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1 Overview
Last time, we introduced the learning from expert advice framework and designed the multiplicative
weight update method for that setting. Today, we will use these concepts to approximate solving of
linear programs. Specifically, we will show how to use the multiplicative weights update method as a
general tool for turning fast algorithms for certain “feasible on average” variant of the LP feasibility
problem into fast algorithms that solve the canonical “worst case” variant of that problem.

2 Recap of the Last Lecture
Recall that the learning from expert advice framework corresponds to a certain T -round game that is
described as Algorithm 1. Roughly speaking, in this game we are repeatedly “betting” on one of the n
“experts” and aim to minimize the resulting loss to make it comparable to the overall loss of the single,
best in hindsight, expert.

Algorithm 1 Learning from expert advice framework
for each round t = 1 . . . T do

Choose a convex combination pt := (pt1, . . . , p
t
n) ∈ ∆n of experts

Once we have made our choice of pt, a “loss” lti ∈ [−1, 1] is revealed for each expert i
Our resulting loss in round t is lt :=

∑
i p
t
i l
t
i

end for

In order to tackle this task, we designed the multiplicative weights update method presented as
Algorithm 2.

Algorithm 2 Multiplicative weights update method
Set w0

i ← 1, for each expert i
for t = 1 . . . T do

Choose pti :=
wt−1

i

W t−1 , for each expert i, i.e., each expert is taken proportionally to his/her weight.
Once the losses lti for all the experts i are revealed, set

wti :=
(
1− ηlti

)
wt−1i ,

where 0 < η ≤ 1
2 is a parameter of the algorithm

end for

In the above, ∆n denotes an n-dimensional simplex, i.e., a set of all non-negative n-dimensional
vectors whose coordinates sum up to 1.

The performance of this algorithm is described by the following theorem.

Theorem 1 For any 0 < η ≤ 1/2 and any expert i, the total loss L(T ) of the multiplicative weights
update method (Algorithm 2) after T rounds is

L(T ) ≤ Li(T ) + η

T∑
t=1

|lti |+
lnn

η
,
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where Li(T ) =
∑T
t=1 l

t
i is the total loss of expert i after T rounds.

3 Approximate Solving of Linear Programs
The main goal of the learning from the expert advice framework we developed last time is to tackle the
problem of optimal decision making under total uncertainty. However, this framework turns out to be
extremely versatile and has applications to many other, seemingly unrelated, tasks.

Today, we will explore one of such surprising applications: approximate LP solving. Specifically, we
will be interested in solving the following feasibility question. Given the following set of constraints P

P : Ax ≤ b
x ∈ K,

where A is an m-by-n matrix, b ∈ Rm, and K ⊂ Rn is a certain convex set, as well as an error parameter
ε > 0, we want to:

(i) find a point x̂ ∈ K such that Ax̂ ≤ b+ ε~1, if P is feasible, i.e., if there exists x∗ ∈ K with Ax∗ ≤ b;

(ii) or, return ⊥ or a point x̂ as above, otherwise, i.e., if P is not feasible.

In other words, we want to either find a point x̂ in the convex set K that satisfies all m linear constraints
of P up to an additive error of ε, or conclude that P is not feasible. (Note that even if P is not feasible
there still might exist such a point x̂.)

3.1 Feasibility vs. Optimization Problems
Observe that even though we want to be able to just check the feasibility of the constraint set P, this
task captures solving general linear programs too. After all, every LP can be cast in the form

min cTx

s.t. Ax ≤ b.

This is, of course, an optimization problem and not a feasibility question, but we can easily reduce it
to the latter. Specifically, if we knew the optimal value C∗ of the objective, then solving the above LP
would be equivalent to solving the feasibility question:

cTx ≤ C∗

Ax ≤ b.

In particular, this set of constraints would be feasible and any feasible solution x∗ would be an optimal
solution to the original LP.

Furthermore, if we do not know the value of C∗, we can just apply a binary search strategy. After
all, if C is our current guess on the value of C∗ then if we consider the feasibility question

cTx ≤ C
Ax ≤ b,

we will have that this set of constraints is feasible iff C∗ ≤ C. So, our focus on solving a feasibility
question does not really lead to losing any generality.

