
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 October 29, 2015

Lecture 12
Lecturer: Aleksander Mądry Scribe: Amy Ousterhout

1 Overview
In this lecture we continue our exploration of the multiplicative weights update method–based approach
to solving the maximum flow problem. In particular, we will improve upon our previous simple electrical
flow–based oracle by removing from the graph the edges that cause the electrical flow to deviate signifi-
cantly from the maximum flow. We will then argue that this leads to a faster maximum flow algorithm
that constitutes an improvement both over the Õ(m3/2ε−5/2)-time algorithm we obtained before using
the standard regularized electrical flow–based oracle as well as over the best bound achieved by the
algorithmic graph theory community for this problem in the last 40 years.

2 Recap of the Last Lecture
In the previous lecture we developed an electrical flow–based oracle for our multiplicative weights update
method–based framework for solving the maximum flow problem. More precisely, applying binary search
for the value F ∗ of the maximum flow enabled us to reduce maximum flow computations to solving the
following feasibility problem F̄(F) that corresponds to determining if F ≤ F ∗:

F̄(F) :Fy ≤ ~1
y ∈ F̄st.

Here, F̄st := {abs(f) | Bf = χst} is the set of edge flow vectors of unit s-t flows, and abs(f) is an
m-dimensional vector defined as abs(f)e = |fe|.

Our goal then was to design a (θ, ρ)-oracle for this feasibility problem F̄(F). That is, we wanted to
design an algorithm that, given an input p ∈ ∆m,

(i) if F ≤ F ∗, i.e., if F̄(F) is feasible, returns a flow f̃ with Bf̃ = χst such that

|P f̃ |1 =
∑
e

pe|f̃e| ≤
1 + ε

F
(1)

and
F |f̃e| − 1 ∈ [−θ, ρ], (2)

for all edges e, where P is an m-by-m diagonal matrix with Pe,e := pe, for each edge e.

(ii) otherwise, i.e. if F > F ∗, returns ⊥ or a flow f̃ as above.

Intuitively, condition (1) indicates that the flow f̃ is feasible on average, while the condition (2)
ensures that each individual constraint neither has a too large slack (≥ −θ) nor is violated by too much
(≤ ρ). We also observed that the fact that |f̃e| is always non-negative implies that θ can always be taken
to be equal to 1.

As we have shown before, once a (θ, ρ)-oracle such as above is designed we can use it – in a black-box
manner – to get an (1− ε)-approximate maximum flow algorithm.

Theorem 1 For any ε > 0, given an (θ, ρ)-oracle O we can compute a (1 − ε)-approximation to the
maximum flow in time O(ρ lnm

ε2) · τ (O), where τ(O) is the running time of the oracle O.
Looking at the above theorem, we see that the parameter ρ – often called the width of the oracle O

– is the key parameter that determines the number of oracle calls in the resulting algorithm. Thus our
aim is to get this value to be as small as possible, while having the oracle be still fast.

1

2.1 An Electrical Flow-Based Oracle
Next, we considered constructing a (θ, ρ)-oracle that was based on electrical flow computations. Basically,
it output an electrical flow wrt resistances r given by the input p ∈ ∆m. To our disappointment, this
oracle turned out to have a width of ρ = F − 1, which is the maximal possible and far from satisfactory.

We noticed though that this very bad width behavior happens only for very degenerate input convex
combinations p. Consequently, we modified our oracle to make it regularize the input convex combination
p before computing an electrical flow wrt it. This regularization corresponded to adding a mix-in of a
uniform distribution. More precisely, our regularized electrical flow based oracleOER worked as described
in Algorithm 1.

Algorithm 1 Regularized electrical flow–based oracle OER
Input: A convex combination p ∈ ∆m

Set resistances r̂e := pe + ε
2m , for each edge e

Compute a unit electrical s-t-flow f̂ wrt r′ . Note that Bf̂ = χst by definition.
if |P f̂ |1 ≤ (1+ ε

2)

F then
Return f̂

else
Return ⊥

end if

We then proved that not only this algorithm is a (1, ρ)-oracle for the feasibility problem F̄(F) but
also that its width ρ is at most

ρ = O

(√
m

ε

)
. (3)

Roughly speaking, we established first a certain absolute upper bound on the total energy of the flow
f̂ . Then, we argued that should a flow on some edge e violate the upper bound (3), the contribution
of that edge e to the total energy of the flow f̂ would be greater than our absolute bound on the total
energy of f̂ , which is a contradiction.

