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Which medication to prescribe?
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Machine learning “causals” that we
won’t discuss:

* |dentifying causal direction between two
variables:

O= 0

Bernhard Scholkopf

* Assumptions on noise process

* Work by Schélkopf, Janzing, Guyon, Mooij,
Peters, Geiger, Lopez-Paz and others



Machine learning “causals” that we
won’t discuss:

* Learning causal graph structure from data:

— Distinguishes between direct and indirect effects

— Makes different set of assumptions, such as “faithfulness”
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Formalization using language of
causality

Individual, X; Intervention, T
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Outcome, Y
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Key challenge: bias in data

Here, wealth of parent is a confounder.
If not corrected for, would obtain a biased
estimate of causal effect

If no young patients treated, lack
treatment group overlap—estimation
impossible without strong assumptions

Red = pre-K
Blue = no pre-K
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Potential Outcomes Framework
(Rubin-Neyman Causal Model)

* Each unit (individual) x; has two potential outcomes:

— Yy(x;) is the potential outcome had the unit not been treated:
“control outcome”

— Y;(x;) is the potential outcome had the unit been treated:
“treated outcome”

 Conditional average treatment effect for unit i:
CATE (x;) = IEY1~p(Y1|xi) [Yalx:] — IEY0~p(YO|xi) [Yolx;]
 Average Treatment Effect:
ATE: = E|Y; = Y,] = IExNP(x)[CATE(x)]



Potential Outcomes Framework
(Rubin-Neyman Causal Model)

* Each unit (individual) x; has two potential outcomes:

— Yy(x;) is the potential outcome had the unit not been treated:
“control outcome”

— Y;(x;) is the potential outcome had the unit been treated:
“treated outcome”

* Observed factual outcome:
yi = ;Y1 () + (1 —t)Yo (x;)
 Unobserved counterfactual outcome:
yi' =1 =tV (x) + ;Yo (x;)



“The fundamental problem of
causal inference”

We only ever observe one of the
two outcomes



Example — Blood pressure and age
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Blood pressure and age
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Blood pressure and age
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Blood pressure and age
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Blood pressure and age
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Connection to domain adaptation
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the joint factual

distribution over covariates and
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Connection to domain adaptation
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Typical assumption #1 — common support
(overlap)

Yy, Y1: potential outcomes for control and treated
X: unit covariates (features)

T: treatment assignment

We assume:
p(T =t|X =x) >0Vt x
Why is this a necessary assumption?

Note: in a randomized control trial (RCT) with two
arms, p(T | X) = p(T) = 1/2



Typical assumption #2 — no unmeasured
confounders

Yy, Y1 : potential outcomes for control and treated
X: unit covariates (features)

T: treatment assignment

We assume:

(YO' Yl) T ‘ X

The potential outcomes are independent of treatment
assignment, conditioned on covariates x



Typical assumption #2 — no unmeasured
confounders

anti-hypertensive medication

age, gender,
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heart rate at
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medication A medication B




Violation of
Typical assumption #2 — re unmeasured

confounders

anti-hypertensive medication
age, gender,

weight, diet,
heart rate at
rest,...

diabetic

blood pressure blood pressure
after after
medication A medication B




Two common approaches for counterfactual
inference

Covariate adjustment
Propensity scores



Covariate adjustment
(parametric g-formula)

* Explicitly model the relationship between
treatment, confounders, and outcome

* We will show that if no unmeasured
confounders, expected causal effectof T on Y
(given x) is given by:

CATE(x) = E|Y|T =1, x| — E|Y|T = 0, x|

* Fitamodel f(x,t) = E[Y|T =t, x]
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————— .’ 0‘ .’ “
CATE (x;) =if (x;, 1)i—if (x;, 0):
'] — ] " [ el | bt ]
xi) =if (x;, 1)i—i f (x, 0):
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Covariate adjustment

(parametric g-formula)
* Explicitly model the relationship between
treatment, confounders, and outcome

e We will show that if no unmeasured

confounders, expected causal effectof T onY
(given x) is given by:
CATE(x) = E|Y|T =1, x| — E|Y|T = 0, x|

* Fitamodel f(x,t) = E[Y|T =t, x]
n

1
ATE = Ezl Fx 1) — f(xi, 0)




Covariates Regression Outcome
(Features) model

F(x,T)