3.2 (θ, ρ)-Oracles
When solving the feasibility question for P, we do not really intend to do it from a scratch. Instead, we
want to assume an existence of an algorithm, so-called oracle, that is capable of solving the feasibility
question for P in certain much weaker sense. Our goal will be to provide a mechanism for utilizing such
oracle in a black-box manner to obtain an algorithm that (approximately) solves the feasibility question
for P in the “strong” sense we defined earlier.

To make this precise, let us consider the following definition.
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Definition 2 For any 0 ≤ θ ≤ ρ, an (θ, ρ)-oracle for the constraint set P is an algorithm that, on a
given input vector p ∈ ∆m, outputs:

(i) A point x̃ ∈ K such that pTAx̃ ≤ pT b and, furthermore, Aix̃− bi ∈ [−θ, ρ], for all 1 ≤ i ≤ m, if P
is feasible;

(ii) ⊥ or a point x̃ as above, otherwise, i.e., if P is not feasible.

Note that the condition pTAx̃ ≤ pT b can be rewritten as

0 ≥ pTAx̃− pT b =

m∑
i=1

pi (Aix̃− bi) .

So, it corresponds to having the point x̃ satisfy the linear constraints of P on average (or, in expectation),
with the average/expectation taken wrt the convex combination p. (It is not hard to see that insisting
on p being a convex combination is not really needed and allowing any non-negative weights p would
not change anything.)

Needless to say, the fact that the point x̃ satisfies the constraints of P on average does not tell us
much about whether any particular constraint is satisfied. We can have some of these constraints be
violated by a large margin or satisfied with a large slack. Consequently, the purpose of the additional
requirements that

Aix̃− bi ∈ [−θ, ρ],

for each 1 ≤ i ≤ m, is to provide us with some absolute bounds on how large these margins and slacks
can be. Specifically, they ensure that the violation margin is never larger than ρ and the slack is never
larger than θ.

The parameter ρ is often referred to as the width of the oracle. One can think of it as a measure
of “quality” of the oracle. The smaller it is the closer the “feasible on average” solution x̃ returned by
the oracle is to the actual “worst-case” feasibility. In particular, if ρ was equal to 0 then x̃ would be
guaranteed to be feasible. (In principle, there is no reason for us to insist that our bound on the extent
of possible slack θ is small. However, as we will see later, it will be convenient to keep it bounded for
technical reasons. )

Also, observe that if x∗ ∈ K is a feasible solution to P then, obviously, we have that

pTAx̃− pT b =

m∑
i=1

pi(Aix
∗ − bi) ≤ 0,

as Aix∗ − bi ≤ 0, for each i. So, any algorithm that simply solves the feasibility question for P exactly
is a trivial oracle with ρ = 0. (Although θ might be still potentially quite large.)

Finally, notice that we were so far not too specific about the structure of the set K, apart of insisting
that it is convex. The reason is that in this framework we view this set as capturing the “easy” constraints
in the constraint set P. In particular, we assume that our oracle is able to navigate this set easily, i.e.,
all the solutions it returns are automatically in K. Our whole focus is then just on ensuring that the
“hard” linear constraints in P are always (approximately) satisfied.

4 Solving LPs with the Multiplicative Weights Update Method
Once we formally defined our goal: solving the feasibility problem P up to an additive error ε with
the help of the (θ, ρ)-oracle for P (see Definition 2), we can focus on developing an algorithm for
accomplishing it. As already mentioned earlier, we will employ here the learning from expert advice
framework and the multiplicative weights update method we developed for that setting.

More precisely, we will use our oracle to setup certain instance of the learning from expert advice
framework and then show that running multiplicative weights update method on this instance provides
us with the ε-approximate answer to the feasibility problem P we want to solve.
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To this end, let us consider a learning from expert advice framework in which we havem experts, each
one of them corresponding to one of the linear constraints in P. (Note that there is a slight notations
clash here, as in our previous discussions the number of experts was denoted by n.)

