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Motivation for this Lecture

Minimization is to current AI
what  __________________    is to future AI

• Minimization: AI agent is learning in a stationary environment
• Min-max optimization: AI agent is learning in a changing environment
• Why changing?

• Because noise/adversaries poison or corrupt the data [c.f. lecture 4] 
• Because the agent is optimizing against another agent with conflicting 

interests 
• Because the agent wants to enforce constraints on the learning outcome, 

e.g. GANs, private release of data etc.



Generative Adversarial Networks

• Algorithms mapping white noise to random high-dimensional 
objects with structure:

• If you want, what human imagination does (presumably)
• Trained using samples (e.g. faces) from true high-dimensional 

distribution with structure (e.g. natural face images)

face GAN𝑧 ∼ 𝑁(0, 𝐼())×()))



• A game between a Generator deep NN, w/ parameters 𝜃-, and a Discriminator deep NN, w/ 
parameters 𝜃.:

inf
34
sup
38

𝔼:∼; 𝐷38 𝑋 − 𝔼?∼@(),A) 𝐷38 𝐺34(𝑧)

• Training: generator and discriminator run gradient descent and ascent respectively to 
update their parameters 𝜃-, 𝜃.; expectations are approximated by finite sample averages

• even ignoring expectation approximation errors, will paired gradient descent/ascent 
dynamics converge? to what?

face GAN𝑧 ∼ 𝑁(0, 𝐼)E.g. Wasserstein GAN
[Arjovsky-Chintala-Bottou’17]

zRandom noise

Generator Network

Discriminator Network

Fake Images  
(from generator)

Real Images  
(from training set)

Real or Fake
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• [von Neumann 1928]: If 𝑋 ⊂ ℝE, 𝑌 ⊂ ℝG are compact and 
convex, and 𝑓: 𝑋×𝑌 → ℝ is convex-concave (i.e. 𝑓 𝑥, 𝑦 is 
convex in 𝑥 for all 𝑦 and is concave in 𝑦 for all 𝑥), then

min
M∈:

max
Q∈R

𝑓(𝑥, 𝑦) = max
Q∈R

min
M∈:

𝑓(𝑥, 𝑦)

• Min-max optimal point (𝑥, 𝑦) is essentially unique (unique if 𝑓 is strictly 
convex-concave, o.w. a convex set of solutions); value always unique

• E.g. 𝑓 𝑥, 𝑦 = 𝑥T − 𝑦T + 𝑥 ⋅ 𝑦

The Min-Max Theorem



• [von Neumann 1928]: If 𝑋 ⊂ ℝE, 𝑌 ⊂ ℝG are compact and 
convex, and 𝑓: 𝑋×𝑌 → ℝ is convex-concave (i.e. 𝑓 𝑥, 𝑦 is 
convex in 𝑥 for all 𝑦 and is concave in 𝑦 for all 𝑥), then

min
M∈:

max
Q∈R

𝑓(𝑥, 𝑦) = max
Q∈R

min
M∈:

𝑓(𝑥, 𝑦)

• Min-max optimal point (𝑥, 𝑦) is essentially unique (unique if 𝑓 is strictly 
convex-concave, o.w. a convex set of solutions); value always unique

• If 𝑓 is not convex concave all bets are off 
• 𝑓 𝑥, 𝑦 = 𝑥W − 𝑥T − 𝑦T 𝑓 𝑥, 𝑦 = 𝑥T + 𝑦T 𝑓 𝑥, 𝑦 = 𝑥 − 𝑦 T

The Min-Max Theorem



• [von Neumann 1928]: If 𝑋 ⊂ ℝE, 𝑌 ⊂ ℝG are compact and convex, and 
𝑓: 𝑋×𝑌 → ℝ is convex-concave (i.e. 𝑓 𝑥, 𝑦 is convex in 𝑥 for all 𝑦 and is 
concave in 𝑦 for all 𝑥), then

min
M∈:

max
Q∈R

𝑓(𝑥, 𝑦) = max
Q∈R

min
M∈:

𝑓(𝑥, 𝑦)

• Min-max optimal point (𝑥, 𝑦) is essentially unique (unique if 𝑓 is strictly 
convex-concave, o.w. a convex set of solutions); value always unique

• Min-max points = equilibria of zero-sum game where min player pays max 
player 𝑓(𝑥, 𝑦)

• von Neumann: "As far as I can see, there could be no theory of games … without 
that theorem … I thought there was nothing worth publishing until the Minimax 
Theorem was proved“

• When 𝑓 is bilinear, i.e. 𝑓 𝑥, 𝑦 = 𝑥X𝐴𝑦 + 𝑏[𝑥 + 𝑐[𝑦 and X, Y polytopes
• [von Neumann-Dantzig 1947, Adler IJGT’13]: Minmax ⇔ strong LP duality
• min-max solutions can be found w/ Linear Programming and vice versa
• mathematical structure arguably crucial in recent success of computers 

beating humans in two-player zero-sum games (chess, poker, go)

The Min-Max Theorem



• [Brown RAND’49]: proposes fictitious play as a method to solve bilinear 
case on product of simplices:

min
M∈^_

max
Q∈^`

𝑥[𝐴𝑦 = max
Q∈^`

min
M∈^_

𝑥[𝐴𝑦

• Fictitious play: 𝑥a, 𝑦a ab(,…. where for all 𝑡:
• 𝑥a ∈ argmin∑ija 𝑓 ⋅, 𝑦i
• 𝑦a ∈ argmax∑ija 𝑓(𝑥i,⋅)

• [Robinson Annals of Math’51]: shows fictitious play converges in bilinear 
case in an average sense: (

a
∑i 𝑓 𝑥i, 𝑦i →minmax 𝑓(𝑥, 𝑦)

• [Karlin’59]: conjectures convergence rate is ~1/ 𝑡

• [Daskalakis-Pan FOCS’14]: actually exponentially slow ~1/𝑡 ⁄o `p_

• Faster methods?

The Min-Max Theorem (distributed 
dynamics or very high dimensions)
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• Game between learner and nature [min player’s  perspective in min
M
max
Q
𝑓(𝑥, 𝑦)] 

• Every day 𝑡 = 1,… , 𝑇: 
• Learner chooses 𝑥a ∈ 𝑋 ⊂ ℝE

• World chooses convex function 𝑓a(⋅) [in min-max problem 𝑓a ⋅ ≡ 𝑓(⋅, 𝑦a)]
• Learner incurs loss 𝑓a 𝑥a ; observes 𝑓a(⋅)

• Learner’s goal:
• (
[
∑a 𝑓a 𝑥a ≈ (

[
∑a min 𝑓a ⋅

• (
[
∑a 𝑓a 𝑥a ≈ (

[
min∑a 𝑓a ⋅

• (
[
∑a 𝑓a 𝑥a − (

[
min∑a 𝑓a ⋅ : average regret of the learner

• Theorem: Suppose, ∀𝑡 = 1,… , 𝑇, 𝑓a is convex and L-Lipschitz. There exists 
learning algorithm such that (

X
∑a 𝑓a 𝑥a −min (

X
∑a 𝑓a ⋅ ≤ 𝑂:

w
[

Online Convex Optimization

Unattainable (see notes)

attainable [and sufficient for min-max]

No-regret property (means avg regret→ 0)



• Idea 1: follow-the-leader (FTL): on day 𝑡 choose 𝑥a ∈ argmin∑ija 𝑓i(⋅)
• Average regret doesn’t go to 0 L [see notes]
• Issue: overfitting

• learner’s actions move around abruptly
• Idea 2: regularize!
• follow-the-regularized-leader (FTRL): on day 𝑡 choose 

𝑥a ∈ argmin x
ija

𝑓i ⋅ +
1
𝜂
⋅ 𝑅 ⋅

for some 𝜂 and strongly convex regularization function 𝑅 ⋅

How to achieve no regret?
Setting: Every day 𝑡 = 1,… , 𝑇: 
- learner chooses 𝑥a ∈ 𝑋
- world chooses L-Lipschitz convex f’n 𝑓a(⋅)
- learner loses 𝑓a 𝑥a ; observes 𝑓a(⋅)