In the light of this, as we can perform electrical flow computations in nearly-linear time, i.e., τ(OER) =

Õ(m), Theorem 1 allows us to conclude that the resulting (1− ε)-approximate maximum flow algorithm
runs in time

Õ
(
m

3
2 ε−

5
2

)
.

For sparse graphs, i.e., when m = O(n), this bound matches the best known and over forty years old
running time bounds in algorithmic graph theory. (Although these bounds are for exact computations,
no faster algorithms were known for (1− ε)-approximation regime either.)

3 Going Beyond the Õ
(
m

3
2

)
Running Time Bound

Our main goal for today is to improve over the Õ
(
m

3
2 ε−

5
2

)
running time bound we obtained in the last

lecture and thus to break the long-standing running time barrier of O(n
3
2) for sparse graphs.

Given the developments in the last lecture, a natural first step in this quest is to try to see if the
bound (3) on the width of our regularized electrical flow–based oracle OER (see Algorithm 1) can be
improved. Unfortunately, as we already discussed last time, this is not the case and, for example, in the
graph presented in Figure 1 this bound is essentially tight.

Recall that in this example the problem was that the single “shortcutting” between s and t has its
effective resistance be comparable to the effective resistance of the whole system of ≈ √n parallel ≈ √n-
length paths. (All of this is in the basic case of having all the resistances be uniform.) So, as F ∗ ≈ √n in
this graph, this single edge is getting roughly the half of the total electrical flow between s and t making
the width to be ≈ F∗

2 ≈ Ω(
√
n), which is Ω(

√
m) if the graph is sparse. We therefore need to modify

our implementation of the oracle OER from Algorithm 1 in some substantial manner.

2

b

b

b b
b

b
bb b bb

. . .

. . .

...
√
n paths each of length

√
n

s t

Figure 1: An example that shows our bound (3) on the width of the oracle OER (Algorithm 1) is
essentially tight.

It turns out that, even though the example presented in Figure 1 was the worst-case example for our
current oracle, it also provides us with an idea on how to remedy the corresponding shortcomings of that
oracle. Namely, observe that if we removed the shortcutting s-t edge from that graph then the behavior
of the electrical s-t-flow would improve dramatically. In fact, the electrical s-t-flow would exactly match
the maximum s-t flow in that graph.

Also, this removal of an edge would not impact the value of the maximum flow by too much. After
all, the total maximum flow value F ∗ is approximately

√
n there, so removing one edge would amount

to a reduction by a factor of the order of (1− 1√
n

), which is completely acceptable for us.
So, we see that a simple removal of the offending edge led to a much better behavior of our oracle in

the case of this particular graph. This gives rise to a very tempting idea: maybe this kind of strategy
can work for general graphs too?

As we will show today, this is indeed the case! Specifically, let us consider the following improved
oracle Ô that appears as Algorithm 2.

Algorithm 2 Regularized electrical flow–based oracle Ô
Input: A convex combination p ∈ ∆m

Set resistances r̂e := pe + ε
2m , for each edge e

flow (re-)computation: Compute a unit electrical s-t-flow f̂ wrt r′ in (the current version of) G
if |P f̂ |1 ≤ (1+ε)

F then
if Exists ē such that F · |f̂ē| − 1 > ρ′ then . We intend ρ′ � O

(√
m
ε

)
Remove the edge ē from G (permanently) and go back to flow (re-)computation step

else
Return f̂

end if
else

Return ⊥
end if

Note that, in contrast to the Algorithm 1, we have a slightly less stringent check on the value of |P f̂ |1
here. That is, we check if |P f̂ |1 ≤ (1+ε)

F instead of checking if |P f̂ |1 ≤ (1+ ε
2)

F as we did before. (This
less stringent check is still valid from the point of view of the requirements we have in our definition of
the (θ, ρ)-oracle above.)

Intuitively, this oracle tries to repeatedly remove edges from the graph G that cause the electrical
s-t flow behavior to be very different to the maximum s-t flow behavior. In particular, as we will see
later, the parameter ρ′ corresponds to the width of the oracle that we intend to “force”. (Note that, in a
sense, width is a measure of discrepancy in electrical flow and maximum flow behavior.) Naturally, we
want ρ′ � O

(√
m
ε

)
, i.e., we want this width to be much smaller than the width bound 3 we established

before.
Observe that if we knew that the above oracle always ends up returning a flow f̂ then, by its

construction, its width would indeed be ρ′. So, the key question is: how small ρ′ can we set to ensure
that not only it always returns f̂ when it should, i.e., when F ≤ F ∗, but also that the number of flow

3

recomputations is not too high either?
Clearly, there is a tension here. If we set ρ′ to be very small then most likely the oracle will keep

removing edges from G and eventually fail. On the other hand, setting ρ′ to be too large might result in
an unacceptably large width bound. In particular, we know that setting ρ′ = ρ, as in bound (3), would
make this oracle be correct and never need to recompute the flow – but by doing so we would give up
on obtaining any improvement.