Next, to fully specify an instance of that framework, we need to provide, for each round t of the
underlying game (see Algorithm 1) and the convex combination pt chosen by the algorithm, what the
loss lti of each expert i should be. We define these losses with the help of the oracle for P. Namely, given
the convex combination pt ∈ ∆m, we run our oracle on this input and consider the solution xt that this
oracle provided. If xt = ⊥ then, from the definition of the oracle (Definition 2), we immediately know
that P is infeasible and can just terminate. Otherwise, i.e., if xt is an “feasible on average” solution to
P, we set

lti :=
1

ρ

(
bi −Aixt

)
, (1)

for each 1 ≤ i ≤ m.
Observe that, by definition of the oracle, we have that

bi −Aixt = −
(
Aix

t − bi
)
∈ [−ρ, θ],

for each i. So, normalizing by ρ (and using the fact that θ ≤ ρ) ensures that each loss lti ∈ [−1, 1], as
required.

Now, once we specified the instance of the learning from expert advice framework, we just run the
multiplicative weights update method (Algorithm 2) on it for some number T of rounds. (The value of
T will be specified later.) At the end, provided none of the oracle calls produced ⊥ – which would mean
that we can just output ⊥ and terminate) – we output

x̄ :=
1

T

(
T∑
t=1

xt

)
, (2)

i.e., the average of all the intermediate solutions xt computed by the oracle in each round. (Observe
that x̄ ∈ K by the fact that K is convex.) The resulting algorithm appears as Algorithm 3.

Algorithm 3 LP solving via multiplicative weight update method.
Initially, set w0

i ← 1, for all 1 ≤ i ≤ m
for t = 1, 2, ..., T do

Define pti :=
wt−1

i

W t−1 , for each 1 ≤ i ≤ m
Let xt be the output of the oracle on the input pt
if xt = ⊥ then

return ⊥
end if
Otherwise, wti ← wt−1i

(
1− η

ρ (bi −Aixt)
)
, for each 1 ≤ i ≤ m

end for
return x̄ = 1

T

(∑T
t=1 x

t
)

To get some intuition on why this algorithm works, notice that by our definition of the losses lti (see
(1)), the loss expert i is proportional to the extent to which the constraint i is satisfied. In particular, if
this constraints is violated then the expert experiences a gain in that round. On the other hand, if this
constraint is satisfied it suffers a positive loss.

At first, this might seem to be counter-intuitive. Why to penalize a constraint that is “doing well”?
To understand why this is the right thing to do, observe that this loss setup makes the weights wti of a
given expert becomes larger if the constraint is violated and become smaller otherwise. Consequently,
over time, the weight is shifted towards constraints that tend to be violated often. This, in turn, ensures
that these constraints are more pronounced in the convex combination pt passed to the oracle and thus
making it increasingly harder for the “feasible on average” solution xt output by the oracle to keep
violating them.
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The resulting dynamics is that even if most of the constraints get violated by the intermediate
solutions xt at some point, no constraint gets violated too many times. Therefore, once we take the
average x̄ (see (2)) of all these intermediate solutions, these violations “smoothen out” delivering a
solution that violates each constraint only slightly.

The exact bounds that one gets on the performance of Algorithm 3 are provided in the following
theorem.

Theorem 3 Let 0 ≤ ε ≤ 1
2 be an error parameter and let us consider an (θ, ρ)-oracle for P with θ ≥ ε

2 .
If after at most T = O

(
θρε−2 lnm

)
calls to that oracle the Algorithm 3 does not output ⊥ then the

solution x̄ satisfies
Ax̄ ≤ b+ ε~1.

In other words, the above theorem tells us that Algorithm 3 solves the ε-approximate feasibility
problem for P. (Note that the condition θ ≥ ε

2 is just a technical requirement, we can always satisfy it
by making θ (and, possibly, ρ) large enough.)

