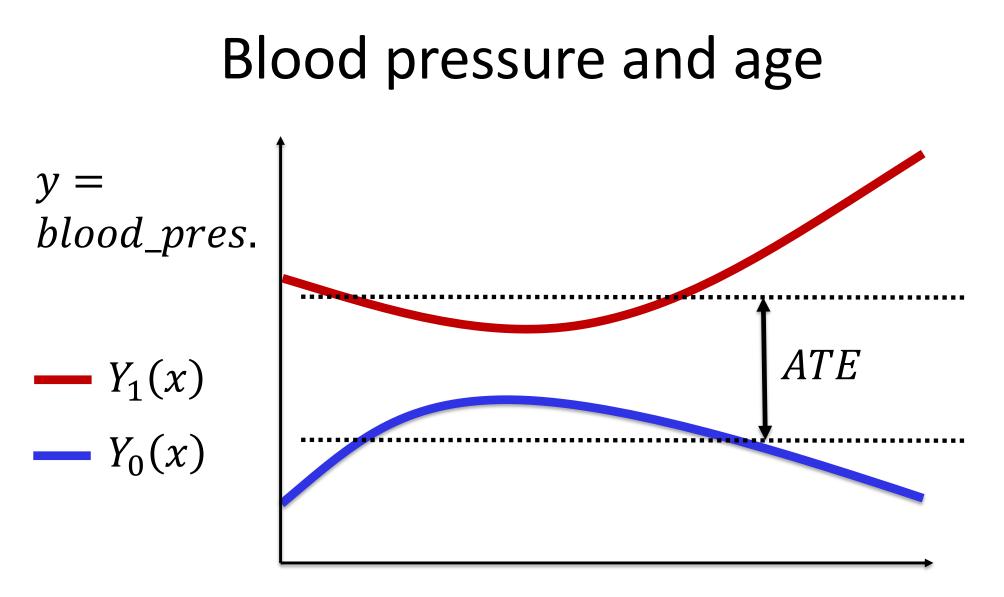
We only ever observe one of the two outcomes