Nuisance Regression
Parameters model

F(x,T)

Parameter of
Interest

Outcome



Average Treatment Effect —
the adjustment formula

The expected causal effect of T on Y:

ATE = E [Yl — Y()]

(Hernan & Robins 2010, Pearl 2009)



Average Treatment Effect —
the adjustment formula

The expected causal effect of T on Y:

ATE = E [Yl — Y()]

d, [Yl] =

Lo mp(@) BV mp(vi|2) [Y1]7]] =

(Hernan & Robins 2010, Pearl 2009)



Average Treatment Effect —

the adjustment formula

The expected causal effect of T on Y:

ATE =

d, [Yl] =

~
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(Hernan & Robins 2010, Pearl 2009)
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Average Treatment Effect —
the adjustment formula

The expected causal effect of T on Y:

ATE =

T [Yl] —

4‘|
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:EH =
x, T = IH —

shorter notation



Average Treatment Effect —
the adjustment formula

The expected causal effect of T on Y:

ATE =
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Average Treatment Effect —
the adjustment formula

Under the assumption of ignorability, we have
that:

ATE =E[Y; — Y] =

|

4

“x~p(x)

S Y()

E Y|z, T =1|-E|Yy|z, T = 0] |

\ V |
:Yl x, ] = 1: Quantities we
: can estimate
z, ' = O- from data

Empirically we have samples from p(x|T = 1) or p(x|T = 0).
Extrapolate to p(x)




Example of how covariate adjustment
fails when there is no overlap

y =
blood_pres.

X = age
‘ Control g



Covariate adjustment with linear models

e Assume that:

Blood pressure age medication
Yi(x)= Bx +y-t+¢€
ile] =0

* Then:

CATE(x): = B[V, (x) — Yo ()] =



Covariate adjustment with linear models

e Assume that:

Blood pressure age medication
Yi(x)= Bx +y-t+¢€
ile] =0

* Then:

CATE (x): = E[Y1(x) — Y; (X)]

U(ﬁ/x +y+e)—(Bx+e)d]=

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll




Covariate adjustment with linear models

e Assume that:

Blood pressure age s medlcatlon
Y.(x) = Bx +y t+ €
iler] =0

....
...
a4,
LY
...
....
N
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* For causal inference, need to estimate y well,
not Y;(x) - Identification, not prediction

* Major difference between ML and statistics



What happens if true model is not
linear?
* True data generating process, x € R:

Y,(x) = Bx +y-t+6-x°
ATE =E[Y; — Y| =y

* Hypothesized model:
Vi) =px+7-t

E[xt]E[x?] — E[t*]E[x*t]
Depending on 8, can be made to be arbitrarily large or
small!

C3akd
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) ) | . .
. :
LR




Covariate adjustment with non-linear
models

 Random forests and Bayesian trees
Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)

* (Gaussian processes
Hoyer et al. (2009), Zigler et al. (2012)

* Neural networks
Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016),
Lopez-Paz et al. (2016)



Example: Gaussian processes

Separate treated and Yy (x) Joint treated and Y (x)
control models control model

@® Treated

Control
Figures: Vincent Dorie & Jennifer Hill



Example: Neural networks

Neural network layers Predicted potential outcomes
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Covariates Shared representation

Shalit, Johansson, Sontag. Estimating Individual Treatment Effect: Generalization
Bounds and Algorithms. ICML, 2017



Two common approaches for counterfactual
inference

Covariate adjustment
Propensity scores



Propensity scores

* Tool for estimating ATE

* Imagine that we had data from a randomized
control trial (RCT). Then we could simply
estimate the ATE using:

1 1
n_lzi s.t.T;=1 Yl o Tl_ozl S.t.T;=0 )/l

* Basic idea: turn observational study into a
pseudo-randomized trial by re-weighting
samples



Inverse propensity score re-weighting

p(x|t =f0cive(®) % p(x|t = 1) - wy(x)
reweightedoantod! rewagteed treated

Xy =
Charlson
comorbidity
index




Propensity score

* Propensity score: p(T = 1|x),
using machine learning tools

* Samples re-weighted by the inverse propensity
score of the treatment they received



Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score

for sample (x4, t1, V1), «v, (X3, 0, Vi)

