
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 September 10, 2015

Lecture 1
Lecturer: Aleksander Mądry Scribe: Dimitris Tsipras

1 Introduction
Welcome to 6.S978! Please take a look at the course website http://courses.csail.mit.edu/6.
S978 that contains all the administrative information. Also, don’t forget to subscribe to the class
mailing list http://lists.csail.mit.edu/mailman/listinfo/6s978 (this will be the primary medium
of communication for this class) and sign up for scribing (see the course website for instructions).

2 What This Class Will Be About
Our main focus in this class will be on graph algorithms. However, our treatment of this topic will be
very different to the one you might have seen in classic algorithms classes.

To explain this difference, recall first that traditional graph algorithms are purely combinatorial in
spirit. That is, they operate on various combinatorial notions associated with a graph, such as paths,
cuts, trees, and partitions, using sophisticated data structures to make these manipulations efficient.
Resorting to these kind of approaches is fairly natural – after all, graphs are combinatorial objects –
and, historically, it was very successful. The resulting techniques were shaping our understanding of
algorithms, in general. In particular, it is not a coincidence that there is so much of graph algorithms
coverage in undergraduate algorithms curriculum.

However, despite all these successes, over the last 60 years, it became evident that there are certain
fundamental limitations that purely combinatorial techniques seem to be unable to overcome. Conse-
quently, there is a need for development of broader perspective on graph algorithms. One of the first
attempts in this direction dates back to 1980s, when the field of spectral graph theory was born. Very
roughly speaking, the objective of spectral graph theory is to tie the combinatorial properties of the
graph to certain linear-algebraic properties, such as eigenvalues and eigenvectors, of associated matrices,
such as the Laplacian or adjacency matrix. This new, more continuous way of looking at graphs led to
substantial progress on a number of longstanding open problems in algorithmic graph theory. However,
the connections it established were mostly descriptive in nature, and thus were of somewhat limited use
when one wanted to obtain faster algorithms for various fundamental graph problems.

The missing component here turns out to be the toolbox of convex optimization, a field that develops
efficient algorithms for minimizing convex functions in different (purely continuous) scenarios. Over the
last five years, this component enabled us to strengthen the connections unearthed by spectral graph
theory and turn them into an approach for producing fast graph algorithms. In fact, this direction
became a new frontier of algorithmic graph theory, leading to a number of exciting breakthroughs.

This class will study the new landscape that emerges from these developments. In particular, it will
explore the “mental picture” of areas and connections that underlie them – see Figure 1. Along the
way, we will not only try to cover all the key techniques in modern graph algorithms and spectral graph
theory but also survey the core tools of convex optimization. In fact, we will see that algorithmic graph
theory is not merely one more application area for convex optimization methods, but also a new lens
on this field that enables us to approach – and even make progress on – some of its most fundamental
questions.

3 The Maximum Flow Problem
As explained above, the set of topics that we want to cover throughout the semester is pretty broad.
It is, therefore, somewhat surprising that there is a single problem that can be tied to all of them: the

1

http://courses.csail.mit.edu/6.S978
http://courses.csail.mit.edu/6.S978
http://lists.csail.mit.edu/mailman/listinfo/6s978

Classic Graph Algorithms Linear Algebra

Convex Optimization

Combinatorial Approaches

(Paths, Trees, Partitions, Cuts,. . .)

Spectral Graph Theory

(Eigenvalues, Linear Systems,. . .)

Fast Iterative Approaches

(Gradient descent, Interior-point methods)

Figure 1: A mental picture of the areas and connections that we want to explore.

maximum flow problem. This problem is one of the most intensely studied problem in graph algorithms
and, more broadly, combinatorial optimization. In fact, over the years, it was one of the key drivers of
development of combinatorial algorithms. For instance, it was in the context of this problem that the
idea of primal-dual algorithms was first conceived.

Now, it turns out that the maximum flow problem is also inspiring most of the modern graph
algorithmic developments. The whole paradigm of using continuous approaches to graph algorithms
stems from attempts to make progress on this problem, and all the current fastest maximum flow
algorithms were obtained recently via such techniques. We will follow this “tale of one problem” narrative
in our lectures. This way we will always have a common baseline problem to enable us to compare and
tie together various tools and concepts that we will discuss during the semester.

3.1 A Formal Definition
Let us thus start by formally defining the maximum flow problem.

Maximum flow problem:

• Input: A (directed) graph G = (V,E) with a source vertex s ∈ V and a sink vertex t ∈ V , and
integer arc capacity ue associated with each arc e ∈ E .
• Goal: Compute a feasible s-t flow f of maximum value in G.