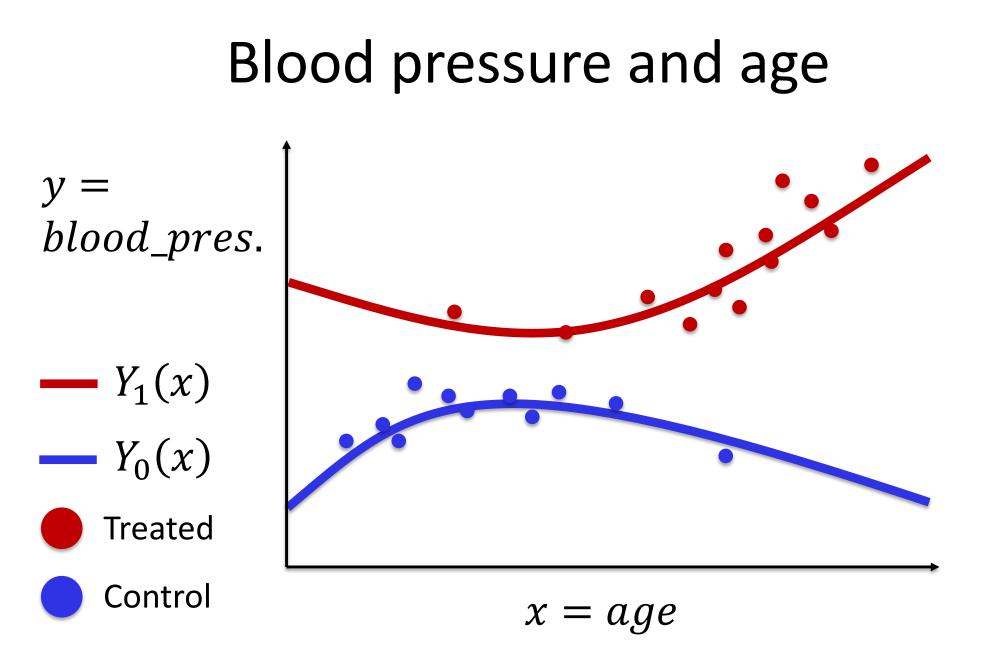
x = age

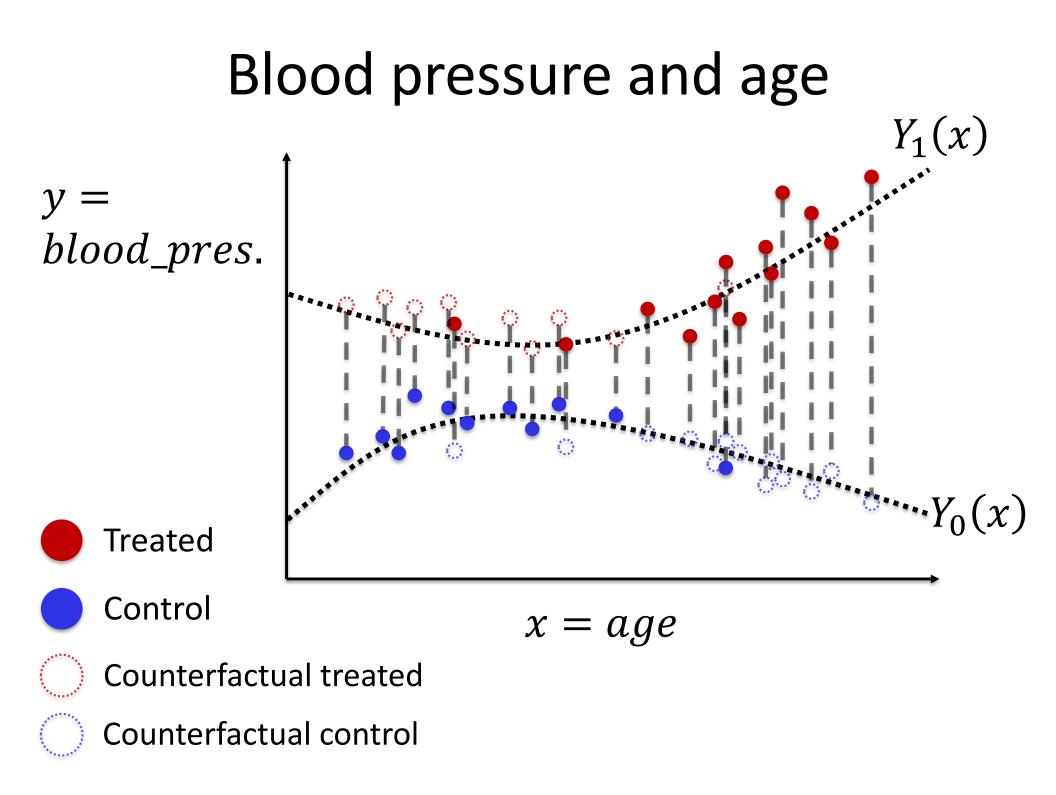


x = age



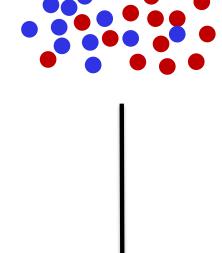
x = age



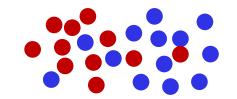


Connection to domain adaptation

Factual



Counterfactual



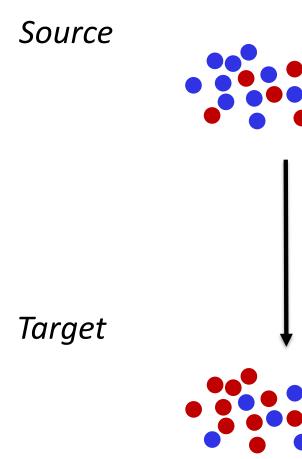
Treated

Control

 $p_F(x,t) = p_F(x)p_F(t|x)$ the joint *factual* distribution over covariates and treatment assignment **labeled** y_i

 $p_{CF}(x,t) \coloneqq p_F(x)p_F(1-t|x)$ the joint *counterfactual* distribution over covariates and treatment assignment **unlabeled**

Connection to domain adaptation



 $p_{source}(x)$ the *source*

distribution over covariates

labeled

 $p_{target}(x)$ the *target* distribution over covariates

unlabeled

Typical assumption #1 – common support (overlap)

 Y_0, Y_1 : potential outcomes for control and treated x: unit covariates (features)

T: treatment assignment

We assume:

$$p(T = t | X = x) > 0 \forall t, x$$

Why is this a necessary assumption?

