
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 October 27, 2015

Lecture 11
Lecturer: Aleksander Mądry Scribe: Slobodan Mitrović

1 Overview
In this lecture, we continue our study of the oracle based approach to solving the maximum flow problem.
We will use electrical flows to develop a new oracle that improves upon the width of the shortest path–
based oracle we considered before.

2 Recap of the Last Lecture
Last time, we set up a general framework for approximately solving a decision LP problem P defined as
follows

P :Ax ≤ b
x ∈ K.

where A ∈ Rm×n is a constraint matrix, b ∈ Rm, and K ⊂ Rn is a certain convex set.
This framework assumes the existence of a (θ, ρ)-oracle, for some 0 ≤ θ ≤ ρ, where given a point p

on the simplex ∆m the oracle:

(i) If P is feasible, outputs a point x̃ ∈ K such that: pTAx̃− pT b ≥ 0; and Aix̃− bi ∈ [−θ, ρ] whenever
1 ≤ i ≤ m.

(ii) Otherwise, outputs ⊥ or x̃ as above.

In other words, if P is feasible, the oracle outputs a point which satisfies the constraints “on average”,
where the average is taken wrt the input convex combination p. Parameter θ can be seen as the maximal
allowed slack and ρ the maximal allowed violation of any individual constraint. Observe that even if
x̃ /∈ K, it is possible that x̃ satisfies the constraints on average, and gets output by the oracle.

After introducing this notion of (θ, ρ)-oracle we proved the following theorem.

Theorem 1 Consider a (θ, ρ)-oracle for the feasibility problem P. For any error parameter 0 < ε ≤ 1
2 ,

as long as θ ≥ ε
2 , there is an algorithm that after O(θρε−2 lnm) oracle calls outputs a point x̄ that

satisfies
Ax̄ ≤ b+ ε~1,

or ⊥ if P is not feasible.

So, whenever we are able to construct a (θ, ρ)-oracle we can use it as a black-box to approximately solve
the feasibility problem P.

2.1 Solving the Maximum Flow Problem with (θ, ρ)-oracles
We then showed how to apply this framework to the maximum flow problem. More precisely, given a
scalar-parameter F we have defined the following feasibility problem

F̄(F) :Fy ≤ ~1
y ∈ F̄st,

1

where F̄st := {abs(f) | Bf = χst}, and abs(f) is an m-dimensional vector defined as abs(f)e = |fe|.
The parameter F is our guess on the value F ? of a maximum flow. (So, we want to decide if F ≤ F ?,
to apply the binary search strategy.)

Recall that in our framework the set F̄st in F̄(F) that corresponds to the set K in P should be convex.
One can prove that F̄st is indeed convex, but this would require some work. However, if we analyze how
convexity of K is used in the proof of Theorem 1, we can see that we only need a weaker guarantee in
our case. More precisely, we only need to show that from the fact that 1

T

∑T
t=1 y

t ≤ (1 + ε)~1, i.e. that
the average of the edge-flow vectors yt is ε-approximately feasible, where each yt = abs((f t)) for some
unit s-t flows f t, it follows that the edge-flow vector ȳ = abs(f̄) corresponding to the average f̄ of all
the flows f t is also ε-approximately feasible. This is immediately implied by the convexity of the | · |
function though. That is, for any coordinate e,

ȳe =

∣∣∣∣∣ 1

T

T∑
t=1

f te

∣∣∣∣∣ ≤ 1

T

T∑
t=1

|f te| =
1

T

T∑
t=1

yte ≤ 1 + ε.

(Note that we implicitly assume here that our oracle provides the corresponding flow vector f t along
with each edge-flow vector yt.)

3 The Shortest Path–based Oracle for F̄(F)

Our goal now is to design a (θ, ρ)-oracle for the problem F̄(F). Rewriting the definition of that oracle
in the language of our max flow formulation, we want, given an input p ∈ ∆m:

(i) If F ≤ F ?, output f such that∑
e

(pe(F |fe| − 1)) =
∑
e

(pe(Fye − 1)) ≤ 0, (1)

and
F |fe| − 1 = Fye − 1 ∈ [θ, ρ],∀e. (2)

(ii) Otherwise, i.e. if F > F ?, output ⊥ or f as above.

