
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 November 5, 2015

Lecture 14
Lecturer: Aleksander Mądry Scribe: Jack Murtagh

1 Overview
We introduce the notion of oblivious routing and describe its connection to the (1−ε)-approximate max-
imum flow algorithm we developed in the previous lecture. Then, we present a number of constructions
of such oblivious routing schemes.

2 Recap of the Last Lecture
In the last lecture, we generalized the gradient descent method to make it work with an arbitrary
geometry, instead of only `2-geometry. We then used an `∞-based variant of that method to design
an (1 − ε)-approximate maximum flow algorithm. The key component in that algorithm was an α-
approximate affine `∞-projection P (·) onto the space Fst unit s-t-flows. In other words, P (·) should
be:

(a) A projection onto Fst, that is, B(P (h)) = χst, for any h, and P (h) = h, whenever h ∈ Fst.

(b) α-approximate in the `∞-norm, that is, for any h,

‖P (h)− h‖∞ ≤ α‖Π(h)− h‖∞, (1)

where Π is the exact `∞-projection onto Fst, i.e.,

Π(h) := arg min
g∈Fst

‖g − h‖∞. (2)

(c) Affine, that is, for any h, P (h) should be of the form

P (h) = P̂ h+ ĥ, (3)

where P̂ is a linear projection onto the space of circulations, i.e., of all the flows f with Bf = 0, and
ĥ is some fixed unit s-t flow.

As we showed last time, once we construct a projection P (·) then we obtain an (1 − ε)-approximate
maximum flow algorithm whose performance is described in the following theorem.

Theorem 1 If P (·) is an α-approximate affine `∞-projection P (·) onto the space Fst of unit s-t-flows,
then one can compute an (1− ε)-approximate maximum flow in time

O

(
α4

ε2
· ln(m) · (τ(P) +m)

)
where τ(P) is the time needed to apply the projection P (·).

In other words, the above theorem allows us to reduce fast (1 − ε)-approximate maximum flow
computations to the task of constructing a projection P (·) with a not too large approximation guarantee
α and computation time τ(P). It is not hard to see that these two parameters are somewhat conflicted
– the better approximation guarantee we need the more computationally expensive applying P should
be, and vice versa. As a result, the key remaining question we need to investigate in this context is: how
good of a trade-off between α and τ(P) can we achieve?

1

3 Oblivious Routing Schemes
The central object of our interest today will be the notion of an oblivious routing. Let us start by
introducing it. Consider a graph G with m edges and n vertices. We say that an m-by-n matrix M is
an oblivious routing scheme if, for any valid demand χ, we have that

BMχ = χ. (4)

(Recall that a demand χ is valid if ~1Tχ = 0, i.e., the vertex deficits and surpluses of χ balance out.) In
other words, oblivious routing scheme is any matrix M that maps demand vectors χ to flows Mχ in G
with that demand pattern χ. We will sometime refer to the flow Mχ as the routing of χ (wrt M).

The crucial aspect of this definition is that M is a matrix, that is, M is a linear operator. Conse-
quently, if we useM to route in G a collection of demands {χi}i simultaneously, then each of the resulting
routingsMχi is determined solely by its individual demand pattern χi and thus it is completely oblivious
to the routings of all the other demands.

3.1 Competitiveness of Oblivious Routing Schemes
Now, as in most routing tasks, our goal is to design oblivious routing schemes that minimize congestion.
That is, for every collection of demands {χi}i, we want the maximum edge congestion induced by routing
each one of these demands via our oblivious routing scheme M be as small as possible.

It is not hard to see that the linearity of oblivious routing schemes prevents them from delivering
optimal congestion minimization. In general, a routing scheme that simply outputs some minimum-
congestion routing for each input demand cannot be linear. Also, the knowledge of what all the demands
to be routed are enables one to make better choices on how each of these demands should be routed so
as to minimize the final congestion.

Still, even if we can’t achieve the optimal congestion minimization, what is that we can achieve?
To answer this question, let us define, for a given oblivious routing scheme M , its competitiveness, or
competitive ratio β(M), as

β(M) := max
{χi}i

‖∑i abs(Mχi)‖∞
OPT({χi}i)

, (5)

where abs(v), for a given m-dimensional vector v, is an m-dimensional vector with abs(v)i := |vi|, for
each i, and OPT({χi}i) is the maximum edge congestion induced by the (non-oblivious) optimal routing
of all the demands χi. Observe that, for an edge e,(∑

i

abs(Mχi)

)
e

=
∑
i

|(Mχi)e|

is simply the total congestion on edge e induced by all the routings Mχi. (We take absolute value of
each edge flow to avoid “canceling out” of routings flowing in opposite directions.)