Note: in a randomized control trial (RCT) with two arms, p(T | X) = p(T) = 1/2

Typical assumption #2 – no unmeasured confounders

 Y_0, Y_1 : potential outcomes for control and treated x: unit covariates (features)

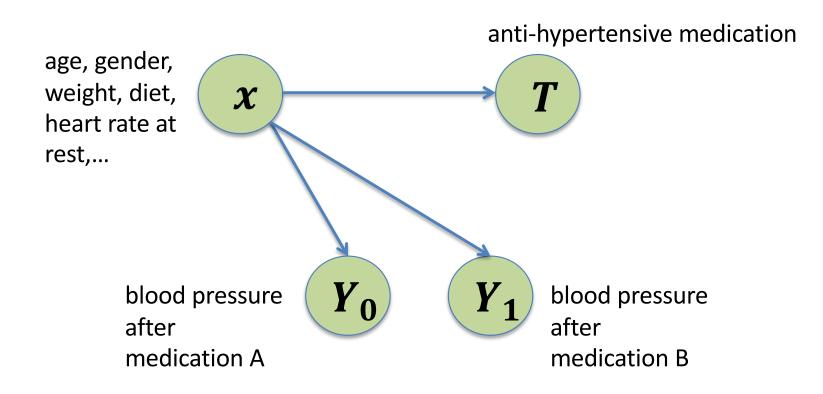
T: treatment assignment

We assume:

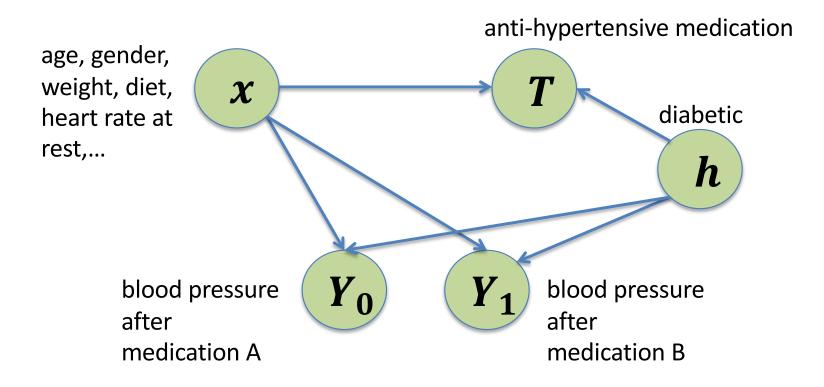
$$(Y_0, Y_1) \perp T \mid x$$

The potential outcomes are independent of treatment assignment, conditioned on covariates *x*

Typical assumption #2 – no unmeasured confounders



Violation of Typical assumption #2 – no unmeasured confounders



Two common approaches for counterfactual inference

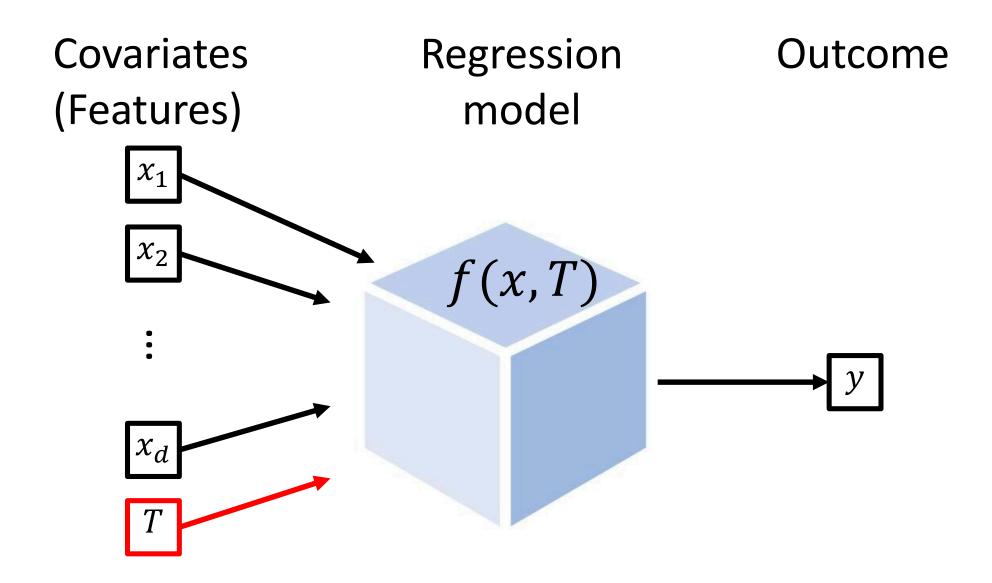
Covariate adjustment Propensity scores Covariate adjustment (parametric g-formula)