Conceptually, the above theorem tells us that solving the feasibility problem for a constraint set like
P to an arbitrary good accuracy can be reduced to solving this constraint set only “on average”. The
desired accuracy, i.e., ε, and the quality of our “feasible on average” solutions, i.e., the oracle width
ρ ≥ θ, impact solely the number of iterations that we will need to execute.

This general fact turns out to be very powerful and it is used in a number of areas besides optimization.
For instance, it is the key phenomenon behind the boosting technique in machine learning, and the hard-
cord set construction in circuit complexity.

Finally, observe that the bound on T in the Theorem 3 already hints on the key trade-off that
underlies the whole approach. The trade-off between the quality of the oracle and the number of calls
to that oracle made. After all, the larger the width ρ (and θ) is the easier to construct and faster the
corresponding oracle. On the other hand, if the value of ρ (and θ) is too large then the resulting large
number of oracle calls needed overshadows the gain from having the oracle be fast.

4.1 Proof of Theorem 3
In order to prove Theorem 3 we need to relate the quantities we care about, i.e., feasibility of intermediate
solutions xt and their average x̄, to the language of learning from expert advice framework, in which the
performance of the multiplicative weights update method is expressed (see Theorem 1).

We start by showing that the “feasibility on average” of all the oracle answers xt implies that the loss lt
of the multiplicative weight update algorithm in our learning from expert advice instance is non-negative
in each round t. To this end, notice that, by definition,

lt =

m∑
i=1

ptil
t
i

=

m∑
i=1

pti
ρ

(bi −Aixt)

=
1

ρ
((ρt)T b− (pt)TAxt)

≥ 0,

where the last inequality follows from the definition of the oracle (see Definition 2).
Now, let us fix some i. Our goal is to argue that

Aix̄ ≤ bi + ε, (3)

i.e., that the final solution x̄ satisfies the constraint i up to an additive error of ε. Clearly, once we prove
this, the ε-approximate feasibility of x̄ will follow.
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Observe that, by (1) and (2),

Li(T ) =

T∑
t=1

lTi =
1

ρ

T∑
t=1

(bi −Aixt) =
T

ρ
(bi −Aix̄).

So, to get (3) we just need to show that

Li(T ) =
T

ρ
(bi −Aix̄) ≥ −εT

ρ
,

i.e., that the average loss of expert i is at least − ε
ρ per round.

To get an intuition why we should expect that such a statement is possible to prove, recall that we
already know that the loss of the multiplicative weights update method L(T ) =

∑
t l
t is non-negative.

So, the fact that the multiplicative weight update method asymptotically recovers the loss of the best
expert (in particular, that of expert i), we should indeed expect that Li(T ) cannot be too far from being
non-negative either. We just need now to provide a quantitative analysis of this reasoning.

To this end, by our guarantee on the performance of the multiplicative weights update method
(Theorem 1), we have that

0 ≤ L(T ) ≤ Li(T ) + η

T∑
t=1

|lti |+
lnm

η

=

T∑
t=1

lti + η

T∑
t=1

|lti |+
lnm

η

= (1− η)

T∑
t=1

lti + 2η
∑
t: lti>0

lti +
lnm

η

=
1− η
ρ

T∑
t=1

(bi −Aixt) +
2η

ρ

∑
t: lti>0

(bi −Aixt) +
lnm

η

≤ 1− η
ρ

T∑
t=1

(bi −Aixt) +
2η

ρ
θT +

lnm

η
,

where we used the fact that, by definition of the oracle (Definition 2), bi−Aixt ≤ θ. Setting η = ε
8θ and

multiplying both sides by ρ
(1−η)T , gives us that

0 ≤ 1

T

T∑
t=1

(bi −Aixt) +
ε

4(1− η)
+

8θρ lnm

ε(1− η)T

≤ bi −Aix̄+
ε

2
+

16 · θρ lnm

εT
,

where we used the definition (2) of x̄ and the fact that (1− η) ≥ 1
2 since θ ≥ ε

2 .
Finally, taking T = 32·θρ lnm

ε2 , which is O( θρ lnmε2 ) as needed, we ensure that

0 ≤ bi −Aix̄+
ε

2
+

16 · θρ lnm

εT

≤ bi −Aix̄+
ε

2
+
ε

2
≤ bi −Aix̄+ ε.