So, β(M) tells us how much worse the maximum edge congestion of the routing provided by the
oblivious routing scheme M be compared to the optimal (non-oblivious) routing. One should view
β(M) as a measure of the “quality” of the oblivious routing scheme M .

The above definition is capturing exactly what we wanted to measure. However, computing this
quantity for a given oblivious routing scheme M might be problematic. In principle, it would require us
to enumerate M ’s performance on infinitely many collections of demands {χi}i.

Fortunately, there is an alternative characterization of competitiveness that makes computing it much
more tractable.

Lemma 2 For any oblivious routing scheme M , we have that

β(M) = ‖MB‖∞

2

Note that the matrix MB is an m-by-m matrix that maps a flow f to an oblivious routing MBf of the
demand Bf of that flow. That is, BMBf = Bf . Also, the ‖ · ‖∞ norm in the statement of the lemma
is an `∞-operator norm (or, more precisely, an `∞-`∞-operator norm) defined, for a matrix A, as

‖A‖∞ := max
v 6=~0

‖Av‖∞
‖v‖∞

. (6)

Computing such `∞-operator norm of a matrix is fairly straightforward – it corresponds to computing
the maximum `1-norm of a row. As a result, for any oblivious routing scheme M , we have that

β(M) = ‖MB‖∞ = max
e
|(MB)e|1 = max

e
loadM (e), (7)

where
loadM (e) :=

∑
e′

|(MB)ee′ | =
∑
e′

|(Mχe′)e| (8)

is the sum of all the values of flows that pass through edge e in the routings Mχe′ of a unit flow between
the endpoints of each edge e′. (Note that as we care only about values here, it does not matter which
one of the endpoints of edge e′ is the source and which one is the sink.)
Proof For a given collection of demands Ξ = {χi}i, let us define Ξ̂ to be a (larger) collection of
demands constructed as follows. Let hi, for each i, be the routing of demand χi in the optimal (non-
oblivious) routing of the collection of demands Ξ. For each hi and each edge e, let ηie be the demand
vector that encodes exactly the value and direction of the flow hie that passes through e in the routing
hi. We take Ξ̂ to be the union of all such demands ηie for all e and i. (Note that if hie = 0 for some edge
e and commodity i then the corresponding demand is a trivial zero demand.)

Observe that OPT(Ξ) = OPT(Ξ̂). This is so as, by construction, the optimal (non-oblivious) routings
{hi}i of Ξ is also a valid routing of the collection of demands in Ξ̂. Additionally, any routing of all the
demands in Ξ̂ is also a valid routing of demands in Ξ.

Furthermore, routing the demands Ξ̂ via an oblivious routing scheme M cannot lead to a lower
congestion than routing the demands Ξ. That is, we must have that∥∥∥∥∥∑

i

abs(Mχi)

∥∥∥∥∥
∞

≤
∥∥∥∥∥∑

i

∑
e

abs(Mηie)

∥∥∥∥∥
∞

,

since M cannot take advantage of any flow cancellations when routing Ξ̂.
It is not hard to see that the above observation tells us that the worst-case competitiveness of an

oblivious routing scheme M is achieved for collections of demands that: correspond to routings flows
directly between edge endpoints; and for which simply routing each of these edge demands across the
corresponding routing is an optimum (non-oblivious) routing1. In other words, we have that

β(M) = max
{χi}i

‖∑i abs(Mχi)‖∞
OPT({χi}i)

= max
x∈Rm

‖∑e abs(M(xeχe))‖∞
‖x‖∞

where xeχe is a demand vector that requires routing |xe| units of flow between the endpoints of the edge
e. (The sign of xe encodes whether the direction of routing is aligned with or opposite to the orientation
of edge e.)

We thus have that

β(M) = max
x∈Rm

‖∑e abs(M(xeχe))‖∞
‖x‖∞

= max
x∈Rm

‖∑e |xe| abs(Mχe)‖∞
‖x‖∞

= max
x∈Rm

‖∑e |xe| abs((MB)e)‖∞
‖x‖∞

(∗)
= max

x∈Rm

‖∑e(MB)exe‖∞
‖x‖∞

= max
x∈Rm

‖MBx‖∞
‖x‖∞

= ‖MB‖∞,

1Note that even though such a routing strategy is very simple, in general graphs, this strategy cannot be implemented
by oblivious routing schemes due to their linearity in the demand vectors.