We thus proceed to analysis of this problem. This analysis divides into two parts: arguing the
correctness of that oracle, and bounding its execution time. We will address these points in Sections 3.1
and 3.2, respectively.

3.1 Correctness of Our Oracle
Observe that to prove the correctness of our oracle we need to argue that whenever F ≤ F ∗ then

|P f̂ |1 ≤
(1 + ε)

F
. (4)

To this end, recall that in our analysis of the previous electrical flow–based oracle OER (see Algorithm
1) we actually proved an analogous – in fact, even slightly stronger – statement. That is, we showed
that whenever F ≤ F ∗ it is the case that

|P f̂ |1 ≤
(1 + ε

2)

F
.

The proof of that latter statement relied on the following lemma that ties the `1-norm |P f̂ |1 of the
electrical flow f̂ to the `2-norm ‖R̂

1
2 f‖22 – or, equivalently, the energy – of any unit s-t flow f . (Here, R̂

is an m-by-m diagonal matrix with each diagonal entry R̂ee equal to r̂e = pe + ε
2m .)

Lemma 2 For any unit s-t flow f , i.e., any f such that Bf = χst, we have that

|P f̂ |1 ≤ ‖R̂
1
2 f‖2.

Proof Note that by the Cauchy-Schwarz inequality we have that

|P f̂ |1 ≤
√
‖p 1

2 ‖22 · ‖P
1
2 f̂‖22 ≤ ‖P

1
2 f̂‖2 ≤ ‖R̂

1
2 f̂‖2,

where we used the fact that ‖p 1
2 ‖22 =

∑
e pe = 1 and that pe ≤ r̂e, for all e.

Also, by definition, f̂ is the minimizer of the energy ‖R̂ 1
2 f‖22 over all the unit s-t flows f . We thus

have that
|P f̂ |21 ≤ ‖R̂

1
2 f̂‖22 ≤ ‖R̂

1
2 f‖22

for any such unit s-t flow f . Taking a square root of both sides gives us the statement of the lemma.

Armed with this lemma, we took f to be simply the maximum s-t flow f∗ in G and concluded that,
if F ≤ F ∗,

|P f̂ |1 ≤ ‖R̂
1
2 f∗‖2 ≤

√∑
e

r̂e(f∗e)2 ≤
√∑

e

r̂e
(F ∗)2

≤
√

(1 + ε
2)

F ∗
≤
√

(1 + ε
2)

F
≤ (1 + ε

2)

F
,

where we also used the fact that, by definition, |f∗e | ≤ ‖f∗‖∞ ≤ 1
F∗ , for each edge e, and that∑

e r̂e = 1 + ε
2 . This established the correctness of the oracle OER.

Unfortunately, the above proof does not directly apply to our new oracle. The reason is that now,
whenever we compute the electrical flow f̂ , we do that in a version of G that might be missing some of
the original edges. In particular, the max flow f∗ might not be a valid unit s-t flow in that new version
of G. In fact, it is not hard to see that, for example, if we removed from G all the edges of some s-t cut
then the correctness bound (4) would not hold.

To address this problem we will impose in our analysis an invariant that ensures that we never remove
too many edges.

4

Invariant 1 The set H of permanently removed edges is never larger than ε
3F , i.e., |H| ≤ ε

3F .

Now, observe that even though the above invariant does not necessarily prevent f∗ from becoming
an invalid s-t flow, it ensures that, whenever F ≤ F ∗, the “damage” made to f∗ by edge removal is not
too large. Further, this damage can be “fixed” while not impacting the properties of f∗ that we care
about here.

Specifically, let us consider f̂∗ to be the maximum flow f∗ after we remove from it all the flow-paths
that contain edges from H. Clearly, f̂∗ is a valid s-t flow in our new version of the graph. Also, by
Invariant 1, we know that the value v̂ of f̂∗ is at least

v̂ ≥ 1−
∑
e∈H
|f∗e | ≥ 1− |H|

F ∗
≥ 1− |H|

F
≥ 1− ε

3
.