To make the above definition precise, we need to define the notion of flow feasibility and that of the
value of a flow.
An s− t flow f is feasible iff it satisfies two types of constraints:

• (flow conservation constraints): there are no “leaks” at any other vertex than the source s and
the sink t. That is,

∀v 6= s, t, flow-inf (v) = flow-outf (v)

• (capacity constraints): the arc capacities are not violated. That is,

∀e ∈ E, 0 ≤ fe ≤ ue

The value of a flow f is the net amount of flow coming out of the source vertex s. That is,

value(f) := flow-outf (s)

Also, for future reference, we will usually denote the number |E| of arcs/edges of a graph G = (V,E) as
m, and its number |V | of vertices as n.

2

3.2 Our Focus: Unit-capacity and Undirected Case
Throughout (almost) the whole class we will be focusing our attention on a special case of the maximum
flow problem. Namely, we will assume that the instances we are dealing with are: unit-capacity, i.e.,
ue = 1 for all arcs e; and undirected, i.e., for each arc e = (u, v) there is an arc e′ = (v, u) that goes in
opposite direction and has the same (unit) capacity.

Obviously, by making these two assumptions we are simplifying our problem quite a bit. However,
as it turns out, these simplifications are not as significant as one might think. First of all, almost all
the techniques that can tackle the unit-capacity case can also be easily extended to handle the general
capacity case, while incurring only small running time overhead. Secondly, the maximum flow problem
has a certain surprising feature: one can essentially reduce the general, directed maximum flow problem
to its undirected variant. More precisely, in our first problem set we will prove the following statement.

Fact 1 Given an algorithm that solves the (unit-capacity1) undirected maximum flow problem in time
O(T (m,n)) we can transform it into an algorithm that solves the (unit-capacity) directed maximum flow
problem in time Õ(T (m,n) +m).

The notation Õ() used above is the same as the O() notation, but it additionally suppresses logarithmic
factors, that is Õ(g(n)) = O(g(n) · polylog(g(n))).

So, if we are willing to give up logarithmic factor (which we are), solving the undirected case of the
maximum flow problem is essentially equivalent to solving the directed variant.

In the light of the above, from now on, unless stated otherwise, we are always solving the unit-capacity
and undirected variant of the maximum flow problem.

3.3 Previous Algorithms and Approach
How can we solve the maximum flow problem? For a long time the dominating theme in all algorithms
was the augmenting path framework of Ford and Fulkerson. In this framework, we gradually try to push
more flow through the network by repeatedly finding paths from s to t, in the residual graph. Each time
we find such a path, we flip the direction of the arcs on it to encode adding the flow along this path.
(Recall that all capacities are one here, and we view each undirected edge as two arcs going in opposite
directions.) Once we are no longer able to find an s-t path, we can decode the maximal flow by looking
at the flipped arcs. More precisely, the procedure is as follows.

Algorithm 1 Repeated Augmenting Path Finding
G′ ← G . G′ is the residual (directed) graph
while s is connected to t in G′ do

find a (directed) s-t path P in G′
flip in G′ the directions of all the arcs in P .

for e ∈ E do
if e is flipped in G′ then f∗e = 1
else f∗e = 0

return f∗

By appealing to the celebrated Max Flow-Min Cut theorem due to [Ford-Fulkerson ’56] and, inde-
pendently, [Elias-Feinstein-Shannon ’56] (from MIT!), one can show that the above algorithm indeed
computes the maximum flow in G. (Take a moment to make sure you know how to show that!)

What is the running time of this procedure? In each step, finding an s − t path takes time O(m).
Since in each step the flow is increased by one, and the value of any feasible flow cannot exceed n (which
is the max value of any s-t cut), this algorithm terminates in time O(m · n).

But, can we do better? The fastest known algorithm in this framework (for unit-capacity case)
is due to [Even-Tarjan ’75]. Roughly speaking, it works by trying to find many augmenting paths

1The reduction also works for general capacities, we focused on unit-capacity case just for simplicity.

3

simultaneously and requires much more sophisticated analysis. Its running time is O(m·min(m1/2, n2/3)).
This bound stood for almost 40 years, and this suggests that the limits of the whole framework may
have been reached.

4 Maximum Flow as an Optimization Problem
What we will do in this class, is try a completely different approach. We will phrase the problem as an
optimization problem and resort to known methods for solving it. However, this alone will be too crude
of an approach. So we will examine what specific combinatorial structure we can exploit to push the
running time of the optimization even further. As we will see later on, this approach will ultimately lead
to improvement over the running time of Even-Tarjan algorithm.