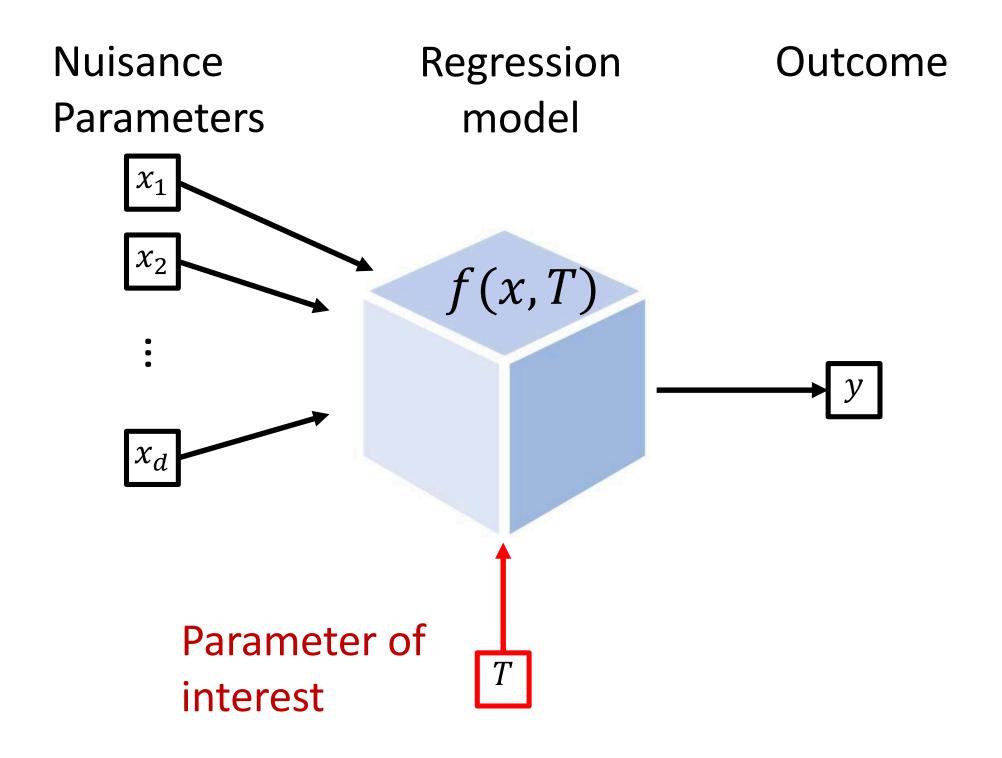
- Explicitly model the relationship between treatment, confounders, and outcome
- We will show that if no unmeasured confounders, expected causal effect of T on Y (given x) is given by:
 CATE(x) = E[Y|T = 1, x] E[Y|T = 0, x]
- Fit a model $f(x,t) \approx \mathbb{E}[Y|T = t, x]$

$$\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0)$$

Covariate adjustment (parametric g-formula)

- Explicitly model the relationship between treatment, confounders, and outcome
- We will show that if no unmeasured confounders, expected causal effect of T on Y (given x) is given by:
 CATE(x) = E[Y|T = 1, x] E[Y|T = 0, x]
- Fit a model $f(x,t) \approx \mathbb{E}[Y|T = t,x]$ $\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} f(x_i,1) - f(x_i,0)$