Thus, if we apply Lemma 2 with f equal to f̂∗

v̂ , i.e., the flow f̂∗ rescaled to make it be a unit flow,
we obtain that

|P f̂ |1 ≤
1

v̂
‖R̂ 1

2 f̂∗‖2 ≤
1

v̂

√∑
e

r̂e(f̂∗e)2 ≤
√

(1 + ε
2)

v̂F ∗
≤
√

(1 + ε
2)

(1− ε
3)F

≤ (1 + ε)

F
, (5)

which is exactly the desired condition (4). So, our new oracle is indeed correct, provided the Invariant
1 is never violated.

3.2 Bounding the Running Time of Our Oracle
Once we established that our oracle is correct (as long as the Invariant 1 holds), we can focus on finding
the setting of our parameter ρ′ so that this invariant is indeed never violated and the total oracle
execution time, which is dominated by the time needed for all the electrical flow recomputations, is
minimized. More precisely, we want to establish the following bound.

Lemma 3 Provided Invariant 1 holds, during a single oracle call we have at most

T ′ = O

(
m

(ρ′)2ε
log

m

ε

)
electrical flow recomputations.

Observe that in our oracle each removal of an edge from G triggers an electrical flow recomputation.
So, once we prove the above lemma then it suffices to choose ρ′ large enough so that

ε

3
F ≥ ε

3
ρ′ ≥ T ′ = O

(
m

(ρ′)2ε
log

m

ε

)
(6)

to ensure that Invariant 1 is always preserved. (Here, we used the fact that ρ′ ≤ F , as otherwise we
always have F · |f̂e| − 1 < ρ′ and thus there is no need for electrical flow recomputations in the first
place.)

Consequently, rearranging the terms in (6) tells us that we should set ρ′ to be

ρ′ = Θ

((
m log m

ε

ε2

) 1
3

)
(7)

and the resulting running time of the oracle becomes, by Lemma 3,

Õ (mT ′) = Õ
(
m

4
3 ε−

2
3

)
. (8)

5

3.3 Proof of Lemma 3
The proof of Lemma 3 is a potential-based argument. Specifically, we define E(H) to be the energy of
a unit s-t flow wrt resistances r̂ in the graph G with the edge set H removed. It is not hard to see that
the following upper and lower bounds on E(·) hold.

Fact 4 Provided Invariant 1 holds, i.e., provided |H| ≤ ε
3F , we have that

E(∅) ≥ ε

2m2

E(H) ≤ (1 + ε)2

F 2
≤ 2.

Roughly speaking, the lower bound above follows from the fact that r̂e ≥ ε
2m and noticing that in

the “worst” case all (at most m) edges of G are parallel edges joining s and t. The upper bound follows
directly from the calculations in (5). (Note that, in principle, these calculations assumed that F ≤ F ∗.
However, if the resulting upper bound on energy becomes violated at any point then we know that
F > F ∗ and can just stop and return ⊥.)

Now, the key driver of our analysis will be a direct connection between removal of edges and the
resulting change in the energy E(·). It is not hard to see that such removal always results in the energy
increase. However, one can make this statement quantitative and in the next problem set we will prove
the following lemma.

Lemma 5 Let f̂ be a unit electrical s-t flow f̂ wrt resistances r̂ in the graph G with the edges in H
removed. If ē is an edge in G that contributes at least a δ-fraction of energy of f̂ , i.e., r̂ēf̂2

ē ≥ δ
∑
e r̂ef̂

2
e =

δE(H) then
E(H ∪ {ē}) ≥ (1 + δ) · E(H).

So, the larger contribution of an edge to the total energy the greater is the increase in the energy
after this edge’s removal. The rough intuition for this phenomena stems from the fact that electrical flow
computations correspond to energy minimization and that this is essentially `2-minimization. As `2-norm
tends to penalize any non-uniformity in contributions of the individual coordinates – and this penalty
increases non-linearly with the extent of that non-uniformity – having a single edge with a significant
contribution to the minimized `2-norm is pretty costly. This, in turn, means that if our routing still
relies in large part on that single edge, this edge must be very crucial for making the whole flow be
“energy efficient” and without it the only routings that remain are much more expensive energy-wise.

Finally, it turns out that the fact that our oracle removes only edges that have a large flow in f̂
implies that each one of these edges has a sizable contribution to the energy. This is made precise in the
following lemma.

Lemma 6 As long as Invariant 1 holds, if an edge ē is such that F |f̂ē| − 1 > ρ′ then it contributes at
least ∆-fraction of the total energy of the flow f̂ , where

∆ ≥ Ω

(
ε · (ρ′)2

m

)
.