1. Use any ML method to estimate p(T = t|x)

5 1 Yi 1 Yi
ATE = = - -

1 s.t. ;=1 1 s.t. t;=0



Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score

for sample (x4, t1, V1), «v, (X3, 0, Vi)

1. Randomized trial p(T = t|x) = 0.5

A 1 Yi 1 Yi
ATFE = — — —
2. n Z p(t; =1|x;)) n Z_ p(ti = 0|z;)

1 s.t. th'Zl



Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score

for sample (x4, t1, V1), «v, (X3, 0, Vi)

1. Randomized trial p(T = t|x) = 0.5

.1 yi 1 Yi
2. ATE=2 ), 5= 2 05"

1 s.t. t;=1 1 s.t. t;=0



Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score

for sample (x4, t1, V1), «v, (X3, 0, Vi)

1. Randomized trial p = 0.5



Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score

for sample (x1,t1,¥1), «.., (X, tr, Vi)

n
Sum over ~ 5 terms

1. Randomized trial p = 0.5

) ATE =

Sy 3+
DO



» Wewant: E,p)[Y1(2)] Propens.lty scores -
derivation

e We know that:

. Thus:p(m‘T =1 p(T :_1:_37) =P

1 p(T' =1)
Lpmop(x|T= Y = Wy rop(z Y
eep(elT=1) | S g T gy L) p(x)[Y1(2)]

* We can approximate this empirically as:

1 ni/n 1_1 Yi
ny Z [ﬁ(tz':l’%)yz} n Z_ p(ti =11 x;)

n
1 ) S.t.tizl

(similarly for t.=0)



Problems with inverse propensity
weighting (IPW)

* Need to estimate propensity score (problem in
all propensity score methods)

 |f there’s not much overlap, propensity scores
become non-informative and easily mis-
calibrated

* Weighting by inverse can create large variance
and large errors for small propensity scores

— Exacerbated when more than two treatments



Bounding counterfactual risk

- Building on ML literature from domain adaptation, we can
bound the (average) error in predicting counterfactuals:

Ept=0(x) [(Y1 — f(x, 1))2] < Ep =15 [(Y1 — f(x, 1))2] + €530 dge (pP=0 (), p*=1 (%))

Counterfactual risk Factual risk Distance between treatment groups

- Makes no assumption of consistency or overlap

. Suggests avenues for modifying empirical risk minimization
when used for counterfactual inference

Johansson, Shalit, S. ICML. 2016; Shalit, Johansson, S. ICML. 2017



Bounding counterfactual risk

Building on ML literature from domain adaptation, we can
bound the (average) error in predicting counterfactuals:

E,yt=0 () [(Y1 — f(x, 1))2] < Epim1) [Wl(x)(y1 ~ f(x, 1))2] + 185 |5edse (PE=2 (), wy ()= (x))

Counterfactual risk Factual risk Distance between treatment groups

Makes no assumption of consistency or overlap

For example, here we minimize an importance weighted
empirical risk minimization, where weights can be learned

Johansson, Kallus, Shalit, Sontag, 2018



Summary

 Two approaches to use machine learning for
causal inference:

1. Predict outcome given features and treatment, then
use resulting model to impute counterfactuals
(covariate adjustment)

2. Predict treatment using features (propensity score),
then use to reweight outcome or stratify the data

* Consistency of estimates depend on:

— Causal graph being correct (e.g., no unobserved
confounding)

— ldentifiability of causal effect (e.g., overlap)
— Correctly specified models
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Also discussed in class: Instrumental variables, doubly robust estimators

Recent work from ML community:
https://sites.google.com/view/nips2018causallearning/ and
http://tripods.cis.cornell.edu/neurips19 causalml/

Recent book on causal inference by Miguel Hernan and Jamie Robins:
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
Recent book on causal inference by Jonas Peters, Dominik Janzing and
Bernhard Schélkopf:
https://mitpress.mit.edu/books/elements-causal-inference

(download PDF for free on left: “Open Access Title”)

A few recent papers touching on topics we discussed in class:
https://arxiv.org/abs/1906.02120
https://arxiv.org/abs/1705.08821
https://arxiv.org/abs/1510.04342
https://arxiv.org/abs/1810.02894
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