Thus, indeed, x̄ satisfies constraint i up to an additive error of ε, and the theorem follows.

5 Back to the Maximum Flow Problem
Let us now apply the multiplicative weights update method–based approach we developed above to a
specific optimization question: the maximum flow problem. Recall that we formulated this problem as
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the following `∞-minimization question.

min ‖f‖∞
s.t. Bf = χs,t.

First, we need to translate this optimization problem into a feasibility question. Specifically, as
discussed in Section 3.1, if we have our guess F on the value F ∗ of the maximum flow, we want to be
able to check if F ≤ F ∗. Observe that answering this question boils down to checking feasibility of the
following set of constraints.

F(F ) : F · f ≤ ~1
−F · f ≤ ~1

f ∈ Fst,

where Fst = {f | Bf = χst} is the (convex) set of all the s-t flows of value 1. (Recall that the flow f can
have some coordinates fe be negative, this just corresponds to flowing |fe| units of flow in the direction
opposite to the edge e orientation.) So, relating this constraint set to our template constraint set P we
considered above, we have that K is Fst, the linear constraint matrix A is equal to

A =

[
F · I
−F · I

]
,

and the constraint vector b is simply an 2m-dimensional all-ones vector ~1.
The above formulation, even though a very natural one, is not the most convenient to work with.

So, instead, we will use the following alternative, “symmetrized” set of constraints.

F(F ) : F · y ≤ ~1
y ∈ Fst,

where Fst := {abs(f) | Bf = χst} and abs(f) is an m-dimensional vector defined as abs(f)e = |fe|. In
other words, Fst is the set of vectors that encode edge flow values (with their directions disregarded) of
some s-t flow of value 1.

In the light of this, our linear constraint matrix A is now simply the identity matrix scaled by F , i.e.,

A = F · I,

and b is an m-dimensional all-ones vector ~1. It is not hard to see that the feasibility problem for F(F )
is equivalent to the feasibility problem for F(F ).

Observe that, in principle, we need to also argue that Fst is a convex set. This can be shown to be
indeed the case, but would require a bit of work. Looking at our analysis of Algorithm 3, however, it is
not hard to see that what we need here is a slightly weaker property than convexity of Fst. Namely, all
we really need is just that if we have a sequence of flow value vectors yt with yt = abs(f t) for some unit
s-t flows f t and consider the “average” flow f̄ := 1

T

∑
t f

t then

F · abs(f̄) ≤ F · 1

T

∑
t

yt,

i.e., the edge flow value vector abs(f̄) of the average flow f̄ is upper bounded by the average of edge flow
value vectors of the individual flows f t. This follows easily from the convexity of | · | though. (Note that
we implicitly assume here that our oracle always provides the flow f t that gave rise to the flow value
vector yt, which will indeed be the case.)
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5.1 Shortest Path–based Oracle for the Maximum Flow Problem
Once we cast the maximum flow problem as the constraint set F(F ), we need to develop the last
remaining ingredient needed to apply our multiplicative weight update method–based approach to it:
the (θ, ρ)-oracle for F(F ).

Recall (see Definition 2) that, ideally, we want this oracle to be fast and, given a convex combination
p ∈ ∆m as an input, to either conclude that F(F ) is infeasible and return ⊥, or find a unit s-t flow
f ∈ Fst such that its edge flow value vector y = abs(f) ∈ Fst is “feasible on average”, i.e., that it is the
case that

0 ≥ pTAy − pT b =
∑
e

pe (F · ye − 1) , (4)

where pe is the weight that the input convex combination p puts on the constraint bounding the flow
value of edge e. Additionally, we want that the flow f does not violate any individual capacity constraints
by too much. That is, that

F · ye − 1 ∈ [−θ, ρ], (5)

for each edge e and as small θ and ρ, with θ ≤ ρ, as possible. In fact, as ye is always non-negative, we
know that we can always take θ = 1. Thus, we can focus on bounding ρ alone. (This observation was
one of the key motivations behind working with the formulation F(F ) instead of the formulation F(F ).
One can check that if we stuck with the formulation F(F ) then the value of θ would be close to the
value of ρ.)