4.1 Encoding the Graph and Flow as Linear-Algebraic Objects
In order to phrase the (undirected unit-capacity) maximum flow problem as a generic optimization
problem, we will need to encode our graph and flows as vectors and matrices of some continuous vector
space.

To this end, given our undirected graph G, we will orient its edges in an arbitrary way and for a
given directed flow f , we will overload notation and encode it as a general vector in f ∈ Rm, where each
coordinate corresponds to one of the edges of G. (Thus, we will index its coordinates according to the
edges). More precisely, for a given edge e, we will define the e-th coordinate fe of the vector f as

fe :=

{
fe if the flow is congruent with the direction of e
−fe otherwise

Note that a negative flow in this notation is simply positive flow in the direction opposite to its orien-
tation.

For the case of the input graph, there are many well-known ways to encode it as a matrix. One that
we will find convenient is the n ×m edge-vertex incidence matrix B indexed by vertices and edges, so
that the column Be corresponding to edge e = (w, u), has values −1 at w, 1 at u and zero elsewhere.

4.2 The Problem Formulation
Now, one can convince oneself that the task of finding a feasible s-t flow of maximum value in unit-
capacity undirected graph is equivalent to finding a unit value s-t flow in G that: (a) satisfies flow
conservation constraints; and (b) minimizes the maximum flow on any of the arcs. Rescaling this flow
to match the capacity of the most congested edge, will give us a maximum flow for the graph.

Consequently, the (unit-capacity undirected) maximum flow problem can be cast as the following
optimization task.

min ‖f‖∞
s.t. f ∈ Fs,t

Above, f ∈ Rm is our vector encoding of a flow and ‖v‖∞ := maxi |vi| is the `∞-norm. Also, Fs,t is
defined to be the space of all encodings of s-t flows of value 1 that satisfy the flow conservation constraints.
In order to encode the flow conservation constraints, we can utilize the matrix representation of the graph
and phrase the problem as follows

min ‖f‖∞
s.t. Bf = Xs,t

where Xs,t is the vector with 1 at vertex t, -1 at vertex s and zero everywhere else.
To see why the two formulations are equivalent, note that for some vertex v, (Bf)v is the flow “deficit”

at this node. This has to be −1 at s, 1 at t (to ensure unit flow) and zero at any other node.

4

x

g(x)a

b

c

Figure 2: Subgradients at different points

4.3 Convexity and Subgradients
A notion the comes up a lot in continuous optimization, is that of convexity. Recall the definition of a
convex set and a convex function.

Definition 2 A set S ⊆ Rn is convex iff ∀x, y ∈ S

∀a ∈ [0, 1], ax+ (1− a)y ∈ S

A function g : D → R is convex iff ∀x, y ∈ D

∀a ∈ [0, 1], ag(x) + (1− a)g(y) ≥ g(ax+ (1− a)y)

In other words, a set is convex iff for any two points in it, the straight line connecting them lies
entirely in the set. A function is convex iff for any two points, the function plot between them lies
below the straight line connecting their values. As it turns out, there are some great news about our
optimization problem.

Fact 3 The set Fs,t is convex.

Fact 4 The function ‖f‖∞ is convex.

The good thing about convexity is the it implies a certain local to global property. Any local minimum
is a global minimum. For non-convex function this does not hold, there can be multiple local minima
that are not global minima, thus making the task of minimizing the function extremely hard. We will
now briefly discuss the concept of the subgradient.

Definition 5 For a function g : D → R, a vector s ∈ Rn is a subgradient of g at point x ∈ D iff

∀y ∈ D, g(x)− g(y) ≤ sT (x− y)

we denote this as s ∈ ∂g(x).

Intuitively, g(x)+sT (y−x) for various y ∈ Rn defines a hyperplane that lies below g(y) at all points. This
essentially provides a lower bound for the value of the function as one goes away from x. For different
points of a function, the set of subgradients can be quite different. Observe the function g of Figure 2.
The function has a single subgradient at point a (the gradient), no subgradients at b (∂g(b) = ∅) and
multiple subgradients at point c, where it is not differentiable.