Observe that since ye = |fe| ≥ 0 and F ≥ 0, we have that Fye − 1 ≥ −1 and thus setting θ = 1 satisfies
the condition (2) regardless of the designed oracle. So, we only have to analyze the width ρ and to care
about the condition (1). Also, the latter condition can be rewritten as

pT y ≤ ‖p‖1
F

=
1

F
. (3)

Now, last time, we proposed and analyzed an oracle for F̄(F) that was based on the shortest-path
computations. The motivation here was that the optimization problem solved in the shortest path
problem is reminiscent of the one that the maximum flow problem solves. More precisely, recall that the
(unit-capacity) maximum flow problem corresponds to performing the following optimization.

min ‖f‖∞
Bf = χst

On the other hand, shortest paths solve the optimization question of the form:

min ‖Pf‖1
Bf = χst,

where P is a diagonal m-by-m matrix with each diagonal entry Pee = pe equal to the length pe of the
edge.

2

So, the feasibility set over which both problems are optimizing are exactly the same. The only
difference is the norm they are trying to minimize. For the maximum flow problem, it is the `∞-norm,
while for the shortest path problem it is the `1-norm.

Building on this similarity, we design an oracle OSP for the maximum flow problem that simply
performs shortest path computations wrt to the lengths given by the convex combination p. More
precisely, the oracle OSP , given p ∈ ∆m, computes a shortest path f̂ = arg minBf=χst

‖Pf‖1 (note that
wlog we can assume that f is supported on a single shortest path) and

(i) if pT ŷ ≤ 1+ε
F , it returns f̂ , where ŷ = abs(f̂);

(ii) otherwise, it returns ⊥.

Clearly, if F̄(F) is not feasible, i.e., if F > F ? then the oracle is allowed to return a flow or ⊥ and
hence it is always correct. So, we just need to focus on the case of F ≤ F ? and argue that the oracle
OSP always returns a valid solution in that case or, equivalently, that pT ŷ ≤ 1+ε

F then. We prove this is
the lemma below.

Lemma 2 If F ≤ F ?, then OSP returns a flow f̂ such that pT ŷ ≤ 1+ε
F .

Proof Observe that
pT ŷ = |P f̂ |1.

So, all we need to do here is to argue that the optimal objective value of the shortest path optimization
problem is at most 1+ε

F . For that it suffices to simply exhibit a flow f ′ such that Bf ′ = χst and
‖Pf ′‖1 ≤ 1+ε

F .
To this end, let us set f ′ := f? to be a maximum flow, i.e. a flow such that ‖f?‖∞ ≤ 1

F? ≤ 1
F . Then,

we have
pT y? = ‖Pf?‖1 =

∑
e

pe|f?e | ≤
∑
e

pe
1

F
=
‖p‖1
F

=
1

F
≤ 1+ε

F ,

as desired.

To complete the analysis, it remains to bound the width ρ of the oracle OSP . As wlog we can
assume that this oracle computes a single shortest s-t path, we have that |f̂e| ∈ {0, 1}, and hence
F |f̂e|−1 ∈ {−1, F −1}. Therefore, ρ = F −1 and, from Theorem 1, we know that we need O(Fε−2 lnm)
oracle calls to compute our approximate solution to the maximum flow problem. Each oracle call can
be implemented in Õ(m) time, so to solve the problem F̄(F) we need a total Õ(mFε−2) time.

4 Beyond the Width of Θ(F)

As we have seen, the shortest path oracle has width of F−1 and the resulting running time is Õ(mFε−2),
which is hardly impressive (and not even polynomial-time). Is there perhaps some other oracle that has
asymptotically smaller width?

