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Minimax Problem

We consider a function f : Rm ×Rn → R and the minimax problem:

min
x∈Rm

max
y∈Rn

f (x , y).

We are interested in computing a saddle point of the function f (x , y) where
a saddle point is defined as a vector pair (x∗, y∗) that satisfies

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x , y∗), for all x ∈ Rm, y ∈ Rn.

Throughout this lecture, we will focus on cases where

min
x∈Rm

max
y∈Rn

f (x , y) = max
y∈Rn

min
x∈Rm

f (x , y).

Minimax theorem [von Neumann 28]: f (x , y) is convex-concave
(f (·, y) is convex for all y ∈ Rn and f (x , ·) is concave for all x ∈ Rm)
and minimization and maximization is over convex sets X ⊂ Rm and
Y ⊂ Rn that are compact.
[Moreau 64] and [Rockafellar 64] extended to noncompact sets under
convex-analysis type assumptions. [Bertsekas, Nedic and Ozdaglar 03].
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Minimax Problems

These problems arise in a multitude of applications:

Worst-case design (robust optimization): We view y as a parameter and wish
to minimize over x a cost function, assuming the worst possible value of y .

Duality theory for constrained optimization We consider a constrained
optimization problem (referred to as the primal problem):

minimize f (x)

subject to gj (x) ≤ 0, j = 1, . . . , r .

We introduce a vector µ = (µ1, . . . , µr ) ∈ Rr and the Lagrangian function

L(x , µ) = f (x) +
r

∑
j=1

µjgj (x).

We then consider the dual problem

maximize min
x∈Rn

L(x , µ)

subject to µ ≥ 0.

Thus the dual problem (and the primal problem) can be viewed as minimax
problems.
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Minimax Problems

Zero-sum games: There are two players, first choosing an action out of n possible
actions, and the other choosing an action out of m possible actions.

We assume they use mixed strategies: first player chooses a probability
distribution x = (x1, . . . , xn) and second chooses y = (y1, . . . , ym).

If actions i and j are selected, player 1 gives amount aij to the second player.

The expected amount to be given by the first player to the second is

∑i ,j aijxiyj or x ′Ay , where [A]ij = aij .

Using a worst case viewpoint, the first player must minimize maxy x
′Ay and

the second player must maximize minx x
′Ay .

Minmax theorem (a central result in game theory) states that these two
optimal values are equal, implying there is an amount that can be
meaningfully viewed as the value of the game for its participants.
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Minimax Problems

Adversarial ML Find model parameters that minimize a loss function against
worst case perturbations of input data within allowable constraints.

Consider a standard classification problem with probability distribution P
over pairs (w , θ) with w denoting examples and θ denoting labels.

Selecting model parameters x to minimize exp loss E(w ,θ)∼P [`(w , θ, x)].

A simple and effective approach for robust training of a model is to consider
inputs with adversarial modifications represented as `∞-perturbed versions of
data points w .

The robust learning problem then amounts to choosing x to solve the
following minimax problem:

min
x

E(w ,θ)∼P

[
max
y∈S

`(w + y , θ, x)
]

,

where S denotes allowable perturbations.

GAN Training: A zero-sum game between a generator deep NN and a

discriminator deep NN.
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Computing Saddle Points

Dual algorithms: Particularly relevant for constrained optimization problems.
Recall the dual problem:

maximize q(µ)

subject to µ ≥ 0,

with dual function

q(µ) = inf
x∈Rn

L(x , µ) = inf
x∈Rn
{f (x) + µ′g(x)}, ∀ µ ≥ 0,

where g = (g1, . . . , gr ).

The dual objective function is concave (even when primal is nonconvex), but
often nondifferentiable.

Much of large-scale optimization (algorithms and theory) revolves around
using “gradients” (to compare the value of a cost function a a given point
with its values in neighboring points). This analysis breaks down when the
cost function is nondifferentiable.

Fortunately, for the case of convex cost functions, there is a convenient
substitute: subgradients.
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Subgradients

For a convex and differentiable function f : Rn → R, the linearization of f
at a vector x underestimates f at all points, i.e.,

f (z) ≥ f (x) +∇f (x)′(z − x), ∀ z ∈ Rn.