Goal: 
(
[
∑a 𝑓a 𝑥a − (

[
min∑a 𝑓a ⋅ → 0



• Def: 𝑅: 𝑋 → ℝ is 𝛼-strongly convex w.r.t. norm ⋅ iff for all 𝑥, 𝑥) ∈ 𝑋:
𝑅 𝑥 ≥ 𝑅 𝑥) + 𝛻𝑅 𝑥) [ ⋅ 𝑥 − 𝑥) + ~

T
𝑥 − 𝑥) T

• FTRL: On day 𝑡 choose: 𝑥a ∈ argmin ∑ija 𝑓i ⋅ +
(
�
⋅ 𝑅 ⋅ , for some 

parameter 𝜂, and some strongly convex regularization function 𝑅 ⋅
• Theorem: Suppose, ∀𝑡 = 1,… , 𝑇, 𝑓a is convex and L-Lipschitz w.r.t. some norm 

⋅ , and 𝑅 is 1-strongly convex w.r.t. ⋅ . Then FTRL with parameter 𝜂 satisfies:

x
a

𝑓a 𝑥a −minx
a

𝑓a ⋅ ≤
max: 𝑅 ⋅ − min: 𝑅 ⋅

𝜂
+ 𝜂 ⋅ 𝐿T ⋅ 𝑇

• set 𝜂 = 𝐿�( ⋅ (max𝑅 ⋅ − min𝑅 ⋅ )/𝑇 to balance terms on RHS, and get average 
regret of 𝐿 ⋅ (max𝑅 ⋅ − min𝑅 ⋅ )/𝑇

Follow-the-Regularized Leader (FTRL)
Setting: Every day 𝑡 = 1,… , 𝑇: 
- learner chooses 𝑥a ∈ 𝑋
- world chooses L-Lipschitz convex f’n 𝑓a(⋅)
- learner loses 𝑓a 𝑥a ; observes 𝑓a(⋅)

Goal: 
(
[
∑a 𝑓a 𝑥a − (

[
min∑a 𝑓a ⋅ → 0

e.g.1: 𝑅 𝑥 = 𝑥T/2
e.g.2: 𝑅 𝑥 = −𝐻 𝑥 , 

𝑥 ∈ [0,1]



• Def: 𝑅: 𝑋 → ℝ is 𝛼-strongly convex w.r.t. norm ⋅ iff for all 𝑥, 𝑥) ∈ 𝑋:
𝑅 𝑥 ≥ 𝑅 𝑥) + 𝛻𝑅 𝑥) [ ⋅ 𝑥 − 𝑥) + ~

T
𝑥 − 𝑥) T

• FTRL: On day 𝑡 choose: 𝑥a ∈ argmin ∑ija 𝑓i ⋅ +
(
�
⋅ 𝑅 ⋅ , for some 

parameter 𝜂, and some strongly convex regularization function 𝑅 ⋅
• FTRL special cases:

• FTRL w/ ℓTT-regularizer ≈ online gradient descent [notes]
• FTRL on simplex w/ negative entropy regularizer = multiplicative-weights-

update method

Follow-the-Regularized Leader (FTRL)
Setting: Every day 𝑡 = 1,… , 𝑇: 
- learner chooses 𝑥a ∈ 𝑋
- world chooses L-Lipschitz convex f’n 𝑓a(⋅)
- learner loses 𝑓a 𝑥a ; observes 𝑓a(⋅)

Goal: 
(
[
∑a 𝑓a 𝑥a − (

[
min∑a 𝑓a ⋅ → 0

e.g.1: 𝑅 𝑥 = 𝑥T/2
e.g.2: 𝑅 𝑥 = −𝐻 𝑥 , 

𝑥 ∈ [0,1]



• Suppose 𝑓(𝑥, 𝑦) convex-concave, and both 𝑥 and 𝑦 players run FTRL
• Namely: 