Average Treatment Effect – the adjustment formula

The expected causal effect of *T* on *Y*: $ATE := \mathbb{E}[Y_1 - Y_0]$

(Hernán & Robins 2010, Pearl 2009)

Average Treatment Effect – the adjustment formula The expected causal effect of T on Y: $ATE := \mathbb{E} |Y_1 - Y_0|$ $\mathbb{E}[Y_1] =$ $\mathbb{E}_{x \sim p(x)} \left| \mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right| =$

(Hernán & Robins 2010, Pearl 2009)

Average Treatment Effect – the adjustment formula The expected causal effect of T on Y: $ATE := \mathbb{E}\left[Y_1 - Y_0\right]$ $\mathbb{E}[Y_1] =$ ignorability $\mathbb{E}_{x \sim p(x)} \left| \mathbb{E}_{Y_1 \sim p(Y_1 | x)} \left[Y_1 | x \right] \right| = (Y_0, Y_1) \perp T | x$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x, T = 1 \right] \right] =$

(Hernán & Robins 2010, Pearl 2009)

Average Treatment Effect – the adjustment formula The expected causal effect of T on Y: $ATE := \mathbb{E}\left[Y_1 - Y_0\right]$ $\mathbb{E}[Y_1] =$ $\mathbb{E}_{x \sim p(x)} \left| \mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right| =$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x, T = 1 \right] \right] =$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ shorter notation

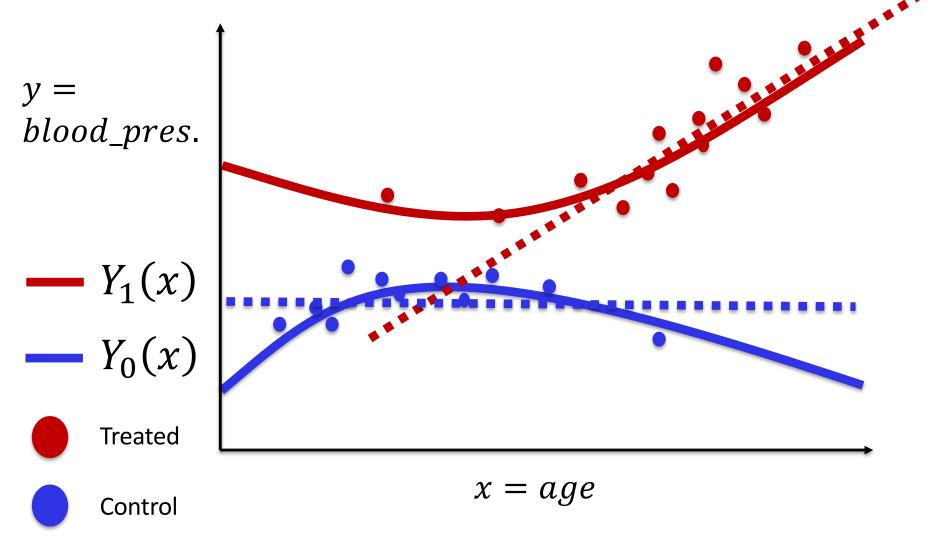
Average Treatment Effect – the adjustment formula The expected causal effect of T on Y: $ATE := \mathbb{E}\left[Y_1 - Y_0\right]$ $\mathbb{E}|Y_0| =$ $\mathbb{E}_{x \sim p(x)} \left| \mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 |x] \right| =$ $\mathbb{E}_{x \sim p(x)} \left| \mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x, T = 1 \right] \right| =$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$

Average Treatment Effect – the adjustment formula Under the assumption of ignorability, we have that:



Empirically we have samples from p(x|T = 1) or p(x|T = 0). Extrapolate to p(x)

Example of how covariate adjustment fails when there is no overlap



Covariate adjustment with linear models

• Assume that:

Blood pressure age medication $Y_t(x) = \beta x + \gamma \cdot t + \epsilon_t$ $\mathbb{E}[\epsilon_t] = 0$

• Then:

 $CATE(x) := \mathbb{E}[Y_1(x) - Y_0(x)] =$

Covariate adjustment with linear models

• Assume that:

Blood pressure age medication $Y_t(x) = \beta x + \gamma \cdot t + \epsilon_t$ $\mathbb{E}[\epsilon_t] = 0$

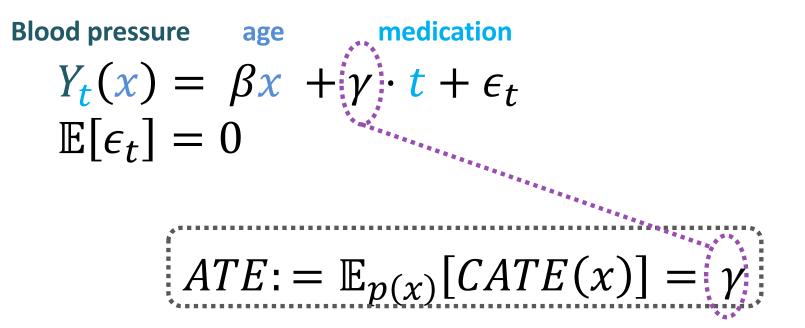
• Then:

 $CATE(x) := \mathbb{E}[Y_1(x) - Y_0(x)] = \mathbb{E}[(\beta x + \gamma + \epsilon_1) - (\beta x + \epsilon_0)] = \gamma$

 $ATE := \mathbb{E}_{p(x)}[CATE(x)] = \gamma$

Covariate adjustment with linear models

• Assume that:



- For causal inference, need to estimate γ well, not $Y_t(x)$ Identification, not prediction
- Major difference between ML and statistics

What happens if true model is not linear?

• True data generating process, $x \in \mathbb{R}$:

$$\begin{aligned} Y_t(x) &= \beta x + \gamma \cdot t + \delta \cdot x^2 \\ ATE &= \mathbb{E}[Y_1 - Y_0] = \gamma \end{aligned}$$

• Hypothesized model: $\widehat{Y}_t(x) = \widehat{\beta}x + \widehat{\gamma} \cdot t$

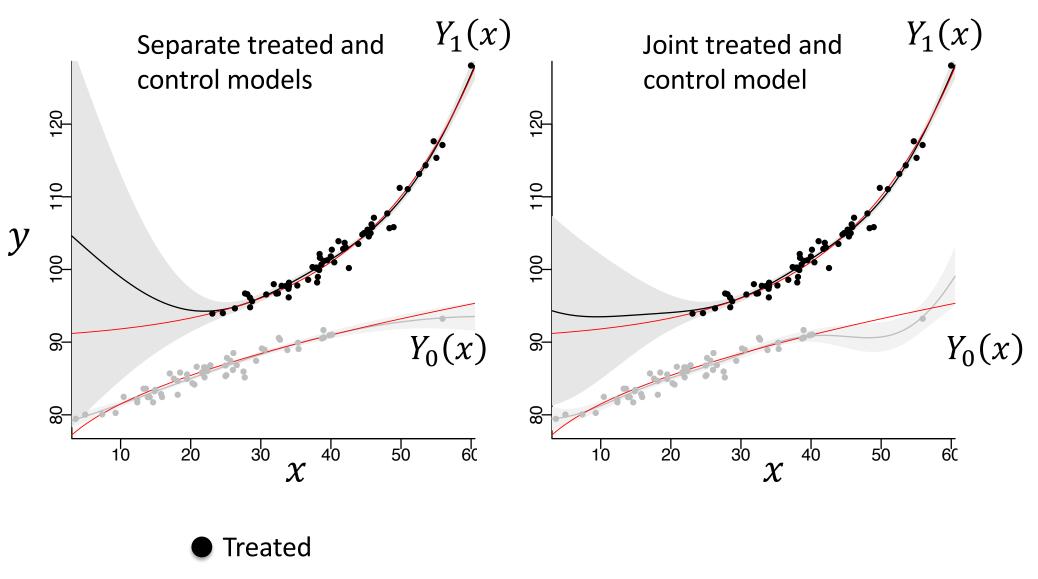
$$\hat{\gamma} = \gamma + \underbrace{\delta}_{\mathbb{E}[xt]\mathbb{E}[x^2] - \mathbb{E}[t^2]\mathbb{E}[x^2t]}_{\mathbb{E}[xt]^2 - \mathbb{E}[x^2]\mathbb{E}[t^2]}$$

Depending on δ , can be made to be arbitrarily large or small!