3

where the equality (∗) follows as for the worst-case x the signs of its coordinate will be such that
they prevent any cancellations on the coordinate of the vector

∑
e(MB)exe that achieves the value of

‖∑e |xe| abs((MB)e)‖∞.

3.2 Oblivious Routings and Affine `∞-projections
As we already mentioned above, the obliviousness of an oblivious routing scheme M comes at a price of
its worse performance, as captured by its competitive ratio β(M) – see (5). Given this inherent “price
of obliviousness”, why would we even want to use oblivious routing schemes? Why not just always use
the optimal non-oblivious routings instead? After all, computing such an optimal routing corresponds
to solving a multi-commodity flow problem, a task that can be solved fairly quickly.

There is a couple of reasons. First of all, even though multi-commodity flow algorithms are pretty fast,
they are not fast enough to handle very large graphs. Deploying a compact and efficient oblivious routing
scheme might be preferable in such settings, even if it leads to sub-optimal answers. More importantly,
obliviousness is an enormous advantage in scenarios when the demands are changing frequently (which
is the case, for example, in most networking applications). Oblivious routing scheme allows us to avoid
recomputing all the routings from a scratch each time a new demand arrives or an existing one changes.
We only need to add/update a single routing per each such event. Also, the structure of oblivious routing
schemes lends itself very well to distributed nature of many routing tasks.

It turns out that there is also one more reason we should be interested in oblivious routing schemes:
they allow us to construct α-approximate affine `∞-projections such as the projection P (·) that we need
for our (1 − ε)-approximate maximum flow algorithms (see Section 2). Specifically, given an oblivious
routing scheme M , let us define

P̂M := I −MB (9)

and
ĥM := Mχst. (10)

Then, for a flow h, let us define
PM (h) := P̂M (h) + ĥM . (11)

We have the following lemma.

Lemma 3 For any oblivious routing scheme M , the operator PM (·) is a β(M)-approximate affine `∞-
projection onto the space Fst of unit s-t-flows. Also, the time τ(PM) needed to compute this projection
is at most O(τ(M) +m), where τ(M) is the maximum time needed to compute the routing Mχ, for any
demand χ.

In the light of the above lemma, from now on, instead of trying to construct a projection P (·) for our
(1−ε)-approximate maximum flow algorithm (see Theorem 1) explicitly, we can focus on constructing an
oblivious routing scheme M with sufficiently small competitiveness β(M) and computation time τ(M).
Proof Note that, for any flow h, we have that

BP̂Mh = B(h−MBh) = Bh−BMBh = 0.

So, as trivially P̂M0 = 0, P̂M is a (linear) projection on th space of all circulations. Also, by definition
of M , ĥM is a unit s-t-flow.

As a result, for any h, PM (h) is a unit s-t flow and, for any h that is a unit s-t flow already, we have
that

PM (h) = P̂M (h) + ĥM = h−MBh+Mχst) = h−M(Bh− χst) = h.

Thus, PM (·) is an affine projection onto the space Fst of all the unit s-t-flows. (See Section 2.)
Next, we should observe that, for any h, it is the case that

‖PM (h)− h‖∞ = ‖h−M(Bh− χst)− h‖∞ = ‖M(Bh− χst)‖∞
≤ β(M) ·OPT({Bh− χst}) = β(M)‖Π(h)− h‖∞,

4

where we used the definition (5) of competitiveness β(M) and the fact that, by definition of OPT and
Π (see (2)),

OPT({Bh− χst}) = min
h′ :Bh′=Bh−χst

‖h′‖∞ = min
h′′∈Fst

‖h′′ − h‖∞ = ‖Π(h)− h‖∞.

In other words, PM (·) is indeed a β(M)-approximate `∞-projection (see (1)).
Finally, the time τ(PM) needed to compute PM (h), for any flow h, is at most

O(τ(MB) +m) = O(τ(M) + τ(B) +m) = O(τ(M) +m),

as desired.

4 Constructions of Oblivious Routing Schemes
Once we demonstrated usefulness and properties of oblivious routing schemes, it is time to explore the
next natural question: how to construct them?

