
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 November 3, 2015

Lecture 13
Lecturer: Aleksander Mądry Scribe: Mina Karzand

1 Overview
In this lecture, we will develop a variant of gradient descent method that works for any norm ‖ · ‖, as
opposed to only the `2-norm ‖ · ‖2. We will then apply this method, with the underlying norm being the
`∞-norm, to the maximum flow problem.

2 Recap of Previous Lectures
Over the last several lectures we were working on applying the multiplicative weights update–based
framework to the maximum flow problem. The key element there was designing an (θ, ρ)-oracle that,
roughly speaking, computes a very crude, “feasible on average” version of maximum flows. First, we
based this oracle on shortest path computations, which correspond to `1-norm minimization, but this
did not result in a spectacular running time improvement. Basically, the width ρ of the resulting oracle,
which is the main measure of the “quality” of the oracle, was as large as F ∗ – the value of the maximum
flow, making the running time of the final algorithm be

Õ
(
mρε−2

)
= Õ

(
mF ∗ε−2

)
= Õ

(
mnε−2

)
.

(Note that in unit-capacity graphs F ∗ can be at most n and, in principle, this bound is fairly tight.)
To obtain a better running time, we resorted to an oracle that is based on electrical flow computations,

which correspond to `2-norm minimization. After applying a simple regularization trick, we quickly
established that the width ρ of that oracle can be bounded by, roughly,

√
m
ε . This gave us a running

time of
Õ
(
mρε−2

)
= Õ

(
m

3
2 ε−

5
2

)
,

which matched in the case of sparse graphs the best known 40-year-old bounds that were obtained via
classic combinatorial techniques. (These techniques were able to deliver an exact, instead of (1 − ε)-
approximate, solution though.)

Then, we showed that an additional modification of the oracle together with somewhat non-trivial
analysis leads to an improved running time bound of

Õ
(
m

4
3 ε−

8
3

)
,

which enabled us to finally break the sparse-graph Ω(n
3
2) running time barrier we mentioned above.

3 Gradient Descent Method for General Norms
Encouraged by all the progress we have made so far on the maximum flow problem, it is natural to ask:
how far can we go? In particular, is it possible to compute an (1 − ε)-approximation to the maximum
flow in, essentially best possible, close to linear time?

To answer this question we need to have a re-look on our approaches so far – especially, the approach
we outlined in the previous section. At a high level, what was the root of our success there and what
were the obstacles for getting even faster algorithms?

Of course, there is multiple valid answers to this question. However, one answer that should be fairly
clear by now is: the key was the ability to work with the“right” geometry. That is, each time we got an

1

improvement it was because we managed to use the geometries we can efficiently optimize in, such as,
`1-geometry or `2-geometry, and make them “look” more like the geometry that we want to efficiently
optimize in, i.e., the `∞-geometry that the maximum flow problem corresponds to. In particular, note
that we have that, for any m-dimensional vector x,

1

m
|x|1 ≤ ‖x‖∞ ≤ |x|1,

and
1√
m
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2.

These norm approximation statements explain, in a sense, the basic bounds on the width ρ that we
obtained for the `1-based and `2-based oracles. This also tells us why we needed to work hard to
overcome the

√
m bound in the latter case.

However, now that we understand that “this is all about geometry”, we should try to take a step
back and think of making the choice of geometry we work with more principled and explicit, and then
adjust our optimization machinery accordingly. Specifically, we want to re-examine our most basic
optimization primitive: the gradient descent method and make it work in more general geometries than
just the natural `2-geometry.

To this end, let us consider a general unconstrained minimization problem

min
x
f(x),

where f is a general convex objective function.

3.1 L-smoothness Revisited
Recall that, at a very high level, the gradient descent method solves the above minimization problem by
generating a sequence of points x1, . . . , xT , where each xi is a progressively better minimizer of f . That
is, f(x1) > . . . > f(xT).

Thus, the core of the gradient descent method is the generation of the next point xi+1 in the sequence
from the current point xi. The general idea here is to look at the linear approximation of the function
f around the current point x according to Taylor expansion. Specifically, in the canonical `2-variant of
gradient descent we used the fact that, for any point y,

f(y) = f(x) +∇f(x)T (y − x) +O(‖y − x‖22), (1)

where the O(‖y − x‖22) is the “error” of our linear approximation of f measured in the `2-norm.
From (1) we can see that the further point y is from x in the `2-norm the less accurate this lin-

ear approximation is. In order to understand the exact trade-off here, we introduced the notion of
smoothness.