For a differentiable function, this linearization is unique at any given x ∈ Rn.

A convex and nondifferentiable f may have multiple linearizations at some
points.

For such functions, a subgradient provides a linearization of f that
underestimates f globally at all points.
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Subgradients

For a convex function f : Rn → R , a vector d is said to be a subgradient of
f at x if

f (z) ≥ f (x) + d ′(z − x), ∀ z ∈ Rn.

The set of subgradients of f at x is called the subdifferential of f at x and is
denoted by ∂f (x).

When f is differentiable at x , we have ∂f (x) = {∇f (x)}.

z

(x, f(x))

f(z)

(-d, 1)

For a concave function h : Rn → R, a vector d is said to be a subgradient
of h at x if

h(z) ≤ h(x) + d ′(z − x), ∀ z ∈ Rn.
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Characterization of the Subdifferential

Danskin’s Theorem: Consider the function f (x) = maxy∈Y φ(x , y), where
φ : Rn+m → R is continuous, Y is compact, and φ(·, y) is convex for each
y ∈ Y . Then f is convex and

∂f (x) = Convex Hull{∂xφ(x , y) | y : attains the max}.

If there exists a unique ȳ that attains the maximum in maxy∈Y φ(x , y) and
φ(·, ȳ) is differentiable at x , then f is differentiable at x , and

∇f (x) = ∇xφ(x , ȳ).

Intuition: Since the gradients are local objects, and the function f (x) is
locally the same as φ(x , ȳ), their gradients will be the same [Madry et al 19].
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Computing Subgradients of the Dual Function

The dual function q(µ) = infx∈X {f (x) + µ′g(x)} is concave.

Let xµ be a vector such that

f (xµ) + µ′g(xµ) = inf
x∈X
{f (x) + µ′g(x)} = q(µ).

Then, the vector g(xµ) is a subgradient of q at µ.

To see this note that for all ξ ∈ Rr

q(ξ) = inf
x∈X
{f (x) + ξ ′g(x)}

≤ f (xµ) + ξ ′g(xµ)

= f (xµ) + µ′g(xµ) + (ξ − µ)′g(xµ)

= q(µ) + (ξ − µ)′g(xµ).

Good News: A subgradient is obtained practically for free as a by-product of the
evaluation of the dual function.
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Subgradient Method

Consider maximization of q(µ) over µ ≥ 0.

Subgradient method:
µk+1 = [µk + αkgk ]

+,

where gk is the subgradient g(xµk
), [·]+ denotes projection on the

nonnegative orthant, and αk is a positive scalar stepsize.

[Polyak 1969], [Ermoliev 1969], [Shor 1985].

Unlike gradients, a subgradient may not be a direction of ascent.
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Subgradient Method - Convergence Properties

Along the subgradient direction gk , there is a range of stepsizes (0, α̃) such
that at every point µk + αgk for α ∈ (0, α̃), the distance to the optimal
solution set M∗ is decreased, i.e.,

dist(µk + αgk ,M∗) < dist(µk ,M∗).

Remarks:

With the constant step, the convergence to q∗ is within an error that
depends on the stepsize and the bound on subgradient norms (at rate
O(1/k)).
Convergence of the sequence {µk} to some dual optimal solution µ∗

can be established under diminishing stepsize rule.
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Computing Saddle Points

Primal-Dual algorithms:

Let’s go back to the general problem:

min
x∈Rm

max
y∈Rn

f (x , y).

Assume the function f (x , y) is continuously differentiable in x and y .

An alternative method for computing the saddle points of f (x , y) is the
gradient descent-ascent (GDA) method: For

xk+1 = xk − η∇x f (xk , yk )

yk+1 = yk + η∇y f (xk , yk ),

where η > 0 is a constant stepsize.
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Computing Saddle Points

Primal-Dual algorithms - Some History

[Samuelson 49] “The gradient method may be considered as a decentralized or
computational mechanism for achieving optimum allocation of scarce resources.”

[Arrow, Hurwicz, Uzawa 58] proposed continuous-time versions of these methods
for general convex-concave functions and proved global stability results under strict
convexity assumptions.

[Uzawa 58] focused on a discrete-time version and showed convergence to a
neighborhood under strong convexity assumptions.