4.1 Oblivious Routing with Electrical Flows
Although we were not aware of that then, we already studied one oblivious routing scheme construction.
It turns out that routing with electrical flows is oblivious! More precisely, let us define

ME := BTL+, (12)

where L+ is a pseudo-inverse of the Laplacian matrix of the underlying graph wrt all resistances being
one. (See notes from Lecture 4 for all the relevant definitions and background.) Note thatME corresponds
to a routing in which each demand χ is routed by computing an electrical flow with this demand wrt
unit resistances.

Clearly, for such a oblivious routing scheme we have that

τ(ME) = O(m+ τ(L+)) = Õ(m),

where we used the fact that applying the pseudo-inverse L+ corresponds to solving a Laplacian linear
system and the latter task can be performed in nearly-linear time. (See notes from Lecture 8.)

The routing time τ(ME) is very much acceptable, but how about the competitiveness β(ME) of that
scheme? By simple use of the machinery we developed in Lecture 11 for solving the maximum flow
problem via electrical flows, we can establish the following bound.

Lemma 4 For any graph G with m edges, we have that β(ME) ≤
√
m.

Proof By Lemma 2 and (7), we know that

β(ME) = ‖MEB‖∞ = max
e

loadME (e).

Note that, for a fixed edge e, we then have that, by (8),

loadME (e) =
∑
e′

|(MEB)ee′ | =
∑
e′

|(BTL+B)ee′ | =
∑
e′

|χeL+χe′ |.

Observe now that, since all resistances are uniform, |χTe L+χe′ | is the amount of flow passing through the
edge e in an electrical flow that sends one unit of flow from one to the other endpoint of e′. However, as
the pseudo-inverse L+ is symmetric, |χTe L+χe′ | = |χTe′L+χe|, i.e., |χTe L+χe′ | is also the amount of flow
that flows through edge e′ in an electrical flow that sends one unit of flow from one endpoint of e to the
other one.

5

Consequently, we can use Cauchy-Schwarz inequality to conclude that

loadME (e) =
∑
e′

|χTe L+χe′ | =
∑
e′

|χTe′L+χe| ≤
√
m
∑
e′

(χTe′L
+χe)2 =

√
mEe,

where Ee denotes the energy of a unit electrical flow between the endpoints of the edge e. Since routing
this one unit of flow directly over e would result in a flow of energy 1, we need to have that Ee ≤ 1 and,
as a result of all the above observations, we obtain that

β(ME) = max
e

loadME (e) ≤ max
e

√
mEe ≤

√
m,

which concludes our proof.

b

b

b b
b

b
bb b bb

. . .

. . .

...
√
n paths each of length

√
n

s t

Figure 1: An example that shows that our bound on β(ME) is essentially tight in sparse graphs.

It turns out that the above upper bound is fairly tight, especially in sparse graphs. In particular,
let us consider the graph presented in Figure 1. (An attentive reader might recall that this is exactly
the graph we used in Lecture 11 to show how different electrical flows and maximum flow can be.) If
we consider a demand vector χst that sends a unit of flow from the leftmost vertex to the rightmost one
then the congestion of the routing MEχst will be roughly constant, while the optimum routing achieves
a congestion of roughly 1√

n
. So, β(ME) = Ω(

√
n), which is also Ω(m) in this graph.

Still, despite seeing the above example, one should not discard electrical flow–based oblivious routing
scheme too easily. After all, the competitiveness bound β(M) is a worst-case bound and, more impor-
tantly, this worst-case bound is not only over all the possible collections of demands we want to route
(which is reasonable) but also – implicitly – over all the underlying graphs. As a result, even though
there exist graphs in which the oblivious routing schemeME performs poorly, there are families of graphs
– most notably, expanders – where ME is guaranteed to perform very well. (This fact will be important
later on.)

4.2 Oblivious Routing with Spanning Trees
Another way to construct an oblivious routing scheme is to base it on spanning trees. Specifically, let us
fix a spanning tree T of our graph G and consider an oblivious routing scheme MT that simply routes
all the demands in that tree. (Note that if we insist on routing only over the edges of T then there is a
unique mapping of demand χ to its routing MTχ, and this mapping is linear.)

Such a tree-based scheme is conceptually very simple and we have that τ(MT) = O(n), which is the
best bound possible. But, what is it competitiveness β(MT)?