Definition 1 ((`2-based) L-smoothness) We say that a function f is L-smooth, for some L ≥ 0, iff

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2,

for all x and y.

L-smoothness gives us bound on how quickly can the gradient ∇f(x) change wrt to `2-norm. This
bound enabled us to establish the following lemma that gives us a more precise bound on how accurate
the linear approximation (1) is.

Lemma 2 If f is convex and L-smooth then

0 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
· ‖x− y‖22,

for all x and y.

2

In other words, the above lemma tells us that L-smoothness of f allows us to put a constant of L2 in
front of the quadratic `2-norm error term in (1).

Now, when we transition to a setting in which we have a given general norm ‖ · ‖, the key change
that drives the variant of the gradient descent method for that norm is that instead of measuring the
error of our local linear approximation of f in the `2-norm as we did in (1), we measure it in the norm
‖ · ‖. That is, we want to have that

f(y) = f(x) +∇f(x)T (y − x) +O(‖y − x‖2). (2)

Again, given the approximation (2), one might wonder what is the constant in front of the ‖y − x‖2
term or, in fact, if we even can have the error be linear in ‖y − x‖2. To answer this questions, we need
to generalize first the notion of L-smoothness to general norms.

Definition 3 (L-smoothness) For a general norm ‖ · ‖, we say that a function f is L-smooth (wrt to
that norm), for some L ≥ 0, iff

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖,

for all x and y.

The norm ‖ · ‖∗ in the above definition denotes the dual norm of ‖ · ‖. This norm is defined as

‖v‖∗ = max
u6=~0

vTu

‖u‖
. (3)

It is not hard to see that

(i) ‖ · ‖∗2 = ‖ · ‖2, i.e., `2-norm is self-dual;

(ii) ‖ · ‖∗∞ = | · |1;

(iii) and | · |∗1 = ‖ · ‖∞.

More generally, we have that
‖ · ‖∗p = ‖ · ‖q,

for any p and q such that 1
p + 1

q = 1. Also, for any vector space, it is the case that

(‖ · ‖∗)∗ = ‖ · ‖,

that is, the dual norm of the dual norm of ‖ · ‖ is ‖ · ‖ itself.
One of the key motivations behind introducing the dual norm is that it enables us to generalize the

Cauchy-Schwarz inequality to arbitrary norms. Namely, we have that

vTu ≤ ‖v‖∗‖u‖, (4)

for any u and v.
Additionally, observe that self-duality of the `2-norm makes our general definition of L-smoothness

(Definition 3) coincide with the `2-based definition of the L-smoothness (Definition 1), when ‖ · ‖ is
the `2-norm. In fact, we can push this correspondence further and show that our generalized version of
L-smoothness enables us to obtain a precise bound on the error of our linear approximation (2) of the
function f that is analogous to the one we obtained in Lemma 2 for the `2-based linear approximation
(1).

Lemma 4 Let ‖ · ‖ be a general norm and let f be convex and L-smooth (wrt to that norm) then

0 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
· ‖x− y‖2,

for all x and y.

3

Observe that we do not visually differentiate between the smoothness parameters L for different
norms – we just make sure that the underlying norm is always clear from the context. It is important to
keep in mind though that the value of L for a given function f can change drastically depending on the
choice of the underlying norm. In particular, a function f that has very bad smoothness wrt one norm
can be very smooth wrt another one, and vice versa. This is another evidence of how crucial the choice
of “right” geometry to work in can be.

3.2 Taking a Gradient Improvement Step
Taking a closer look at the linear local approximation (2) of f around a given point x and the bound on
the error term provided in Lemma 4, we see that our choice of an improvement step has to balance two
factors. On one hand, we want to minimize the linear part of the approximation (2). On the other hand,
due to the quadratic error of our approximation, we want to keep the length of our step, as measured in
the ‖ · ‖ norm, not too large.

In the `2-norm setting, finding the step that guarantees optimal improvement was pretty obvious.
The direction in which to move was −∇f(x), which is simply the direction of the steepest decrease of
our local linearization of f . The magnitude of that step had to be attuned by the step size parameter
of 1

L , which made the improvement step be exactly − 1
L∇f(x).

