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Is smoking 
dangerous?



Do stricter gun 
laws lead to 
safer 
communities?



Is pre-
kindergarten 
beneficial for 
children?



Will running an 
ad-campaign 
increase sales?



Did a company discriminate 
against job applicants?



Which medication to prescribe?

Medication B
“Treated”
! = 1

Medication A
“Control”
! = 0

Age = 54
Gender = Female

Race = Asian

Blood pressure = 150/95

WBC count = 6.8*109/L

Temperature = 36.7°C

Blood sugar = High

Anna

Sep 15 

Blood sugar = ?
%&

Blood sugar = ?
%'

May 15 

Patient history, 𝑋

T

T

1

0

Potential 
outcomes 

…



Machine learning “causals” that we 
won’t discuss:

• Identifying causal direction between two 
variables:

• Assumptions on noise process
• Work by Schölkopf, Janzing, Guyon, Mooij, 

Peters, Geiger, Lopez-Paz and others



Machine learning “causals” that we 
won’t discuss:

• Learning causal graph structure from data:
– Distinguishes between direct and indirect effects
– Makes different set of assumptions, such as “faithfulness”

• Bühlmann, Geng,
Maathuis, Pearl,
Meinshausen,
Tsamardinos...

Image from:
http://www.mensxmachina.org/causalpath/state.html



Intervention, 𝑇

Outcome, 𝑌

Individual, 𝑋

?

Formalization using language of 
causality



Key challenge: bias in data

• Here, wealth of parent is a confounder.
If not corrected for, would obtain a biased
estimate of causal effect

• If no young patients treated, lack
treatment group overlap—estimation
impossible without strong assumptions Wealth	of	parent

Future	
earnings

Red = pre-K
Blue = no pre-K



Potential Outcomes Framework
(Rubin-Neyman Causal Model)

• Each unit (individual) 𝑥6 has two potential outcomes: 
– 𝑌7(𝑥6) is the potential outcome had the unit not been treated: 

“control outcome”
– 𝑌:(𝑥6) is the potential outcome had the unit been treated: 

“treated outcome”

• Conditional average treatment effect for unit 𝑖: 
𝐶𝐴𝑇𝐸 𝑥6 = 𝔼AB~D(AB|FG) [𝑌:|𝑥6] − 𝔼AK~D(AK|FG)[𝑌7|𝑥6]

• Average Treatment Effect:
𝐴𝑇𝐸:= 𝔼 𝑌: − 𝑌7 = 𝔼F~D(F) 𝐶𝐴𝑇𝐸 𝑥



Potential Outcomes Framework
(Rubin-Neyman Causal Model)

• Each unit (individual) 𝑥6 has two potential outcomes: 
– 𝑌7(𝑥6) is the potential outcome had the unit not been treated: 

“control outcome”
– 𝑌:(𝑥6) is the potential outcome had the unit been treated: 

“treated outcome”

• Observed factual outcome: 
𝑦6 = 𝑡6𝑌: 𝑥6 + 1 − 𝑡6 𝑌7(𝑥6)

• Unobserved counterfactual outcome: 
𝑦6QR = (1 − 𝑡6)𝑌: 𝑥6 + 𝑡6𝑌7(𝑥6)



The fundamental problem of causal inference
“The fundamental problem of 

causal inference”

We only ever observe one of the 
two outcomes



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌: 𝑥

𝑌7 𝑥

Example – Blood pressure and age



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌: 𝑥

𝑌7 𝑥

Blood pressure and age

𝐶𝐴𝑇𝐸(𝑥)



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌: 𝑥

𝑌7 𝑥

Blood pressure and age

𝐴𝑇𝐸



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌: 𝑥

𝑌7 𝑥

Blood pressure and age

Treated

Control



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌: 𝑥

𝑌7 𝑥

Blood pressure and age

Treated

Control

Counterfactual treated

Counterfactual control



Connection to domain adaptation

Treated

Control

𝑝R 𝑥, 𝑡 = 𝑝R 𝑥 𝑝R(𝑡|𝑥)
the joint factual 
distribution over covariates and 
treatment assignment
labeled 𝑦6

𝑝QR 𝑥, 𝑡 ≔ 𝑝R 𝑥 𝑝R(1 − 𝑡|𝑥)
the joint counterfactual 
distribution over covariates and 
treatment assignment
unlabeled

Factual

Counterfactual



Connection to domain adaptation

Treated

Control

𝑝abcdef 𝑥
the source
distribution over covariates

labeled

𝑝ghdifg 𝑥
the target
distribution over covariates 

unlabeled

Source

Target



Typical assumption #1 – common support 
(overlap)

Y7, 𝑌:: potential outcomes for control and treated
𝑥: unit covariates (features)
𝑇: treatment assignment

We assume:

𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0 ∀𝑡, 𝑥

Why is this a necessary assumption?