It is not hard to see that, for any edge e, we have that

loadMT
(e) = |{e′ ∈ E(G) | e ∈ pathT (e′)}|, (13)

where pathT (e′) is the unique path in T between the endpoints of e′. (Note that if e is not in the tree
then loadT (e) = 0.) Another way to view the quantity loadMT

(e) is to realize that for a given tree edge
e and edge e′, e ∈ pathT (e′) iff e′ is in the cut definite by the two connected components of T that
removal of e from T creates. We will sometime refer to this cut as the canonical cut of e.

Consequently, by Lemma 2 and (7), we immediately obtain the following bound on β(MT).

6

Fact 5 For any spanning tree T , we have that β(MT) = maxe loadT (e) ≤ m.

It is not hard to show that the overall upper bound of m is essentially tight in the worst case. In
particular, one can prove that for any expander graph and any tree T , there always exists a tree edge
e∗ such that its canonical cut contains Ω(n) edges. This implies that

max
e

loadT (e) ≥ loadT (e∗) = Ω(n) = Ω(m),

as expanders are sparse. Also, by starting from a complete graph and then sub-sampling its edges at an
appropriate rate, one can extend this lower bound to all density regimes.

So, oblivious routing schemes that are based on a single spanning tree, despite their simplicity, have
very unsatisfying worst-case performance.

4.3 Oblivious Routing with a Convex Combination of Spanning Trees
The poor quality of the tree-based oblivious routing schemes we analyzed in the previous section should
not come as a surprise. A single spanning tree–based routing is just too simplistic to accurately capture
the complex flow structure of general graphs.

However, there is a way to make these simplistic routing strategies dramatically more powerful and
useful to us. We just need to avoid sticking to only one such tree-based routing scheme. Instead we
should use a convex combination of them, with each scheme in this convex combination corresponding
to a different tree. (Such surprising expressive power of convex combinations of simple objects is a quite
widespread phenomena in optimization, machine learning, and theoretical computer science. Probably
the most well-known example here is the boosting technique2 in machine learning.)

Formally, let us consider a convex combination Γ = {(λi, Ti)}i, where λ ∈ ∆|T| are the coefficients,
each λi corresponds to a different spanning tree Ti ∈ T. (Here, T is the set of all spanning trees of the
graph G.) Let us then define an oblivious routing scheme MΓ as

MΓ :=
∑
i

λiMTi
, (14)

where each MTi is an oblivious routing scheme based on a single spanning tree Ti, as described in
the previous section. In other words, MΓ constructs the routing MΓχ of a given demand vector χ by
outputting an average (weighted by the vector λ) of the routings MTi

χ corresponding to all the trees Ti
in the support of Γ.

Now, using Lemma 2 and (7) as well as a straightforward adjustment of the analysis we performed
in the previous section for the single spanning tree case, we can immediately conclude that

β(MΓ) = max
e

∑
i

λiloadTi
(e), (15)

where loadTi
(e) is a shorthand notation for loadMTi

(e), as defined in (13). That is, the competitiveness
β(MΓ) of the oblivious routing scheme MΓ is equal to the maximum average load of any edge.

4.3.1 Bounding β(MΓ)

How large can β(MΓ) be? Clearly, we know that if we consider only convex combinations Γ that are
supported on a single tree then β(MΓ) = Ω(m) in the worst-case. But the whole point here is to make
Γ be supported on many trees. How much can this help us in driving β(MΓ) down?

To answer this question, let us phrase it first as a feasibility problem. Specifically, consider the
following set of constraints:

M(β) :
∑
i

λiloadTi
(e) ≤ β, ∀e

λ ∈ ∆|T|,

2Interestingly, the general principle behind boosting is very similar to what we will be doing here. In particular, both
these techniques can be explained via multiplicative weights update framework. Unfortunately, we will not have time to
flesh out this connection further.

7

where λ is the vector of variables and β is a free parameter.
Observe that if we find some λ∗ that satisfies this set of constraints then, by (15), the corresponding

convex combination Γ∗ = {(λ∗i , Ti)} gives rise to an oblivious routing scheme MΓ∗ with

β(MΓ∗) ≤ β.

In other words, we can reduce the task of bounding the competitiveness of oblivious routing schemes
that are based on convex combinations of trees to analyzing feasibility of the constraint set M(β) for
different values of β.

To tackle the latter task, we will use the multiplicative weight update method–based framework
for solving feasibility problems that we developed in Lecture 10. (See the notes from that lecture for
necessary definitions and background.)