We have chosen the shortest path oracle as it is `1-minimization over the same set of constraints as
the maximum flow optimization. Electrical flow is yet another problem with this property. Specifically,
while the maximum flow corresponds to l∞ minimization over the space of unit s-t flows, electrical flows
corresponds to `2-minimization over that set. In this section, we will design an oracle based on the
electrical flow computation and discuss its efficiency.

4.1 Electrical Flow Based Oracle
For a given vector p and its corresponding diagonal matrix P , the electrical flow minimization is formu-
lated as follows

min ‖P 1/2f‖22
Bf = χst,

3

where as before P is a diagonal matrix such that Pe,e = pe. Matrix P represents now the resistances.
Let OEF be an oracle that given a point p ∈ ∆m computes the electrical flow f̃ and returns:

(i) the flow vector f̃ , if ‖P f̃‖1 ≤ 1+ε
F ; and

(ii) ⊥ otherwise.

Now, we would like to argue that such an oracle is correct. More precisely, as in Lemma 2 we are going
to show that OEF returns a flow whenever F ≤ F ?.
Lemma 3 If F ≤ F ?, then OEF returns a flow f̃ such that pT ỹ ≤ 1+ε

F .

Proof Let us first make the following observation. Assume that

‖P 1/2f̃‖22 ≤ (1+ε)2

F 2 . (4)

Then, using Cauchy-Schwarz inequality (4) implies

‖P f̃‖1 =
∑
e

pe|f̃e|

=
∑
e

√
pe

(√
pe|f̃e|

)
≤

√∑
e

pe
∑
e

pe

(
f̃e

)2
=

√
‖P 1/2f̃‖22

≤ 1 + ε

F
,

which is the bound we are aiming to prove. Therefore, as pT ỹ = ‖P f̃‖1 and as OEF minimizes the flow
energy, if we exhibit a flow f ′ such that its energy with respect to p is at most (1+ε)2

F 2 it would imply
that (4) holds and we are done. As before, consider f ′ to be an optimal flow, i.e. f ′ := f?. Then, we
can bound the energy of f? as follows

‖P 1/2f?‖22 =
∑
e

pe (f?e)
2

≤
∑
e

pe

(F ?)
2

≤
∑
e

pe
F 2

=
1

F 2

≤ (1 + ε)2

F 2
.

And hence the lemma follows.

So, we can use OEF to solve the maximum flow problem. However, unfortunately, the width of the
described oracle is still F − 1.1 To see that, consider the following example. Let H be an s-t path,
and let p be defined in such a way that pe = 0 for every edge e of H, and pe > 0 otherwise. In such
a case, OEF will put all the flow on H inquiring the width ρ = F − 1, just like in the case of oracle
OSP . However, such a case is very special and we might hope that it will never occur. But, showing
that formally could be a quite challenging task. So, instead of hoping nothing bad will happen, we will
apply a general approach for handling such undesired behaviors.

1Notice that F ?, and hence F as well, can be of the order of n. So, in some cases saying that the oracle width is F is
equivalent to saying that the width equals n, or equals m in the sparse graph case.

4

4.2 Regularization
When dealing with optimization problems, as we are here, an idea widely used in machine learning and
optimization is regularization. This ideas corresponds to slightly altering the objective function we want
to optimize by adding a term to it that penalizes the “unwanted” solutions.

In the case of the electrical flow based oracle, given a point p ∈ ∆m we will apply regularization in
the following way. Instead of computing the flow for the resistance vector p, the oracle will compute the
electrical flow for the resistances given by r := p + ε

2m
~1. We use OEFR to refer to that oracle. But,

can we still guarantee that OEFR computes a flow when F ≤ F ?? Yes, we can, as the following lemma
shows.

Lemma 4 If F ≤ F ?, then given point p ∈ ∆m oracle OEFR returns a flow f̃ such that pT ỹ ≤ 1+ε
F .