Covariate adjustment with non-linear models

- Random forests and Bayesian trees Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)
- Gaussian processes Hoyer et al. (2009), Zigler et al. (2012)
- Neural networks
 Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), Lopez-Paz et al. (2016)

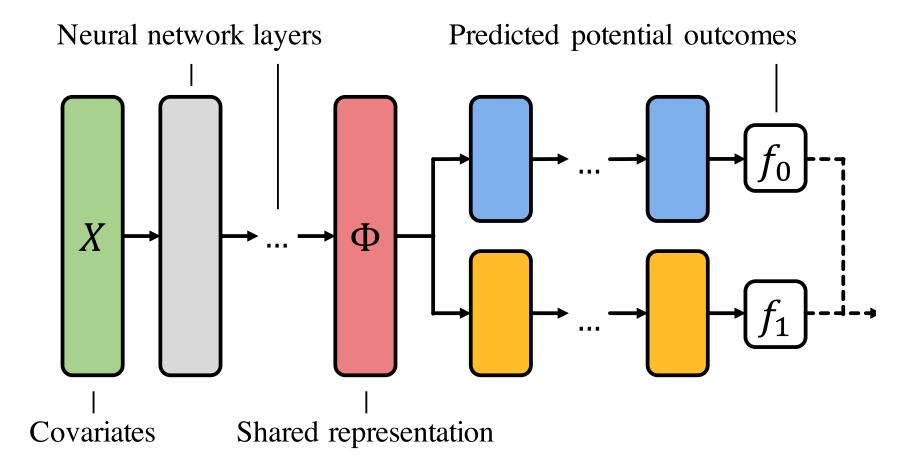
Example: Gaussian processes



Control

Figures: Vincent Dorie & Jennifer Hill

Example: Neural networks



Shalit, Johansson, Sontag. Estimating Individual Treatment Effect: Generalization Bounds and Algorithms. ICML, 2017

Two common approaches for counterfactual inference

Covariate adjustment Propensity scores

Propensity scores

- Tool for estimating ATE
- Imagine that we had data from a randomized control trial (RCT). Then we could simply estimate the ATE using:

$$\frac{1}{n_1} \sum_{i \ s.t.T_i=1} Y_i - \frac{1}{n_0} \sum_{i \ s.t.T_i=0} Y_i$$

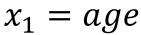
Basic idea: turn observational study into a pseudo-randomized trial by re-weighting samples

Inverse propensity score re-weighting

 $p(x|t = p(x|t w_{\overline{D}}(\emptyset) \neq p(x|t = 1) \cdot w_1(x))$ reweighted ogntrol reweighted treated

 $x_2 =$ Charlson comorbidity index

Control



Propensity score

- Propensity score: p(T = 1|x), using machine learning tools
- Samples re-weighted by the inverse propensity score of the treatment they received

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Use any ML method to estimate $\hat{p}(T = t | x)$

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{\hat{p}(t_i=1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{\hat{p}(t_i=0|x_i)}$$

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Randomized trial p(T = t | x) = 0.5

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{\hat{p}(t_i=1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{\hat{p}(t_i=0|x_i)}$$

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Randomized trial p(T = t | x) = 0.5

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{0.5} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{0.5} =$$

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Randomized trial p = 0.5

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{0.5} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{0.5} = \frac{2}{n} \sum_{i \text{ s.t. } t_i=1} y_i - \frac{2}{n} \sum_{i \text{ s.t. } t_i=0} y_i$$

Propensity scores – algorithm *Inverse probability of treatment weighted estimator* How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), ..., (x_n, t_n, y_n)$ Sum over $\sim \frac{n}{2}$ terms 1. Randomized trial p = 0.52. $A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{0.5}$ $i \text{ s.t. } t_i$ y_i y_i $i \, {
m s.t.}$ $i \, \mathrm{s.t.}$