Theorem 6 If g : D → R is a convex function, then

∀x ∂g(x) 6= ∅

in addition, if g is differentiable at x,
∂g(x) = {∇g(x)}

5

Proof (Non-Emptiness): Let gepi be the epigraph of the function g, that is the set of points lying
above the function plot in its domain.

gepi = {(a, b) ∈ D × R : g(a) ≤ b}

Since g is a convex function, gepi is a convex set. For any x ∈ D, (x, f(x)) belongs to the boundary of this
set. By the supporting hyperplane theorem, there exists a hyperplane that passes through (x, f(x)) and
leaves the whole set gepi on one side of it, that is there exist s ∈ Rn, w ∈ R such that for all (a, b) ∈ gepi

sTa− wb ≤ sTx− wf(x)

Since gepi is the epigraph of a convex function, one can show that such a hyperplane can be chosen such
that w = 1. Since for any y, (y, f(y)) ∈ gepi

sT y − f(y) ≤ sTx− f(x)

and therefore s ∈ ∂g(x).
(Uniqueness for g differentiable:) Let some s ∈ ∂g(x). For some i ∈ [n], let ei be the vector with 1 at
coordinate i and zero elsewhere. By the definition of the subgradient, for y = x+ εei, y = x− εei,

f(x)− f(x− εei)
ε

≤ sT ei ≤
f(x+ εei)− f(x)

ε

for any ε > 0. Taking the limit as ε→ 0, since g is differentiable, the bounds converge and

si =
∂f

∂xi
(x)

This holds for every i, and therefore s = ∇f(x).

We can use subgradients to certify the optimality of a point in terms of minimizing the function, in
the same way we use the gradient in differentiable functions.

Theorem 7 Let x ∈ D and g : D → R, then x is a global minimum iff 0 ∈ ∂g(x).

Subgradients can substitute the use of the gradient in cases of non-differentiable functions. Moreover,
they also work when the function is restricted in some subset of its domain D ⊂ Rn. The importance
of this becomes apparent when one considers cases such as the one in Figure 3. In this case when one
restricts g(x) to the domain D, the point x∗ is a global minimum. Even though its gradient is not zero,
0 is a subgradient of g at x∗.

4.4 First Step: Fast Approximation of the Maximum Flow
Looking back at our optimization problem for the maximum flow, since the feasible set is convex (indeed
affine) and the objective function convex, it can be solved by the ellipsoid algorithm in polynomial time.
This running time however is far from efficient for the specific problem at hand. In order to come up
with faster algorithms following this approach we will first relax our goal a little bit, and aim for an
approximate solution. For now our goal will be to find for every a (1 − ε)-approximate solution – for
every ε > 0 – in running time that depends polynomially on 1

ε . Note that the ellipsoid algorithm finds
for every ε > 0 a (1 − ε)-approximation within time depending on log(1ε), so we consider this solution
to be exact.

5 A first view of our basic tool: Gradient Descent
We will now briefly discuss the intuition behind the gradient descent method, a tool that we will use
extensively. While the intuition is very simple, it is so powerful that it appears in almost every algorithm
(we will make the term “every algorithm” more concrete). Suppose that we want to compute

min
x∈Rn

g(x)

6

x
D

g(x)

∇g(x∗)
∈ ∂g(x∗)
∈ ∂g(x∗)x∗

Figure 3: A global minimum with non-zero gradient

for some convex and differentiable function g : Rn → R. The way we will try to do this is start at some
point x1 ∈ Rn and use it to compute a point x2 closer to the optimal solution. We will then use x2 to
compute a closer point x3 and so on, until we get sufficiently close to an optimal point.

Since our objective function is convex and differentiable, its plot will look like a bowl. We can
therefore try to go down the “steepest” slope from our point to get fast to the bottom of the bowl, our
global minimum. Our update step is thus

xi+1 = xi − η∇g(xi)

where η is some normalizing constant. This is the greedy approach to minimization. Remember that
∇g(xi) is direction in which g increases with the highest rate. We will therefore move in the opposite
direction. The factor η prevents us from “overshooting” and going too far in one step. This will lead us
down a path of xi with strictly decreasing g, that is g(xi) > g(xi+1), as is depicted in Figure 4.

x

g(x)
x1 η∇g(x1)

x2

x3

x4
x5

Figure 4: An example of gradient descent

In order to better understand this procedure, lets look at the Taylor expansion of g at some point y

g(y) = g(xi) +∇g(xi)T (y − xi) +O(‖y − x‖22)

This means that as long as we don’t go too far from xi, our function can be well approximated by a
hyperplane and we are indeed moving in the right direction. In the next lectures, we will revisit the
method in a more rigorous way.

7

	Introduction
	What This Class Will Be About
	The Maximum Flow Problem
	A Formal Definition
	Our Focus: Unit-capacity and Undirected Case
	Previous Algorithms and Approach

	Maximum Flow as an Optimization Problem
	Encoding the Graph and Flow as Linear-Algebraic Objects
	The Problem Formulation
	Convexity and Subgradients
	First Step: Fast Approximation of the Maximum Flow

	A first view of our basic tool: Gradient Descent