When we move to the setting of general norm ‖ · ‖, however, the direction of −∇f(x) might not be
the optimal one to move in, even though it still is the steepest decrease direction of the local linearization
of f . This is so as the norm ‖ · ‖, in contrast to the the `2-norm, might not be rotationally invariant and
thus have different sensitivity in different directions.

As a result, the best direction to move towards turns out to be − (∇f(x))
#, where is a certain

projection of the ∇f(x) given by the following optimization problem

v# := arg max
u

vTu− 1

2
‖u‖2. (5)

(Note that, by definition of v#, taking y = x−(∇f(x))
will be exactly the minimizer of our local upper

bound on f from Lemma 4 in case of L = 1.)
Observe that in the `2-norm setting, v# = v, as expected. However, in general, this is not the case.

In particular, in the `∞-norm setting we have that

v#i = sign(vi) · |v|1, (6)

for each coordinate i and, in the `1-norm setting we have that

v#i =

{
sign(vi∗) · ‖v‖∞ if i = i∗

0 otherwise,
(7)

where i∗ is a fixed coordinate such that |vi∗ | = ‖v‖∞.
Finally, once we know the best direction in which to move, the following lemma specifies the best

step size as well as the overall improvement that taking such step guarantees.

Lemma 5 Let ‖ · ‖ be a general norm and let f be convex and L-smooth wrt that norm. For any point
x, we have that

f(y) ≤ f(x)− 1

2L
(‖∇f(x)‖∗)2 ,

where y := x− 1
L (∇f(x))

#.

Note that, again, if ‖·‖ is the `2-norm then both the optimal step size and the guaranteed improvement
coincide with what we obtained in Lecture 3.
Proof By employing the definition of the projection (·)# (5), it is not hard to see that, for any vector
v and any L > 0, we have that

v#

L
= arg max

u
vTu− L

2
‖u‖2.

4

As a result, we have that

f(y) = f

(
x− 1

L
(∇f(x))

#

)
≤ f(x)−∇f(x)T

(
1

L
(∇f(x))

#

)
+
L

2

∥∥∥∥ 1

L
(∇f(x))

#

∥∥∥∥2
≤ f(x)−

(
max
u
∇f(x)Tu− L

2
‖u‖2

)
,

where the first inequality follows by Lemma 4.
Now, let u∗ be such that

∇f(x)Tu∗

‖u∗‖
= max

u

∇f(x)Tu

‖u‖
.

Wlog we can assume that ‖u∗‖ = 1. By definition of the dual norm (3), we have that

∇f(x)Tu∗

‖u∗‖
= ∇f(x)Tu∗ = ‖∇f(x)‖∗.

Observe that if we take u′ := u∗‖∇f(x)‖∗
L then

∇f(x)Tu′ − L

2
‖u′‖2 =

(‖∇f(x)‖∗)2

L
− 1

2L
(‖∇f(x)‖∗)2 =

1

2L
(‖∇f(x)‖∗)2 .

Consequently, we have that

f(y) ≤ f(x)−
(

max
u
∇f(x)Tu− L

2
‖u‖2

)
≤ f(x)− 1

2L
(‖∇f(x)‖∗)2 ,

which is what we wanted to prove.

In the light of the above lemma, we know that the optimal improvement step at point x is− 1
L (∇f(x))

#,
which gives rise to the general norm variant of the gradient descent method presented as Algorithm 1.

Algorithm 1 General norm variant of the gradient descent method
x1 ← ~0
for i = 1, . . . , T − 1 do

xi+1 ← xi − 1
L (∇f(xi))

#

return xT

Once again, one can check that when we consider the `2-norm setting this general norm variant of
gradient descent method becomes the “classic” gradient descent method we developed in Lecture 3.

3.3 Analysis of the General Norm Variant of Gradient Descent Method
Once we developed our general norm variant of gradient descent method, we want to analyze its perfor-
mance. This is done in the following theorem.

Theorem 6 Let ‖ · ‖ be a general norm and suppose that f is convex and L-smooth wrt to that norm.
If xT is the output of Algorithm 1 then we have that

f(xT)− f(x∗) ≤ O
(
L ·R2

T

)
,

where x∗ is any optimal minimizer of f , R := maxx:f(x)≤f(x1) ‖x− x∗(x)‖, and

x∗(x) := arg min
x′:f(x′)=f(x∗)

‖x− x∗‖

is the optimal minimizer of f that is closest to x (wrt to ‖ · ‖-norm) .