• the 𝑥-player chooses 𝑥a by applying FTRL to observed losses 𝑓(⋅, 𝑦a)
• the 𝑦-player chooses 𝑦a by applying FTRL to observed losses −𝑓(𝑥a,⋅)

• Theorem: If x and y player play as above, then:
• (
[
∑ab([ 𝑓 𝑥a, 𝑦a =min

M
max
Q
𝑓 𝑥, 𝑦 ± 𝑂( (

[
)

• Moreover, the average strategies 𝑥̅[ =
(
[
∑a 𝑥a and �𝑦[ =

(
[
∑a 𝑦a are a 

𝑂( (
[
)-approximate Nash equilibrium, i.e.

• 𝑓 𝑥̅[, �𝑦[ ≤ min 𝑓(⋅, �𝑦[) + 𝑂(
(
[)

• 𝑓 𝑥̅[, �𝑦[ ≥ m𝑎𝑥 𝑓(𝑥̅[, ⋅) − 𝑂(
(
[)

• Proof: notes

FTRL and Min-Max
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• Recall, they are defined by setting up a game between a Generator deep NN, w/ parameters 𝜃-,
and a Discriminator deep NN, w/ parameters 𝜃.:

inf
34
sup
38

𝑓(𝜃-, 𝜃.)

• Training: generator and discriminator run online gradient descent and ascent respectively and in 
parallel to update their parameters 𝜃-, 𝜃.

• Question: will paired online gradient descent/ascent style dynamics converge? to what?

• Challenge 1: objective function 𝑓(𝜃-, 𝜃.) isn’t convex-concave
• So what is the goal?

1. [Daskalakis-Panageas NeurIPS’18] study local saddles  (don’t necessarily exist)
2. [Jin-Netrapali-Jordan’19] study local min of max

Q
𝑓(⋅, 𝑦) function (exist under mild conditions)

• E.g. min
M∈[),(]

max
Q∈[),(]

− 𝑥 − 𝑦 T : 1 doesn’t exist, 2 does exist

• Are above reasonable? Well,… 
• under 1: maybe my trained discriminator cannot locally improve discrimination, but 

some other discriminator (e.g. your brain) can discriminate really well between real and 
generated images (locally optimal discrimination isn’t sufficient)

• under 1 and 2: if my trained discriminator is optimal and my trained generator is locally 
optimal, it might just have given up

Challenges in GAN Training



Mode Collapse

VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning
Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, Charles Sutton

https://arxiv.org/find/stat/1/au:+Srivastava_A/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Valkov_L/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Russell_C/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Gutmann_M/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Sutton_C/0/1/0/all/0/1


• Recall, they are trained by setting up a game between a Generator deep NN, 
w/ parameters 𝜃-, and a Discriminator deep NN, w/ parameters 𝜃.:

inf
34
sup
38

𝑓(𝜃-, 𝜃.)

• Training: generator and discriminator run gradient descent and ascent 
respectively to update their parameters 𝜃-, 𝜃.

• Question: even ignoring expectation approximation errors, will paired gradient 
descent/ascent style dynamics converge? to what?

• Challenge 2: oscillations
• even if 𝑓(𝜃-, 𝜃.) is convex-concave, we only argued that gradient/descent 

ascent, or FTRL converge in an average sense
• i.e. 𝜃-[ =

(
[
∑a 𝜃-a and 𝜃.[ =

(
[
∑a 𝜃.a would be an approximate saddle 

but we didn’t provide any guarantees for the last iterate (𝜃-[, 𝜃.[)…
• and there aren’t such guarantees generically

Challenges in GAN Training



Training Oscillations: Gaussian Mixture

True Distribution: Mixture of 
8 Gaussians on a circle

Output Distribution of standard GAN, trained via gradient descent/ascent dynamics:
cycling through modes at different steps of training

from [Metz et al ICLR’17]



Training Oscillations: Handwritten Digits

True Distribution: MNIST

Output Distribution of standard GAN, trained via gradient descent/ascent dynamics
cycling through “proto-digits” at different steps of training

from [Metz et al ICLR’17]