Proof Observe that the contribution of the edge ē to the energy can be lower bounded as

r̂ēf̂
2
ē ≥

ε

2m
f̂2
ē >

ε

2m

(
1 + ρ′

F

)2

≥ ε

2m

(
ρ′

F

)2

. (9)

On the other hand, from Fact 4 we know that the energy of the flow f̂ is at most (1+ε)2

F 2 . Combining
this with the above bound (9) on the contribution of ē, we get that

∆ ≥
ε

2m

(
ρ′

F

)2

(1+ε)2

F 2

=
ε (ρ′)

2

2(1 + ε)2m
= Ω

(
ε(ρ′)2

m

)
,

6

as desired.

We can now put Fact 4 and Lemmas 5 and 6 together and note that if H is the set of edges removed
after T ′ electrical flow (re-)computations then

E (H) ≥ (1 + ∆)
|H| E (∅) ≥ (1 + ∆)

T ′ ε

2m2
≥ exp

(
∆T ′

2

)
ε

2m2
,

where we used the fact that (1 + x) ≥ exp(x2), for x ≤ 1
2 .

On the other hand, by Fact 4, we know that E (H) ≤ 2, which allows us to conclude that

exp

(
∆T ′

2

)
ε

2m2
≤ E (H) ≤ 2

and thus, by taking the natural logarithms of both sides and rearranging the terms, we can conclude
that the number of edge removals T ′ is at most

T ′ ≤ 2

∆
ln

(
4m2

ε

)
= O

(
m

ε(ρ′)2
ln
m

ε

)
,

which is exactly the bound we wanted to obtained. Lemma 3 follows.

3.4 Running Time of the Resulting Maximum Flow Algorithm
The above analysis allows us to conclude that our new oracle is correct and has a width of at most ρ′,
where, by (7),

ρ′ = Θ

((
m log m

ε

ε2

) 1
3

)
.

Also, the running time τ of a single call to that oracle – which is dominated by the time needed to
perform all the electrical flow recomputations triggered – is, by (8), at most

τ ≤ Õ
(
m

4
3 ε−

2
3

)
.

By Theorem 1, this immediately implies an (1− ε)-approximate maximum flow algorithm that runs
in time

Õ
(
τρ′ε−2

)
= Õ

(
m

5
3 ε−

10
3

)
.

Observe that this running time bound is much worse than the Õ(m
3
2 ε−5/2) bound we got previously,

with a lot less effort, by simply using the basic electrical flow–based oracle OER! What’s going on?
Fortunately, the above startling conclusion is not really accurate. Namely, it turns out that our

bound on the running time of a single oracle call, which essentially was a bound on T ′, i.e., the number
of electrical flow recomputations, can be made much stronger. It actually can be used to bound the total
number of electrical flow recomputations across all oracle calls.

We will not provide the formal reasoning here. However, the intuition is that the evolution of the
convex combinations p ∈ ∆m that are fed to the oracle in different rounds of our multiplicative weight
update method–based framework is fairly steady. As a result, our potential function, i.e., the energy
E (H), that we based our analysis of a single oracle call on does not change too much between oracle
calls either. (Note that we carry on the “memory” of our “improvements” of the graph’s electrical
flow vs. maximum flow behavior, i.e., the set of already removed edges H, from one oracle call to
another.) Consequently, our overall bound that relied on this potential function holds throughout the
whole execution.

All of this implies that the total running time overhead caused by the need to sometime recompute
electrical flow inside the oracle is at most

Õ
(
m

4
3 ε−

2
3

)
,

7

and, once this overhead was accounted for, we can think of each oracle call being executed without any
electrical flow recomputations and thus in time that is only nearly-linear in m. Therefore, by Theorem
1, the total running time of our algorithm will be at most

Õ
(
mρ′ε−2

)
+ Õ

(
m

4
3 ε−

2
3

)
≤ Õ

(
m

4
3 ε−

8
3

)
.

Note that for sparse graph this running time bound becomes Õ(n
4
3 ε−

8
3) and thus constitutes the first in

40 years improvement over the notorious O(n
3
2) running time barrier for (approximate) maximum flow

algorithms.

8

	Overview
	Recap of the Last Lecture
	An Electrical Flow-Based Oracle

	Going Beyond the O"0365O(m32) Running Time Bound
	Correctness of Our Oracle
	Bounding the Running Time of Our Oracle
	Proof of Lemma 3
	Running Time of the Resulting Maximum Flow Algorithm