[Gol’shtein 74] and [Maistroskii 77] provided convergence with diminishing stepsize
rules under stability assumptions (weaker than strong convexity).

[Korpelevich 77] introduced extragradient method which is a gradient method with
extrapolation (see also [Nemirovski 04] for convergence rate for the
convex-concave case).

[Nedic and Ozdaglar 09] considered subgradient primal-dual methods and provided
convergence rate guarantees.
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Convergence Properties of GDA

Assume f (x , y) is µx strongly convex with respect to x and µy strongly
concave with respect to y . Let µ = min{µx , µy}.

Let L be the Lipschitz continuity parameter of the operator
F = [∇x f (x , y);−∇y f (x , y)].

Define rk = ‖xk − x∗‖2 + ‖yk − y∗‖2.

Proposition

Let {xk , yk} be the iterates generated by GDA. Then for stepsize η ≤ µ
2L2

the
following inequality is satisfied:

rk+1 ≤ (1− 1

4κ2
)rk (1)
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Proof

We have:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2η∇x f (xk , yk )
′(xk − x∗) + η2‖∇x f (xk , yk )‖2

‖yk+1 − x∗‖2 = ‖yk − x∗‖2 + 2η∇y f (xk , yk )
′(yk − y∗) + η2‖∇y f (xk , yk )‖2

Using strong convexity and concavity, we have:

−∇x f (xk , yk )
′(xk − x∗) ≤ f (x∗, yk )− f (xk , yk )−

µ

2
‖xk − x∗‖2

∇y f (xk , yk )
′(yk − y∗) ≤ f (xk , yk )− f (xk , y∗)− µ

2
‖yk − y∗‖2

Substituting these inequalities and adding them gives (using z = [x ; y ])

‖zk+1 − z∗‖2 ≤(1− ηµ)‖zk − z∗‖2 + 2η(f (x∗, yk )− f (xk , y∗)) (2)

+ η2(‖∇x f (xk , yk )‖2 + ‖∇y f (xk , yk )‖2).

Using Lipschitz continuity, we obtain

η2(‖∇x f (xk , yk )‖2 + ‖∇y f (xk , yk )‖2) ≤ η2L2(‖zk − z∗‖2)
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Proof (Continued)

Using the saddle point property, we have f (x∗, yk )− f (xk , y∗) ≤ 0.

Substituting these inequalities in Equation (2), this yields

‖zk+1 − z∗‖2 ≤ (1− ηµ + η2L2)‖zk − z∗‖2

For η = µ
2L2

, we get:

‖zk+1 − z∗‖2 ≤ (1− µ2

4L2
)‖zk − z∗‖2

which can be written as:

‖zk+1 − z∗‖2 ≤ (1− 1

4κ2
)‖zk − z∗‖2
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Issues with GDA

Consider the following bilinear problem:

min
x∈Rd

max
y∈Rd

x ′y

The solution is (x∗, y∗) = (0, 0).

The Gradient Descent Ascent (GDA) updates for this problem:

xk+1 = xk − ηyk

yk+1 = yk + ηxk

where η is the stepsize.
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GDA

On running GDA, after k iterations we have:

‖xk+1‖2 + ‖yk+1‖2 = (1 + η2)(‖xk‖2 + ‖yk‖2)

GDA diverges as (1 + η2) > 1
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Proximal Point

The Proximal Point (PP) updates for the same problem:

xk+1 = xk − ηyk+1

yk+1 = yk + ηxk+1

where η is the stepsize.

The difference from GDA is that the gradient at the iterate (xk+1, yk+1) is
used for the update instead of the gradient at (xk , yk ).

Although for this problem it takes a simple form, the PP method in general
involves operator inversion and is not easy to implement.
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Proximal Point

On running PP, after k iterations we have:

‖xk+1‖2 + ‖yk+1‖2 =
1

1 + η2
(‖xk‖2 + ‖yk‖2)

PP converges as 1/(1 + η2) < 1
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Proximal Point

The PP method at each step solves the following:

(xk+1, yk+1) = arg min
x∈Rm

max
y∈Rn

{
f (x , y) +

1

2η
‖x − xk‖2 −

1

2η
‖y − yk‖2

}
.