• We want: $\mathbb{E}_{x \sim p(x)}[Y_1(x)]$

Propensity scores - derivation

• We know that:

$$\frac{p(x|T=1)}{p(T=1)} \cdot \frac{p(T=1)}{p(T=1|x)} = p(x)$$

• Thus:

$$\mathbb{E}_{x \sim p(x|T=1)} \left[\frac{p(T=1)}{p(T=1|x)} Y_1(x) \right] = \mathbb{E}_{x \sim p(x)} [Y_1(x)]$$

• We can approximate this empirically as:

$$\frac{1}{n_1} \sum_{i \text{ s.t.} t_i = 1} \left[\frac{n_1/n}{\hat{p}(t_i = 1 \mid x_i)} y_i \right] = \frac{1}{n} \sum_{i \text{ s.t.} t_i = 1} \frac{y_i}{\hat{p}(t_i = 1 \mid x_i)}$$

(similarly for t_i=0)

Problems with inverse propensity weighting (IPW)

- Need to estimate propensity score (problem in all propensity score methods)
- If there's not much overlap, propensity scores become non-informative and easily miscalibrated
- Weighting by inverse can create large variance and large errors for small propensity scores
 - Exacerbated when more than two treatments

Bounding counterfactual risk

 Building on ML literature from domain adaptation, we can bound the (average) error in predicting counterfactuals:

$$\mathbb{E}_{p^{t=0}(x)}\left[\left(Y_1 - f(x,1)\right)^2\right] \le \mathbb{E}_{p^{t=1}(x)}\left[\left(Y_1 - f(x,1)\right)^2\right] + |\ell_f|_{\mathcal{H}} d_{\mathcal{H}}\left(p^{t=0}(x), p^{t=1}(x)\right)$$

Counterfactual risk

Factual risk

Distance between treatment groups

- Makes no assumption of consistency or overlap
- Suggests avenues for modifying empirical risk minimization when used for counterfactual inference

Johansson, Shalit, S. ICML. 2016; Shalit, Johansson, S. ICML. 2017

Bounding counterfactual risk

 Building on ML literature from domain adaptation, we can bound the (average) error in predicting counterfactuals:

$$\mathbb{E}_{p^{t=0}(x)}\left[\left(Y_1 - f(x,1)\right)^2\right] \le \mathbb{E}_{p^{t=1}(x)}\left[w_1(x)\left(Y_1 - f(x,1)\right)^2\right] + |\ell_f|_{\mathcal{H}}d_{\mathcal{H}}\left(p^{t=0}(x), w_1(x)p^{t=1}(x)\right)$$

Counterfactual risk

Factual risk

Distance between treatment groups

- Makes no assumption of consistency or overlap
- For example, here we minimize an importance weighted empirical risk minimization, where weights can be learned

Johansson, Kallus, Shalit, Sontag, 2018

Summary

- Two approaches to use machine learning for causal inference:
 - Predict outcome given features and treatment, then use resulting model to impute counterfactuals (covariate adjustment)
 - 2. Predict treatment using features (*propensity score*), then use to reweight outcome or stratify the data
- Consistency of estimates depend on:
 - Causal graph being correct (e.g., no unobserved confounding)
 - Identifiability of causal effect (e.g., overlap)
 - Correctly specified models

References

- Also discussed in class: Instrumental variables, doubly robust estimators
- Recent work from ML community: <u>https://sites.google.com/view/nips2018causallearning/</u> and <u>http://tripods.cis.cornell.edu/neurips19_causalml/</u>
- Recent book on causal inference by Miguel Hernan and Jamie Robins: <u>https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/</u> Recent book on causal inference by Jonas Peters, Dominik Janzing and Bernhard Schölkopf:

https://mitpress.mit.edu/books/elements-causal-inference (download PDF for free on left: "Open Access Title")

 A few recent papers touching on topics we discussed in class: <u>https://arxiv.org/abs/1906.02120</u> <u>https://arxiv.org/abs/1705.08821</u> <u>https://arxiv.org/abs/1510.04342</u> <u>https://arxiv.org/abs/1810.02894</u>