5

At the first glance, the above theorem seems to be almost identical to the Theorem 5 that we established
in Lecture 3 to analyze the performance of `2-norm based gradient descent method. The only obvious
difference is that the radius parameter R here bounds the distance to the closest optimal solution for all
the points x with f(x) ≤ f(x1), instead of simply bounding the distance between the (closest) optimal
solution and x1.

However, we want to reiterate again that, even though the parameters L and R look the same, they
can have very different values for the same function f depending on the underlying norm we are working
in. After all, the whole point of developing such a general norm variant of gradient descent method
was exactly to take advantage of the ability to choose the “right” norm, i.e., a norm in which the value
of L and R for our objective function f is is as small as possible. In a sense, by choosing the “right”
geometry we are able to guide the gradient descent method to make better progress on our optimization
problem. As we will see shortly, making a good choice here can have dramatic effect on the performance
of gradient descent method.1
Proof Our course of action here is very similar to how we established Theorem 5 in Lecture 3. We
just need to use the right analogues of all the notions. Specifically, let us define

δi := f(xi)− f(x∗(xi))

to be our measure of progress on minimizing f . (Note that f(x∗(xi)) is the same for all i, as all x∗(xi)s
are optimal minimizers of f .)

By convexity of f (see Lemma 4 with y = x∗(xi) and x = xi), we have that

δi = f(xi)− f(x∗(xi))

≤ ∇f(xi)
T (xi − x∗(xi))

≤ ‖∇f(xi)‖∗‖xi − x∗(xi)‖

where the last inequality is the Cauchy-Schwarz inequality (4).
On the other hand, by Lemma 5 (with x = xi and y = xi+1), we know that

δi − δi+1 = f(xi)− f(xi+1)

≥ 1

2L
(‖∇f(xi)‖∗)2

≥ 1

2L

δ2i
‖xi − x∗(xi)‖2

≥ δ2i
2LR2

,

where we used the fact that f(x1) ≥ f(x2) ≥ . . . ≥ f(xi) and thus, by definition of R, ‖xi−x∗(xi)‖ ≤ R.
So, we can conclude that, for any i,

δi − δi+1 ≥
δ2i

2LR2
,

which is exactly the same conclusion we had in the proof of Theorem 5 in Lecture 3.
We can thus just repeat our calculations from there to get the desired end result. That is, observe

that, for any i,
1

δi+1
− 1

δi
=
δi − δi+1

δiδi+1
≥ δi − δi+1

δ2i
≥ 1

2LR2
.

Summing over all i = 1, . . . , T − 1, the left-hand side telescopes and we get

1

δT
− 1

δ1
≥ T − 1

2LR2
. (8)

1A careful reader might notice that we are ignoring here one aspect: in principle, for a general norm ‖ · ‖, computing
the projections (∇f(x))# wrt that norm might be computationally non-trivial. However, usually, it turns out that there
is some simple closed expression formula for computing these projections. This is the case, for example, for the `∞ and `1
norms – see (6) and (7).

6

Now, to bound δ1, we just use the L-smoothness of f (Lemma 4 with x = x∗(x1) and y = x1) to obtain
that

δ1 = f(x1)− f(x∗(x1)) ≤ ∇f(x∗)T (x1 − x∗(x1)) +
L

2
‖x1 − x∗(x1)‖2 ≤ LR2

2
,

where the second inequality follows by noting that ∇f(x∗(x1)) = 0, as x∗(x1) is an optimal minimizer
of f , and that R ≥ ‖x1−x∗(x1)‖. By plugging this back into (8) and rearranging, the proof of Theorem
6 is complete and we can conclude that indeed

δT ≤ O
(
LR2

T

)
.

4 Applying an `∞-variant of Gradient Descent Method to the
Maximum Flow Problem

Now that we developed our general norm variant of gradient descent, we want to apply it to the key
problem our interest: the maximum flow problem.

Recall that this problem corresponds to solving the following constrained minimization problem.

min ‖h‖∞
s.t. Bh = χst,

where Bh, applied to any flow vector h, gives us that flow’s demand pattern, and χst encodes the demand
pattern of a unit s-t flow.

Given that this problem is an `∞-minimization problem, it is pretty clear what the “right” norm
for that problem is: the `∞-norm. But before we can apply the machinery from the previous section,
we have to deal with two issues. Firstly, the above formulation is a constrained problem, while above
we considered only unconstrained problems. Secondly, somewhat counterintuitively, even though our
objective function is the `∞-norm itself, this objective function is not L-smooth, for any finite L, wrt
that norm.