To apply this framework, let us first cast the constraint setM(β) in the following equivalent form

M(β) : Aλ ≤ β ·~1
λ ∈ ∆|T|,

where A is an m-by-|T| matrix defined as

AeT := loadT (e). (16)

Next, we want to design an (θ, ρ)-oracle for that feasibility problemM(β). Our plan here will be to
analyze what lower bound β∗ on the value of β would ensure that, for any ε > 0, this oracle never fails,
when used to find an ε-approximately feasible solution to the set of constraintsM(β). Clearly, once we
are able to find such β∗, we will know thatM(β) is always feasible whenever β ≥ β∗. This, in turn, will
mean that there always exists a convex combination Γ∗ for which β(MΓ∗) ≤ β∗.

To realize the above plan, let us recall that the key requirement for such a (θ, ρ)-oracle for M(β)
is that, as long as M(β) is feasible, this oracle is able to output “feasible on average” solutions. More
precisely, given a convex combination p ∈ ∆m of linear constraints corresponding to the rows of the
matrix A, the oracle should output a vector λ ∈ ∆|T| such that

pTAλ ≤ β · pT~1 = β, (17)

unless M(β) is not feasible, in which case outputting either ⊥ (to indicate “failure”) or λ as above is
allowed. (As already mentioned, we will actually make sure that ⊥ is never returned in our setting.)

Now, to construct our oracle it will be crucial to understand the “feasible on average” condition (17)
better. To this end, suppose that our oracle, given an input p ∈ ∆m, has to output a vector λ ∈ ∆|T|
that is supported on only a single tree T . What should this tree T be to satisfy condition (17)?

Observe that, by the definition (16) of A and the definition (13) of loadT (e), we have that

pTAλ =
∑
e

peloadT (e) =
∑
e

∑
e′:e∈pathT (e′)

pe.

By changing the order of sums, we can rewrite the last expression as∑
e

∑
e′:e∈pathT (e′)

pe =
∑
e′

∑
e∈pathT (e′)

pe =
∑
e′

p(pathT (e′)) =
∑
e′

stretchT (e′)pe′ ,

where p(pathT (e′)) is the length of the unique path joining the endpoints of e′ in the tree T wrt edge
lengths given by pes, and stretchT (e′) := p(pathT (e′))

pe′
is the corresponding stretch of edge e′ in tree T

(see notes from Lecture 7).
So, in the light of the above, the “feasibility on average” condition (17) can be expressed as

pTAλ =
∑
e′

stretchT (e′)pe′ ≤ β.

8

We want now to choose the tree T that will make the left-hand side of this inequality as small as
possible (and thus satisfy the condition (17) with as small β as possible). What should our choice of T
be?

Note that the expression ∑
e′

stretchT (e′)pe′

can be viewed as the expected stretch of an edge e when sampling e to be e′ with probability pe′ .
Consequently, it is tempting to make T be low-stretch, as described in the theorem below. (Also, see
the notes from Lecture 7.)

Theorem 6 (Low-stretch Spanning Trees) For any graph G with m edges, one can construct in
Õ(m) time a spanning tree T of G such that∑

e′ stretchT (e′)

m
= Õ(log n).

A low-stretch spanning tree as above is not exactly what we need though. Observe that the low-
stretch property bounds the average stretch, i.e., expected stretch for the case of all pe′ = 1

m , which
might be very different to the expected stretch when pe′s are very non-uniform. Fortunately, there is a
simple way to alleviate this shortcomings and compute the tree that we need.

Lemma 7 For any graph G with m edges and any p ∈ ∆m, one can construct in Õ(m) time a spanning
tree T of G such that ∑

e′

stretchT (e′)pe′ = Õ(log n).

Clearly, in the light of the above lemma, setting β ≥ β∗ := Õ(log n) suffices to ensure that the
“feasibility on average” condition (17) is satisfied. By our discussion above, we can conclude that there
always exists a convex combination of spanning trees Γ∗ such that

β(MΓ∗) ≤ β∗ = Õ(log n).

So, basing our oblivious routing scheme on a convex combination of spanning trees, instead of a single
spanning tree, improved competitiveness exponentially, from Θ(m) to Õ(log n)!
Proof Given the graph G and the convex combination p ∈ ∆m, consider a multigraph Ĝp that is
over the same vertex set as the graph G and, for each edge e in G, it has dpeme copies of that edge.
(Intuitively, graph Ĝp emphasizes edges e with unusually large value of pe by including many copies of
that edge.) Note that the number m̂ of edges of Ĝp is at most

m̂ =
∑

e∈E(G)

dpeme ≤
∑

e∈E(G)

(pem+ 1) = 2m.