Using the first order optimality conditions leads to the following update:

xk+1 = xk − η∇x f (xk+1, yk+1), yk+1 = yk + η∇y f (xk+1, yk+1).

Theorem (Convergence of the PP method)

For any η > 0: Bilinear Case (f (x , y) = x ′By , B: square and full-rank matrix)

‖xk+1‖2 + ‖yk+1‖2 ≤
(

1

1 + η2λmin(B>B)

)
(‖xk‖2 + ‖yk‖2),

Strongly convex-Strongly concave Case

‖xk+1 − x∗‖2 + ‖yk+1 − x∗‖2 ≤
(

1

1 + ηµ

)k

(‖x0 − x∗‖2 + ‖y0 − y∗‖2),
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OGDA updates - How prediction takes place

One way of approximating the Proximal gradient is as follows

∇x f (xk+1, yk+1)) ≈ ∇x f (xk , yk ) + (∇x f (xk , yk )−∇x f (xk−1, yk−1))

∇y f (xk+1, yk+1)) ≈ ∇y f (xk , yk ) + (∇y f (xk , yk )−∇y f (xk−1, yk−1))

This leads to the OGDA update

xk+1 = xk − 2η∇x f (xk , yk ) + η∇x f (xk−1, yk−1)

yk+1 = yk + 2η∇y f (xk , yk )− η∇y f (xk−1, yk−1)
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EG updates - How prediction takes place

The updates of EG

xk+1/2 = xk − η∇x f (xk , yk ), yk+1/2 = yk + η∇y f (xk , yk ).

The gradients evaluated at the midpoints xk+1/2 and yk+1/2 are used to
compute the new iterates xk+1 and yk+1 by performing the updates

xk+1 = xk − η∇x f (xk+1/2, yk+1/2),

yk+1 = yk + η∇y f (xk+1/2, yk+1/2).
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EG updates - How prediction takes place

The update can also be written as:

xk+1/2 = xk−1/2 − η∇x f (xk−1/2, yk−1/2)

− η (∇x f (xk , yk )−∇x f (xk−1, yk−1)) ,

yk+1/2 = yk−1/2 + η∇y f (xk−1/2, yk−1/2)

+ η (∇y f (xk , yk )−∇y f (xk−1, yk−1)) .

EG tries to predict the gradient using interpolation of the midpoint gradients:

∇x f (xk+1/2, yk+1/2)) ≈ ∇x f (xk−1/2, yk−1/2)

+ (∇x f (xk , yk )−∇x f (xk−1, yk−1))

∇y f (xk+1/2, yk+1/2)) ≈ ∇y f (xk−1/2, yk−1/2)

+ (∇y f (xk , yk )−∇y f (xk−1, yk−1))
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Convergence rates of OGDA and EG

Theorem (Choose the stepsize η appropriately for each algorithm)

Bilinear case (f (x , y) = x ′By , B: square and full-rank matrix)

‖xk+1‖2 + ‖yk+1‖2 ≤
(

1− 1

cκ

)k

r0

Strongly Convex-Strongly Concave case

‖xk+1 − x∗‖2 + ‖yk+1 − x∗‖2 ≤
(

1− 1

cκ

)k

r0,

Convex-Concave case

|f (x̂k , ŷk )− f (x∗, y∗)| ≤ c(‖x0 − x∗‖2 + ‖y0 − x∗‖2)
k

A unified analysis of extra-gradient and optimistic gradient methods for
saddle point problems: Proximal point approach [A. Mokhtari, A. Ozdaglar,
S.Pattathil 19], arXiv preprint arXiv:1901.08511.

Convergence rate of O(1/k) for optimistic gradient and extra-gradient
methods in smooth convex-concave saddle point problems [A. Mokhtari, A.
Ozdaglar, S.Pattathil 19], arXiv preprint arXiv:1906.01115.
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Extensions

Nonconvex-nonconcave minimax problems - open problem.

Some progress on special cases:

When objective function of one of the players is strongly convex,
multi-step gradient descent-ascent converges to an approximate
stationary point [Sanjabi, Razaviyayn, Lee 18].
There exist some papers which assume nonconvex on both sides, but
assume additional conditions that weaken convexity assumptions, and
show that inexact proximal methods converge to an approximate
stationary point [Lin, Liu, Rafique, and Yang 18].
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