4.1 Approximate Affine `∞-projection
The standard way for dealing with constrained optimization problems in the gradient descent method
framework is to simply adjust the algorithm by including a projection in the improvement step update
that ensures that after each improvement step we land back in the feasible space. This is, in particular,
what we did for the `2-variant of gradient descent before.

However, we will proceed differently here. That is, we still will use a projection operator, but we
will put it directly in our objective function instead of applying it in each step of the gradient descent
algorithm. Specifically, we will consider the following optimization problem

min
h
‖P (h)‖∞.

Observe that as long as P (·) is a projection onto the space Fst := {h | Bh = χst} of unit s-t-flows,
i.e., for any flow h, we have that B(P (h)) = χst and P (h) = h, if h ∈ Fst, the above optimization
problem is equivalent to our original maximum flow formulation.

Introducing the projection P (·) directly in our objective function will have a number of advantages.
First of all, our new problem is unconstrained, so we do not need to develop and analyze the projected
variant of gradient descent. More importantly though, it will be easier for us to specify and analyze
more concrete properties of that projection. In particular, we want P (·) to be an α-approximate affine
`∞-projection onto the space of unit s-t-flows Fst. That is, we want that

7

(a) P (·) is a projection onto Fst. That is, B(P (h)) = χst, for any h, and P (·) is an identity on Fst, i.e.,
P (h) = h, whenever h ∈ Fst.

(b) P (·) is α-approximate in the `∞-norm. That is, for any h,

‖P (h)− h‖∞ ≤ α‖Π(h)− h‖∞, (9)

where Π is the exact `∞-projection onto Fst, i.e.,

Π(h) := arg min
g∈Fst

‖g − h‖∞. (10)

(c) P (·) is affine. That is, for any h, P (h) is of the form

P (h) = P̂ h+ ĥ, (11)

where P̂ is a linear operator (a matrix) and ĥ is some fixed flow.

One reasons why we allow P (·) to be only α-approximate, with α > 1, instead of being exact is that
computing an exact `∞-projection Π is not easier than solving the maximum flow problem itself. After
all, by definition of Π (10), Π(0), i.e., applying Π to a trivial all-zero flow, gives exactly the maximum
unit s-t-flow.

Also, there is another reason why it is actually necessary to allow α > 1. It is not hard to show that
the exact `∞-projection Π cannot be affine. So, insisting on P (·) being affine requires α > 1.

Finally, observe that requiring P (·) implies that in (11) P̂ is a linear projection onto the space of
circulations, i.e., flows h with Bh = 0. Also, ĥ has to be a fixed unit s-t-flow, equal the projection P (0)
of a trivial all-zero flow.

4.2 Applying `∞-Smoothing
At this point, we are already working with an unconstrained minimization problem, but we still need to
deal with the fact that our objective function computes an `∞-norm, which is not L-smooth.

Fortunately, we already know how to proceed here. Similarly as we did when applying the `2-variant
of gradient descent method to the maximum flow problem, we introduce a smoothing of the `∞-norm,
defined as

smaxδ(h) := δ ln

(∑
e e

he
δ + e−

he
delta

2m

)
.

Recall that in Lecture 4 we proved that smaxδ approximates the `∞-norm fairly well.

Lemma 7 For any flow h, we have ‖h‖∞ − δ ln(2m) ≤ smaxδ(h) ≤ ‖h‖∞.

So, the smaller the δ the tighter the approximation is. On the other hand, one can show that,
similarly to the case of `2-smoothness, the `∞-smoothness of smax is inversely proportional to δ.

Lemma 8 For any δ > 0, the function smaxδ is convex and 1
δ -smooth wrt `∞-norm.

As a result, our optimization problem becomes

min
h

smaxδ(P (h)), (12)

and, once again, it will be crucial for us to choose a value of δ that gives us the best trade-off between
the smoothness of smaxδ and the approximation quality it offers.

8

4.3 Putting Everything Together
We are now ready to apply the `∞-variant of gradient descent method to our smoothed unconstrained
minimization version of the maximum flow problem (12). Observe that, by Theorem 6, if we apply
Algorithm 1 to (12) then, after T iterations, we will obtain a flow xT such that

smaxδ(P (xT))− smaxδ(P (x∗)) ≤ O
(
LR2

T

)
, (13)

where
x∗ := arg min

x
smaxδ(P (x)).