• True distribution: isotropic Normal distribution, namely  𝑋 ∼ 𝒩 3
4 , 𝐼T×T

• Generator architecture: 𝐺𝜽 𝑍 = 𝜽 + 𝑍 (adds input 𝑍 to internal params)

• Discriminator architecture: 𝐷𝒘 ⋅ = 𝒘,⋅ (linear projection)

• W-GAN objective: min
𝜽
max
𝒘

𝔼: 𝐷𝒘 𝑋 − 𝔼� 𝐷𝒘 𝐺𝜽(𝑍)

= min
𝜽
max
𝒘

𝒘X ⋅ 3
4 − 𝜽

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR’18]

convex-concave 
function

𝑍, 𝜃, 𝑤: 2-dimensional

Gradient Descent Dynamics

Training Oscillations: 
even for bilinear objectives!



Training Oscillations:
persistence under many variants of Gradient Descent 

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR’18]
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• Variant of gradient descent: 
∀𝑡: 𝑥a�( = 𝑥a − 𝜂 ⋅ 𝛻𝑓 𝑥a + 𝜼/𝟐 ⋅ 𝛁𝒇(𝒙𝒕�𝟏)

• Interpretation: undo today, some of yesterday’s gradient; ie negative momentum

• Gradient Descent w/ negative momentum 
= Optimistic FTRL w/ ℓTT-regularization [Rakhlin-Sridharan COLT’13, 

Syrgkanis et al. NeurIPS’15]

= unconstrained Popov’s method [Popov 1980]

≈ extra-gradient method [Korpelevich’76, Chiang et al COLT’12, 
Mertikopoulos et al’18]

= mirror prox method w/ ℓTT-regularization
[Nemirovski’04, Mohtari-Ozdaglar-Pattathil’19]

• Does it help in min-max optimization?

Gradient Descent w/ Negative Momentum



• E.g. 𝑓 𝑥, 𝑦 = 𝑥 − 0.5 ⋅ 𝑦 − 0.5

Negative Momentum: why it could help

: start
: min-max equilibrium

𝑥a�( = 𝑥a − 𝜂 ⋅ 𝛻M𝑓 𝑥a, 𝑦a
𝑦a�( = 𝑦a + 𝜂 ⋅ 𝛻Q𝑓 𝑥a, 𝑦a

𝑥a�( = 𝑥a − 𝜂 ⋅ 𝛻M𝑓 𝑥a, 𝑦a
+𝜼/𝟐 ⋅ 𝛁𝒙𝒇(𝒙𝒕�𝟏, 𝒚𝒕�𝟏)

𝑦a�( = 𝑦a + 𝜂 ⋅ 𝛻Q𝑓 𝑥a, 𝑦a
−𝜼/𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕�𝟏, 𝒚𝒕�𝟏)



• Optimistic gradient descent-ascent (OGDA) dynamics: 
∀𝑡: 𝑥a�( = 𝑥a − 𝜂 ⋅ 𝛻M𝑓 𝑥a, 𝑦a + 𝜼

𝟐 ⋅ 𝛁𝐱𝒇 𝒙𝒕�𝟏, 𝒚𝒕�𝟏
𝑦a�( = 𝑦a + 𝜂 ⋅ 𝛻Q𝑓 𝑥a, 𝑦a − 𝜼

𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕�𝟏, 𝒚𝒕�𝟏)

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: OGDA exhibits last iterate convergence & 
fast rates for unconstrained bilinear games: min

M∈ℝ_
max
Q∈ℝ`

𝑓 𝑥, 𝑦 = 𝑥X𝐴𝑦 + 𝑏[𝑥 + 𝑐[𝑦

• [Liang-Stokes AISTATS’19, Gidel et al AISTATS’19]: …convergence rate is geometric if 
𝐴 is well-conditioned, extends to strongly convex-concave functions 𝑓 𝑥, 𝑦

