
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 September 22, 2015

Lecture 3
Lecturer: Aleksander Mądry Scribe: Tal Wagner

1 Overview
In this lecture, we analyze the gradient descent algorithm. This is a first-order optimization method that
enables us to leverage certain smoothness property of the minimized function to achieve a convergence
rate that is better than the one delivered by the (projected) sub-gradient descent algorithm we analyzed
last time.

2 Maximum Flow Problem as an Optimization Problem
Our motivating combinatorial optimization problem is the maximum flow problem. Given an input
undirected graph G(V,E) with |V | = n vertices, |E| = m edges, and s, t ∈ V , we formulated it as
follows:

min ‖f‖∞ (1)
s.t. Bf = χs,t,

where B ∈ Rn×m is a signed edge-vertex incidence matrix of G, defined as

Bv,e :=

−1 v is the head of e
1 v is the tail of e
0 otherwise

, (2)

under an arbitrary orientation of the edges of G, and χs,t ∈ RV is defined as

χs,t(v) :=

−1 v = s

1 v = t

0 otherwise
. (3)

At this point, we want to abstract away the specifics of the the maximum flow problem, and view it
as a general convex program:

min f(x) (4)
s.t. x ∈ K.

where f : Rn → R is a convex function, and K ⊂ Rn is a convex set.
As mentioned earlier, in principle, we could apply generic convex programming machinery, such as the

Ellipsoid algorithm to solve this general problem. However, this would result in a rather slow algorithm.
Instead, we attempt to use gradient descent–type strategies to get a much improved performance, but
at a price of delivering worse quality of approximation.

3 Gradient Descent and Projected Gradient Descent Algorithms
Recall that if we are dealing with an unconstrained minimization problem, i.e., have K = Rn, the gradient
descent (GD) algorithm takes the form presented in Algorithm 1.

1

Algorithm 1 Gradient descent algorithm
x1 ← ~0
for s = 1, . . . , T − 1 do

xs+1 ← xs − η∇f(xs)
end for
return xT

In words, we initialize our estimate x1 to an arbitrary feasible point, e.g., an all-zeros vector ~0, and
then make a sequence of T local improvements. Each of these improvements corresponds to taking a
step of in the direction opposite to the gradient of the current estimate, −∇f(xs), with the step size
modulated by the parameter η. Since the gradient points in the steepest direction upwards, we know
that taking a step in the opposite direction yields the best local improvement toward minimization.

Observe that the final answer returned by gradient descent is simply the last point xT and not
the average x̄T := 1

T

∑T
s=1 xs of all the computed points, as was the case in the subgradient descent

algorithm we analyzed last time. In fact, one could have a variant of the gradient descent in which one
also returns x̄T instead of xT but its convergence would be slower. After all, we know that if a sequence
converges then the sequence of averages converges as well but at a slower rate. So, as long as we can
control the direct convergence – which we couldn’t do in the setting of subgradient descent but will be
able to do now – then working with that convergence is always preferable.

Now, if we want to adapt gradient descent to the constrained setting, i.e., when K is a proper (convex)
subset of Rn, we again need to employ the notion of projection to keep each successive steps within our
feasible set K. To this end, recall the following definition

Definition 1 (`2-) projection For a convex set K ⊆ Rn and a point y ∈ K, let us define

ΠK(y) := argminx∈K‖x− y‖2.

The crucial property of the projection is captured by the following fact.

Fact 2 For any x ∈ K and y ∈ Rn, (ΠK(y)− x)
T

(ΠK(y)− y) ≤ 0.

Geometrically speaking, the above fact tells us that the angle between the lines formed between x
and the projection of y; and y and its projection is always obtuse – see Figure 1.

b

b

b

y

x
ΠK(y)

‖y −ΠK(y)‖
‖x− y‖

‖x−ΠK(y)‖

K

Figure 1: Illustration for Fact 2.

Now, armed with the notion of projection we can “fix” the gradient descent strategy from Algorithm
1 to make it work with the constraints imposed by the feasible set K. The resulting projected gradient
descent (abbrev. PGD) algorithm is presented as Algorithm 2.

4 L-Smoothness
Clearly, to make the (projected) gradient descent algorithms well-defined, we need to assume that the
objective function f is differentiable. Otherwise, the gradients ∇f(x) might not exist sometime. In fact,

2

Algorithm 2 Projected gradient descent algorithm
H
x1 ← ~0
for s = 1, . . . , T − 1 do

xs+1 ← ΠK (xs − η∇f(xs))
end for
return xT

in order to develop rigorous quantitative bounds on the convergence guarantees of these algorithms, we
will need to work with the following quantitative version of differentiability

Definition 3 (L-smoothness) We say f is L-smooth, for some L ≥ 0 iff

∀ x, y, ‖∇f(x)−∇f(y)‖2 ≤ L · ‖x− y‖2.