Now, let us use Theorem 6 to find a low-stretch spanning tree T for Ĝp. By our construction, T is
also a spanning tree of the original graph G and the stretch of an edge e in G wrt T is exactly the same
as it is in Ĝp. We thus have that

∑
e′∈E(G)

stretchT (e′)pe′ ≤
∑

e′∈E(G)

stretchT (e′) · 2dpe′me
m̂

= 2 ·
∑
e∈E(Ĝp) stretchT (e)

m̂
≤ Õ(log n),

where the last inequality follows as T was a low-stretch spanning tree for Ĝp. Also, as m̂ ≤ 2m, finding
T can be performed in Õ(m̂) = Õ(m) time.

9

4.3.2 Bounding τ(MΓ)

We just established that for every graph G there exists a convex combination Γ∗ = {(λ∗i , Ti)}i of
spanning trees such that β(MΓ∗) ≤ β∗ = Õ(log n). This is a dramatic improvement over the

√
m and

O(m) bounds we obtained for electrical flow–based and single spanning tree–based oblivious routing
schemes, respectively. What is the construction and application time τ(MΓ∗) of such scheme though?
Can we still match the, essentially best possible, time bounds for the previous two schemes?

In principle, in the previous section we argued only that the convex combination Γ∗ exists, without
saying anything about computing it. Still, the nature of our argument was algorithmic. Specifically, if
we set our error parameter ε to be 1

2 then our multiplicative weights update method–based framework
will use our (θ, ρ)-oracle to find a solution λ′ ∈ ∆|T| with

Aλ′ ≤ β∗ ·~1 + ε ·~1 = (β∗ +
1

2
) ·~1.

In other words, it will find a convex combination Γ′ := {(λ′i, Ti)}i such that the resulting oblivious
routing scheme MΓ′ will have competitiveness β(MΓ′) of at most

β(MΓ′) ≤ β∗ + ε ≤ β∗ +
1

2
= Õ(log n).

Furthermore, from the analysis we performed in Lecture 10 (see Theorem 3 in the notes from that
lecture), the number of oracle calls needed to compute such λ′ will be at most

O(θρε−2 logm) = Õ(θρ), (18)

where θ and ρ are such that, for any p ∈ ∆m, if λ(p) ∈ ∆|T| is the convex combination returned by our
oracle in response to input p then, for each edge e,

[−θ, ρ] 3 (Aλ(p))e − β∗ =

(∑
i

λ(p)iloadTi(e)

)
− β∗ = loadT (p)(e)− β∗,

where we used the fact that our oracle always returns a convex combination λ(p) that is supported on
a single tree T (p).

As loadT (p)(e) has to be always non-zero, we have that θ ≤ β∗. On the other hand, we can bound ρ
as follows

ρ ≤ max
p∈∆m

max
e

loadT (p)(e)− β∗ ≤ max
T∈T

max
e

loadT (e) ≤ m.

So, our bound (18) becomes
Õ(θρ) = Õ(β∗m) = Õ(m),

and we can conclude that
τ(MΓ′) ≤ Õ(m2),

where we used the fact that, by Lemma 7, each oracle call takes Õ(m) time. Furthermore, recall that
each of our oracle calls provided a convex combination λ(p) that is supported only on a singe tree, and the
final convex combination λ′ is the average of all these returned single tree–supported λ(p). Thus, we can
conclude that there is at most Õ(m) different spanning trees in the support of the convex combination
Γ′ that we compute.

Finally, let us remark that having τ(MΓ′) be quadratic in the graph size is hardly satisfying. Es-
pecially, in the context of applying this oblivious routing scheme to our maximum flow algorithm – see
Lemma 3. We thus will still need to address this problem in the future.

10

	Overview
	Recap of the Last Lecture
	Oblivious Routing Schemes
	Competitiveness of Oblivious Routing Schemes
	Oblivious Routings and Affine -projections

	Constructions of Oblivious Routing Schemes
	Oblivious Routing with Electrical Flows
	Oblivious Routing with Spanning Trees
	Oblivious Routing with a Convex Combination of Spanning Trees
	Bounding (M)
	Bounding (M)