It turns out that it is easy to devise an oracle for F(F ) using one of the most basic graph problems:
the shortest-path computations.

To make this precise, given the input convex combination p ∈ ∆m, consider our graph with edge
lengths given by p, i.e., the length le of the edge being pe. Let us now compute a shortest s-t path P
in this graph and define f̃ to be the flow that sends one unit of flow along this single path P . Observe
that, clearly, f̃ ∈ Fst and thus ỹ = abs(f̃) ∈ Fst. Also, we have that

pTAỹ − pT b =
∑
e

pe (F · ỹe − 1)

= F
∑
e∈P

peỹe −
∑
e

pe

= F · l(P )− |p|1,

where l(P ) is the length of the path P and |p|1 =
∑
e pe is simply the `1-norm of the vector p.

We want to argue now that if F ≤ F ∗ then l(P ) ≤ |p|1F . Observe that, by our derivation above, this
would mean that whenever F ≤ F ∗, the edge flow value vector ỹ output by our shortest-path oracle is
guaranteed to satisfy the “feasibility on average” condition (4). (So, in particular, if it turns out that
l(P ) > |p|1

F , we know that F > F ∗ and thus can safely return ⊥.)
To this end, let us assume that indeed F ≤ F ∗ and let f∗ be the maximum flow. Note that in our

formulation of the maximum flow problem, f∗ is an s-t flow of value 1 such that ‖f∗‖∞ = 1
F∗ . Therefore,

the total length l(f∗) of the flow f∗ wrt the lengths given by the weights p is at most

l(f∗) ≤
∑
e

pe|f∗e | ≤
|p|1
F ∗
≤ |p|1

F
,

where we used the fact that |f∗e | ≤ ‖f∗‖∞ ≤ 1
F∗ .

It has to be the case though that l(P ) ≤ l(f∗), as sending one unit of flow on the shortest path P is the
cheapest (wrt the lengths p) way of sending an unit of flow from s to t. Thus, indeed, l(P ) ≤ l(f∗) ≤ |p|1F ,
and our shortest path oracle always returns correct answers.

Also, since ỹ has its coordinates be either 0 or 1, we have that the width ρ of our shortest-path oracle
is equal to

ρ = F · 1− 1 = F − 1.
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Putting this all together, Theorem 3 allows us to conclude that calling our shortest path oracle at
most

T = O

(
θρ lnm

ε−2

)
= O

(
F lnm

ε−2

)
times provides us with an ε-approximate solution to the maximum flow problem. As each oracle call
corresponds to solving a shortest path question wrt non-negative edge lengths le = pe, it can each be
performed in only Õ(m) time, resulting in an ε-approximate maximum flow algorithm that runs in time

Õ
(
mFε−2

)
.

The fact that the running time of our algorithm depends on the value F of the flow we want to route
is hardly desirable. In fact, technically, this algorithm is not even polynomial time! (By performing a
different and more careful analysis, one could actually bound this algorithm’s running time by Õ(m2ε−2),
even if capacities were non-uniform.)

The key takeaway message here, however, is that the multiplicative weight update framework gave
us a simple and principled way of reducing a difficult graph problem, that is the maximum flow problem,
to a simple graph problem, that is the shortest path computations.1

Finally, one should keep in mind that the most crucial aspect that we need to tackle when applying
this multiplicative weights update method–based approach is the trade off between the running time of
our oracle and the quality of answers it delivers, i.e., its width ρ. In our maximum flow scenario above,
we had a very simple and fast oracle, but the width it delivered was poor. So, to get a better maximum
flow algorithm we will need to construct a different, stronger oracle that, hopefully, will not be too costly
to run.

1In the context of the maximum flow problem, this kind of connection was already unearthed by the augmenting path
framework. But, here, we derived it in a natural way via fairly general considerations.
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