Proof Similarly to the proof of Lemma 3, to prove this lemma we can try to exhibit a flow f ′ such that
‖P 1/2f ′‖22 ≤ (1+ε)2

F 2 . However, OEFR outputs the electrical flow for the resistance vector r but not for
p. Nevertheless, observe that ‖P 1/2f̃‖22 ≤ ‖R1/2f̃‖22, where R is a diagonal matrix such that Re,e = re.
So, if we find a flow f ′ such that ‖R1/2f ′‖22 ≤ (1+ε)2

F 2 the lemma will follow for the same reasons as in
the proof of Lemma 3.

Yet again, consider f ′ := f?. Then, we have

‖R1/2f?‖22 =
∑
e

(
pe +

ε

2m

)
(f?e)

2

≤
∑
e

pe + ε
2m

F 2

=

∑
e pe +

∑
e

ε
2m

F 2

=
1 + ε

2

F 2
,

which concludes the proof.

So, even after applying regularization our oracle is correct (although now only ε-approximately so).
However, what is its width? To answer that question, fix any edge e. We will show that |f̃e| ∈ O(

√
m
ε) 1

F ,
which in turn implies that the width of OEFR is in O(

√
m
ε). To that end, we upper bound the energy

contribution of e by the total flow energy, i.e.

re

(
f̃e

)2
≤

∑
e

re

(
f̃e

)2
≤ 1 + ε

2

F 2
. (5)

Next, observe that

re

(
f̃e

)2
=

(
pe + ε

2m

) (
f̃e

)2
≥ ε

2m

(
f̃e

)2
. (6)

Putting together (5) and (6) we get

|f̃e| ≤

√
2
(
1 + ε

2

)
εF 2

m ∈ O
(√

m
ε

)
1
F ,

as advertised. So, we can state the following theorem.

Theorem 5 For any ε > 0, there is an algorithm that outputs a (1 + ε)-approximation of the maximum
flow problem after Õ

(√
m
ε ε
−2) oracle OEFR calls, and has the total running time of Õ

(
m3/2ε−5/2

)
.

5

4.3 The Width Analysis of OEFR is Tight
We have just shown that by applying regularization we are able to substantially improve the width of
our oracle. However, can we improve it even further by providing a more careful analysis? That is, is
the obtained width an artifact of our proofs and in fact the width of OEFR is o(

√
m
ε)?

Unfortunately, the example in Figure 1 shows that our analysis is tight. Namely, a unit flow in

b

b

b b
b

b
bb b bb

. . .

. . .

...
√
n paths each of length

√
n

s t

Figure 1: An example that shows our analysis of the width of OEFR is tight.

the graph in Figure 1 that minimizes the energy sends 1/2 of the flow along the unique s-t edges, and
uniformly distributes the remaining 1/2 of the flow over the

√
n paths. On the other hand, the maximal

s-t flow in the graph in the figure is
√
n+1, so for F =

√
n ≤ F ? and uniform p the oracle OEFR returns

a flow that violates the constraints by as much as Θ(
√
n) and hence its width is Θ(

√
n). So, from this

we can conclude that at least in the case of sparse graphs, i.e. m = Õ(n), our analysis of the width of
OEFR is tight. As a remark, what happens in our proof is that the energy of the only s-t edge matches
most of the energy of the flow (cf. (5)).

4.4 Towards a Reduced Width by Altering the Input Graph
Although the instance in Figure 1 shows the width of OEFR is Θ(

√
m), we can very easily change that

instance and obtain a much nicer one. Namely, if we remove the shortcutting s-t edge, all of a sudden
we get a graph in which the electrical and the maximum flow are exactly the same, in big contrast to the
huge difference between these two objects when the s-t edge was present! At the same time, the value
of the maximum flow is negligibly affected by the adjustment. Driven by this example and observation,
in the next lectures we will develop a more general approach of altering the input graph which in turn
will enable us to improve upon the width obtained by OEFR.

6

	Overview
	Recap of the Last Lecture
	Solving the Maximum Flow Problem with (,)-oracles

	The Shortest Path–based Oracle for (F)
	Beyond the Width of (F)
	Electrical Flow Based Oracle
	Regularization
	The Width Analysis of OEFR is Tight
	Towards a Reduced Width by Altering the Input Graph