Note: in a randomized control trial (RCT) with two 
arms, p(T | X) = p(T) = 1/2



Typical assumption #2 – no unmeasured 
confounders

𝑌7, 𝑌:: potential outcomes for control and treated
𝑥: unit covariates (features)
T: treatment assignment

We assume:

(𝑌7, 𝑌:) ⫫ 𝑇 | 𝑥

The potential outcomes are independent of treatment 
assignment, conditioned on covariates 𝑥



Typical assumption #2 – no unmeasured 
confounders

𝑻𝒙

𝒀𝟏𝒀𝟎

anti-hypertensive medication

blood pressure
after 
medication A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B



anti-hypertensive medication

𝒙

𝒀𝟏𝒀𝟎blood pressure
after 
medication A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

𝒉
diabetic

𝑻

Typical assumption #2 – no unmeasured 
confounders

Violation of



Two common approaches for counterfactual 
inference

Covariate adjustment 
Propensity scores



Covariate adjustment 
(parametric g-formula)

• Explicitly model the relationship between 
treatment, confounders, and outcome

• We will show that if no unmeasured 
confounders, expected causal effect of 𝑇 on 𝑌
(given 𝑥) is given by: 
CATE x = 𝔼 𝑌 𝑇 = 1, 𝑥 − 𝔼 𝑌 𝑇 = 0, 𝑥

• Fit a model 𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌 𝑇 = 𝑡, 𝑥

|𝐶𝐴𝑇𝐸 𝑥6 = 𝑓 𝑥6, 1 − 𝑓(𝑥6, 0)



Covariate adjustment 
(parametric g-formula)

• Explicitly model the relationship between 
treatment, confounders, and outcome

• We will show that if no unmeasured 
confounders, expected causal effect of 𝑇 on 𝑌
(given 𝑥) is given by: 
CATE x = 𝔼 𝑌 𝑇 = 1, 𝑥 − 𝔼 𝑌 𝑇 = 0, 𝑥

• Fit a model 𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌 𝑇 = 𝑡, 𝑥

|𝐴𝑇𝐸 =
1
𝑛~
6�:

�

𝑓 𝑥6, 1 − 𝑓(𝑥6, 0)



𝑥:

𝑥�

𝑥�

𝑇

… 𝑓(𝑥, 𝑇)

𝑦

Regression 
model

OutcomeCovariates
(Features)



𝑥:

𝑥�

𝑥�

𝑇

…

𝑦

Nuisance 
Parameters

Regression 
model

Outcome

Parameter of 
interest

𝑓(𝑥, 𝑇)



Average Treatment Effect –
the adjustment formula

The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

(Hernán & Robins 2010, Pearl 2009)



Average Treatment Effect –
the adjustment formula

The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y1] =

Ex⇠p(x)

⇥
EY1⇠p(Y1|x) [Y1|x]

⇤
=

Ex⇠p(x)

⇥
EY1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

Ex⇠p(x) [E [Y1|x, T = 1]]

(Hernán & Robins 2010, Pearl 2009)



Average Treatment Effect –
the adjustment formula

The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y1] =

Ex⇠p(x)

⇥
EY1⇠p(Y1|x) [Y1|x]

⇤
=

Ex⇠p(x)

⇥
EY1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

Ex⇠p(x) [E [Y1|x, T = 1]]

ignorability
(𝑌7, 𝑌:) ⫫ 𝑇 | 𝑥

(Hernán & Robins 2010, Pearl 2009)



Average Treatment Effect –
the adjustment formula

The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y1] =

Ex⇠p(x)

⇥
EY1⇠p(Y1|x) [Y1|x]

⇤
=

Ex⇠p(x)

⇥
EY1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

Ex⇠p(x) [E [Y1|x, T = 1]] shorter notation



Average Treatment Effect –
the adjustment formula

The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y0] =

Ex⇠p(x)