Note that if h∗ is the (scaled) maximum s-t flow, i.e., h∗ is unit s-t flow with ‖h∗‖∞ = 1
F∗ , where

F ∗ is the maximum s-t flow value, then, by definition of x∗,

smaxδ(P (x∗)) ≤ smaxδ(P (h∗)) ≤ ‖h∗‖∞ =
1

F ∗
,

where the last inequality follows by the fact that P (·) is an identity on unit s-t flows (see property (a)
of P (·) above) and Lemma 7.

As a result, plugging the above back into (13), we obtain that if we take hT := P (xT) then hT will
be a unit s-t flow and

‖hT ‖∞ ≤ smaxδ(hT)+δ ln 2m ≤ smaxδ(P (x∗))+O

(
LR2

T

)
+δ ln 2m ≤ 1

F ∗
+O

(
LR2

T

)
+δ ln 2m, (14)

where the first inequality follows by Lemma 7.
In the light of this bound, we just need to estimate the values of L and R as well as choose the values

of δ and T so as to ensure that

O

(
LR2

T

)
+ δ ln 2m ≤ ε

2F ∗
. (15)

Once this is achieved, by (14), we will have that

‖hT ‖∞ ≤
1

F ∗
+O

(
LR2

T

)
+ δ ln 2m ≤ 1

F ∗
+

ε

2F ∗
≤ 1

(1− ε)F ∗
,

for ε ≤ 1
2 . That is, hT will be the desired (scaled) (1− ε)-approximate maximum s-t flow.

It is not hard to show that L ≤ α2

δ . That is, we have the following lemma.

Lemma 9 The function smaxδ(P (h)) is α2

δ -smooth wrt `∞-norm.

Obtaining bound on R is slightly more involved and it is presented in the following lemma whose
proof appears in the appendix.

Lemma 10 Let x1 = 0 and let X := {x | smaxδ(P (x)) ≤ smaxδ(P (x1))} then, we have that

R := max
x∈X
‖x− x∗(x)‖∞ ≤

(2α+ 1)

F ∗
+ 2δ ln 2m,

where x∗(x) is the optimal minimizer of smaxδ(P (·)) that is closest to the point x in the `∞-norm.

Note that, as always, R depends on the choice of our starting point x1. However, simply taking x1 = 0
turns out to be sufficient.

Also, observe that the obtained bound on R is very small and, in particular, it is proportional to
the value of the optimal solution! Recall that in Lecture 4, when we analyzed the `2-norm diameter the
best bound we were able to establish was only

√
n. So, choosing the “right” geometry led to a striking

improvement.

9

Now, taking δ := ε
4F∗ ln 2m and using the bounds on L and R that we established in Lemmas 9 and

10, we get that

O

(
LR2

T

)
+ δ ln 2m ≤ O

α2F ∗ ln 2m
(

(2α+1)
F∗ + ε

2F∗

)2
εT

+
ε

4F ∗
≤ O

(
α4 ln 2m

εTF ∗

)
+

ε

4F ∗
.

Therefore, setting T := C α4 ln 2m
ε2 , for a large enough constant C, allows us to satisfy the condition (15).

We can thus conclude with the following theorem.

Theorem 11 For any 0 < ε ≤ 1
2 , we can compute an (1 − ε)-approximation to the maximum flow

problem in time

O

(
α(P)4 lnm

ε−2
(τ(P) +m)

)
,

where α(P) is the quality of the affine `∞-projection P and τ(P) is the time needed to compute it.

The above theorem is quite remarkable. It allows us to reduce the task of fast computation of
an (1 − ε)-approximate maximum flow to computing quickly a relatively small number of very crude
maximum flow solutions. Basically, ignoring the affinity requirement, computing the projection P can
be thought of as solving a maximum flow problem (wrt a given demand vector) up to an approximation
α(P). So, if we are aiming for an (1− ε)-approximation maximum flow algorithm that runs in close to
linear time, i.e., has its running time be O(m1+o(1)ε−2), then all we have to do is just to construct P that
has α(P) ≤ no(1), which is a very loose approximation bound, and can be computed in time O(m1+o(1)).
Sounds like a much easier task than solving the original (1− ε)-approximation problem from a scratch!