• E.g. in previous isotropic Gaussian case: 𝑋 ∼ 𝒩 3,4 , 𝐼T×T , 𝐺3 𝑍 = 𝜃 + 𝑍, 
𝐷� ⋅ = 𝑤,⋅

Negative Momentum: convergence



• Optimistic gradient descent-ascent (OGDA) dynamics: 
∀𝑡: 𝑥a�( = 𝑥a − 𝜂 ⋅ 𝛻M𝑓 𝑥a, 𝑦a + 𝜼

𝟐 ⋅ 𝛁𝐱𝒇 𝒙𝒕�𝟏, 𝒚𝒕�𝟏
𝑦a�( = 𝑦a + 𝜂 ⋅ 𝛻Q𝑓 𝑥a, 𝑦a − 𝜼

𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕�𝟏, 𝒚𝒕�𝟏)

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: OGDA exhibits last iterate convergence & 
fast rates for unconstrained bilinear games: min

M∈ℝ_
max
Q∈ℝ`

𝑓 𝑥, 𝑦 = 𝑥X𝐴𝑦 + 𝑏[𝑥 + 𝑐[𝑦

• [Liang-Stokes AISTATS’19, Gidel et al AISTATS’19]: …convergence rate is geometric if 
𝐴 is well-conditioned, extends to strongly convex-concave functions 𝑓 𝑥, 𝑦

• [Mohtari et al’19]: …ditto for extra-gradient, mirror-prox methods
• [Daskalakis-Panageas ITCS’19]: Projected OGDA exhibits last iterate convergence 

even for constrained bilinear games: min
M∈^_

max
Q∈^`

𝑥X𝐴𝑦

• General Comment: asymptotic convergence results were known already by 
Korpelevich and Popov for extragradient and negative momentum respectively

• [w/ Jelena Diakonikolas, Mike Jordan]: results for general constraints + convergence 
rates + general Bregman divergences 

Negative Momentum: convergence

= all linear programming



Negative Momentum: in the Wild
• Can try optimism for non convex-concave min-max objectives 𝑓 𝑥, 𝑦
• Issue [Daskalakis, Panageas NeurIPS’18]: No hope that stable points of OGDA or 

GDA are only local min-max points 

• e.g. 𝑓 𝑥, 𝑦 = −(
�
⋅ 𝑥T − (

T
⋅ 𝑦T +  

()
⋅ 𝑥 ⋅ 𝑦

• Nested-ness: Local Min-Max ⊆ Stable Points of GDA ⊆ Stable Points of OGDA

• (stability refers to linear stability and left inclusion for strong local min-max points)

Gradient Descent-Ascent field



Negative Momentum: in the Wild
• Can try optimism for non convex-concave min-max objectives 𝑓 𝑥, 𝑦
• Issue [Daskalakis, Panageas NeurIPS’18]: No hope that stable points of OGDA or 

GDA are only local min-max points
• Local Min-Max ⊆ Stable Points of GDA ⊆ Stable Points of OGDA

• also [Adolphs et al. 18]: left inclusion
• Question: identify first-order method converging to local min-max w/ probability 1

• While this is pending, evaluate optimism in practice…

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: propose optimistic Adam
• Adam, a variant of gradient descent proposed by [Kingma-Ba ICLR’15], 

has found wide adoption in deep learning, although it doesn’t always 
converge [Reddi-Kale-Kumar ICLR’18]

• Optimistic Adam is the right adaptation of Adam to “undo some of the 
past gradients”



Optimistic Adam on CIFAR10
• Compare Adam, Optimistic Adam, trained on CIFAR10, in terms of 

Inception Score
• No fine-tuning for Optimistic Adam, used same hyper-parameters 

for both algorithms as suggested in Gulrajani et al. (2017)



Optimistic Adam on CIFAR10
• Compare Adam, Optimistic Adam, trained on CIFAR10, in terms of 

Inception Score
• No fine-tuning for Optimistic Adam, used same hyper-parameters for 

both algorithms as suggested in Gulrajani et al. (2017)

• Further supporting evidence for negative momentum methods by 
[Gidel et al. AISTATS’19]