⇥
EY0⇠p(Y0|x) [Y0|x]

⇤
=

Ex⇠p(x)

⇥
EY0⇠p(Y0|x) [Y0|x, T = 1]

⇤
=

Ex⇠p(x) [E [Y0|x, T = 0]]



Average Treatment Effect –
the adjustment formula

Quantities we 
can estimate 

from data(
E[Y1|x,T=1]

E[Y0|x,T=0](
E [Y1|x, T = 1]

E [Y0|x, T = 0]

ATE = E [Y1 � Y0] =

Ex⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Empirically we have samples from 𝑝(𝑥|𝑇 = 1) or 𝑝 𝑥 𝑇 = 0 . 
Extrapolate to 𝑝(𝑥)

Under the assumption of ignorability, we have 
that:



Example of how covariate adjustment 
fails when there is no overlap

TreatedTreated

Control 𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌: 𝑥

𝑌7 𝑥



Covariate adjustment with linear models

• Assume that:

• Then:
𝐶𝐴𝑇𝐸(𝑥):= 𝔼[𝑌: 𝑥 − 𝑌7 𝑥 ] =

𝔼[(𝛽𝑥 + 𝛾 + 𝜖:) − 𝛽𝑥 + 𝜖7 ] = 𝛾

age medicationBlood pressure

𝑌g 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝜖g
𝔼 𝜖g = 0



• Assume that:

• Then:
𝐶𝐴𝑇𝐸(𝑥):= 𝔼[𝑌: 𝑥 − 𝑌7 𝑥 ] =

𝔼[(𝛽𝑥 + 𝛾 + 𝜖:) − 𝛽𝑥 + 𝜖7 ] = 𝛾

age medication

𝐴𝑇𝐸:= 𝔼D F 𝐶𝐴𝑇𝐸 𝑥 = 𝛾

Blood pressure

𝑌g 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝜖g
𝔼 𝜖g = 0

Covariate adjustment with linear models



• Assume that:

• For causal inference, need to estimate 𝛾 well, 
not 𝑌g 𝑥 - Identification, not prediction

• Major difference between ML and statistics

age medication

𝐴𝑇𝐸:= 𝔼D F 𝐶𝐴𝑇𝐸 𝑥 = 𝛾

Blood pressure

𝑌g 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝜖g
𝔼 𝜖g = 0

Covariate adjustment with linear models



What happens if true model is not 
linear?

• True data generating process, 𝑥 ∈ ℝ:

𝐴𝑇𝐸 = 𝔼 𝑌: − 𝑌7 = 𝛾
• Hypothesized model:

𝑌g 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝛿 ⋅ 𝑥�

�𝑌g 𝑥 = �𝛽𝑥 + �𝛾 ⋅ 𝑡

�𝛾 = 𝛾 + 𝛿
𝔼 𝑥𝑡 𝔼 𝑥� − 𝔼[𝑡�]𝔼[𝑥�𝑡]
𝔼 𝑥𝑡 � − 𝔼[𝑥�]𝔼[𝑡�]

Depending on 𝜹, can be made to be arbitrarily large or 
small!



Covariate adjustment with non-linear 
models

• Random forests and Bayesian trees 
Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)

• Gaussian processes 
Hoyer et al. (2009), Zigler et al. (2012)

• Neural networks
Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), 
Lopez-Paz et al. (2016)



Example: Gaussian processes
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Figures: Vincent Dorie & Jennifer Hill

Separate treated and 
control models

Joint treated and 
control model

𝑌: 𝑥

𝑌7 𝑥

𝑌: 𝑥

𝑌7 𝑥

𝑥𝑥

𝑦

Treated

Control



Example: Neural networks

Shalit, Johansson, Sontag. Estimating Individual Treatment Effect: Generalization 
Bounds and Algorithms. ICML, 2017

	" 	Φ…

…

… 	%&

	%' 	(

	)

	*

Covariates Shared representation

Predicted potential outcomes

Learning objective Outcome

InterventionNeural network layers



Two common approaches for counterfactual 
inference

Covariate adjustment 
Propensity scores



Propensity scores

• Tool for estimating ATE
• Imagine that we had data from a randomized 

control trial (RCT). Then we could simply 
estimate the ATE using:

:
�B
∑6 a.g.�G�:𝑌6 −

:
�K
∑6 a.g.�G�7𝑌6

• Basic idea: turn observational study into a 
pseudo-randomized trial by re-weighting 
samples



𝑝 𝑥 𝑡 = 0 ⋅ 𝑤7(𝑥) ≈ 𝑝 𝑥 𝑡 = 1 ⋅ 𝑤:(𝑥)
reweighted control     reweighted treated

Inverse propensity score re-weighting

𝑥: = 𝑎𝑔𝑒

𝑥� =
Charlson
comorbidity 
index

Treated

Control

𝑝(𝑥|𝑡 = 0) ≠ 𝑝 𝑥 𝑡 = 1
control          treated



Propensity score
• Propensity score: 𝑝 𝑇 = 1 𝑥 ,

using machine learning tools
• Samples re-weighted by the inverse propensity 

score of the treatment they received



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥:, 𝑡:, 𝑦: , … , (𝑥�, 𝑡�, 𝑦�)

1. Use any ML method to estimate �𝑝 𝑇 = 𝑡 𝑥

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥:, 𝑡:, 𝑦: , … , (𝑥�, 𝑡�, 𝑦�)

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥:, 𝑡:, 𝑦: , … , (𝑥�, 𝑡�, 𝑦�)

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥:, 𝑡:, 𝑦: , … , (𝑥�, 𝑡�, 𝑦�)

1. Randomized trial 𝑝 = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥:, 𝑡:, 𝑦: , … , (𝑥�, 𝑡�, 𝑦�)

1. Randomized trial 𝑝 = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi

Sum over ~ 𝒏
𝟐

terms



• We want:

• We know that:

• Thus:

• We can approximate this empirically as:

(similarly for ti=0)

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

Ex⇠p(x)[Y1(x)]

Ex⇠p(x|T=1)


p(T = 1)

p(T = 1 | x)Y1(x)

�
= Ex⇠p(x)[Y1(x)]

1

n1

X

i s.t.ti=1


n1/n

p̂(ti = 1 | xi)
yi

�
=

1

n

X

i s.t.ti=1

yi
p̂(ti = 1 | xi)

Propensity scores -
derivation



Problems with inverse propensity 
weighting (IPW)

• Need to estimate propensity score (problem in 
all propensity score methods)

• If there’s not much overlap, propensity scores 
become non-informative and easily mis-
calibrated

• Weighting by inverse can create large variance 
and large errors for small propensity scores
– Exacerbated when more than two treatments



Bounding counterfactual risk

Johansson, Shalit, S. ICML. 2016; Shalit, Johansson, S. ICML. 2017

• Building on ML literature from domain adaptation, we can 
bound the (average) error in predicting counterfactuals:

• Makes no assumption of consistency or overlap
• Suggests avenues for modifying empirical risk minimization 

when used for counterfactual inference

𝔼D��K(F) 𝑌: − 𝑓 𝑥, 1
�
≤ 𝔼D��B F 𝑌: − 𝑓 𝑥, 1

�
+ |ℓ�|ℋ𝑑ℋ 𝑝g�7 𝑥 , 𝑝g�: 𝑥

Counterfactual risk Factual risk Distance between treatment groups



Bounding counterfactual risk

• Building on ML literature from domain adaptation, we can 
bound the (average) error in predicting counterfactuals:

• Makes no assumption of consistency or overlap
• For example, here we minimize an importance weighted 

empirical risk minimization, where weights can be learned

𝔼D��K(F) 𝑌: − 𝑓 𝑥, 1
�
≤ 𝔼D��B F 𝑤:(𝑥) 𝑌: − 𝑓 𝑥, 1

�
+ |ℓ�|ℋ𝑑ℋ 𝑝g�7 𝑥 , 𝑤:(𝑥)𝑝g�: 𝑥

Counterfactual risk Factual risk Distance between treatment groups

Johansson, Kallus, Shalit, Sontag, 2018



Summary

• Two approaches to use machine learning for 
causal inference:
1. Predict outcome given features and treatment, then 

use resulting model to impute counterfactuals 
(covariate adjustment)

2. Predict treatment using features (propensity score), 
then use to reweight outcome or stratify the data

• Consistency of estimates depend on:
– Causal graph being correct (e.g., no unobserved 

confounding)
– Identifiability of causal effect (e.g., overlap)
– Correctly specified models
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