This bootstrapping phenomena, i.e., the ability to leverage a fast algorithm solving a very crude
version of our problem to get a fast algorithm for solving that problem up to the desired approximation,
is really powerful. We already have seen its power in the context of multiplicative weight update–based
framework for solving feasibility questions that we developed in Lecture 10. Now, we see this phenomena
in play again.

5 Appendix: Proof of Lemma 10
Let us fix any x̂ ∈ X. We will first show that

‖P (x̂)− x∗(x̂)‖∞ ≤
(α+ 1)

F ∗
+ 2δ ln 2m. (16)

To this end, observe that by triangle inequality, we have that

‖P (x̂)− x∗(x̂)‖∞ ≤ ‖P (x̂)− P (x∗(x̂))‖∞ ≤ ‖P (x̂)‖∞ + ‖P (x∗(x̂))‖∞, (17)

where the first inequality follows by noticing that if x∗ is a minimizer of smaxδ(P (x)) then so is P (x∗).
(Recall that for any projection we have that P 2(x) = P (x).)

By Lemma 7 and the fact that x̂ ∈ X, we get that

‖P (x̂)‖∞ ≤ smaxδ(P (x̂)) + δ ln 2m ≤ smaxδ(P (x1)) + δ ln 2m (18)
≤ ‖P (x1)‖∞ + δ ln 2m = ‖P (0)‖∞ + δ ln 2m

= ‖P (0)− 0‖∞ + δ ln 2m ≤ α‖Π(0)− 0‖∞ + δ ln 2m

= α‖Π(0)‖∞ + δ ln 2m = α‖h∗‖∞ + δ ln 2m =
α

F ∗
+ δ ln 2m,

where we also used (9), the fact that, by definition (10) of Π, Π(0) is exactly the (scaled) maximum s-t
flow h∗.

10

Furthermore, by Lemma 7 and the fact that x∗(P (x̂)) is a minimizer of smaxδ(P (x)), we have that

‖P (x∗(x̂))‖∞ ≤ smaxδ(P (x∗(x̂))) + δ ln 2m ≤ min
x

smaxδ(P (x)) + δ ln 2m (19)

≤ min
x
‖P (x)‖∞ + δ ln 2m ≤ ‖P (h∗)‖∞ + δ ln 2m =

1

F ∗
+ δ ln 2m,

where we used the fact that P (h∗) = h∗ as h∗ is a unit s-t-flow. Plugging (18) and (19) into (17), gives
us (16).

Now, to see that (16) implies our lemma, note that, if x∗ is an optimal minimizer of smaxδ(P (x))

then the point x̂∗ := P (x∗)+ x̂− P̂ (x̂) is also an optimal minimizer of that function. To see that, observe
that the fact that P (·) is an affine projection (see (11)) implies that

P (x̂∗) = P̂ x̂∗ + ĥ = P̂P (x∗) + P̂ x̂− P̂ 2(x̂) + ĥ = P̂P (x∗) + ĥ = P 2(x∗) = P (x∗),

where we used the fact that P̂ 2 = P̂ , since P̂ is a projection too. Thus, we have that

smaxδ(P (x̂∗)) = smaxδ(P (x∗)),

and thus x̂∗ is indeed an optimal minimizer of smaxδ(P (x)) as well.
Consequently, by (16) and triangle inequality, we have that

‖x̂− x∗(x̂)‖∞ ≤ ‖x̂− (P (x∗(x̂)) + x̂− P̂ (x̂))‖∞ = ‖P̂ x̂− P (x∗(x̂))‖∞
= ‖P (x̂)− P (x∗(x̂))− ĥ‖∞
≤ ‖P (x̂)− P (x∗(x̂))‖∞ + ‖ĥ‖∞

≤ (α+ 1)

F ∗
+ 2δ ln 2m+ ‖P (0)‖∞ ≤

(2α+ 1)

F ∗
+ 2δ ln 2m,

where the last two inequalities follow by noticing that ĥ = P (0) and that ‖P (0)‖∞ ≤ α
F∗ (see (18)).

Lemma 10 follows.

11

	Overview
	Recap of Previous Lectures
	Gradient Descent Method for General Norms
	L-smoothness Revisited
	Taking a Gradient Improvement Step
	Analysis of the General Norm Variant of Gradient Descent Method

	Applying an -variant of Gradient Descent Method to the Maximum Flow Problem
	Approximate Affine -projection
	Applying -Smoothing
	Putting Everything Together

	Appendix: Proof of Lemma 10