The above property should be compared with the property of f that we needed for the analysis of
the projected subgradient descent algorithm. There, we needed a bound G that acted as a Lipschitz
constant of f (first-order condition), whereas here L is a Lipschitz constant of∇f , which is a second-order
condition.

How can leverage L-smoothness for our needs? In general, when analyzing the local improvements
approach of GD-type algorithms, we need to use local information about f to infer global information
about it. For example, the convexity of f tells us that if the gradient is zero locally at a point x, then x
is a global optimum. We would like to get stronger implication of this type, and the implication we get
from L-smoothness is encompassed by the following lemma.

Lemma 4 If f is convex and L-smooth, then

∀ x, y ∈ D, 0 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
· ‖x− y‖22.

To get some intuition for this technical statement, let us recall the Taylor expansion of f(y) around x:

f(y) = f(x) +∇f(x)T (y − x) + . . .

The convexity of f implies that if we omit all the terms beyond the linear one from the right-hand side,
it can only decrease

f(y) ≥ f(x) +∇f(x)T (y − x).

(To see this, recall that ∇f(x) is a subgradient of f .) This gives a lower bound on f(y)− f(x) that acts
as a measure for the global quality of x as an estimate of the optimum. The left-hand side in Lemma 4
is just the difference between the quantity f(y) − f(x) and its lower bound ∇f(x)T (y − x) (which is a
first-order bound), and the lemma states a bound on this difference (and thus a second-order bound),
in terms of the smoothness constant L.

Proof [of Lemma 4] The left-hand side inequality follows directly from the convexity of f , as explained
above.

3

To establish the right-hand side inequality, let us note that by Cauchy-Schwarz inequality we have
that

|f(y)− f(x)−∇f(x)T (y − x)| =

∣∣∣∣∫ 1

0

(
∇f(x+ t(y − x))T (y − x)−∇f(x)T (y − x)

)
dt

∣∣∣∣
≤

∫ 1

0

∣∣∣(∇f(x+ t(y − x))−∇f(x))
T

(y − x)
∣∣∣ dt

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖ · ‖y − x‖dt

≤
∫ 1

0

L‖x+ t(y − x)− x‖ · ‖y − x‖dt

=
L

2
‖y − x‖2,

where the last inequality follows directly from the definition of L-smoothness.

5 The Analysis of the Gradient Descent Algorithm
With the notion of L-smoothness and Lemma 4 at hand, we are ready to analyze the performance of
GD approaches. For now, we restrict our attention to the unconstrained version of the program Eq. (4),
K = Rn and analyze the corresponding gradient descent algorithm as presented in Algorithm 1. We will
prove the following guarantee for GD in this setting:

Theorem 5 Suppose f is L-smooth. If we set η = 1
L , then the output xT of the Algorithm 1 satisfies

f(xT)− f(x∗) ≤ O
(
L ·R2

T

)
,

where R := ‖x1 − x∗‖2.

Note the substantial gain over the analogous RL√
T
convergence bound of subgradient descent. The inverse-

dependence of T is improved from square-root to linear. Also, note that the definition of R is modified
from the radius of K to the distance from the initial estimate, since we are now in the setting K = Rn,
so K is not compact and has no finite radius.

Before delving into the details of the proof, let us get some sense of what we are aiming at. We begin
with the following observation:

Observation 6 For every s,

f(xs)− f(xs+1) ≥ 1

2L
‖∇f(xs)‖22.

Proof Apply Lemma 4 with x = xs and y = xs+1, and recall that xs − xs+1 = η∇f(xs) = 1
L∇f(xs).

The observation follows by simple manipulations.

This is a lower bound on the progress of GD in each step, in terms the gradient norm at that step.
Indeed, we have already mentioned several times that the gradient norm at a point x acts as a measure
for the distance of x from the optimum x∗. If the norm is large, then we might be far from the optimum,
but Observation 6 guarantees we make large progress in the current step; if the norm is small, then we
have a poor guarantee for the progress of the current step, but this is okay since we are already quite
close to the optimum. This is the trade-off that we wish to build on.

4

5.1 Proof of Theorem 5
For s = 1, . . . , T − 1, define

δs := f(xs)− f(x∗).

We have
δs = f(xs)− f(x∗) ≤ ∇f(xs)

T (xs − x∗) ≤ ‖∇f(xs)‖2 · ‖xs − x∗‖2, (5)

where the first inequality follows from the left-hand-side inequality of Lemma 4, and the second inequality
is Cauchy-Schwartz. Hence

δs − δs+1 ≥
1

2L
‖∇f(xs)‖22 ≥

1

2L
· δ2s
‖xs − x∗‖22

, (6)

where the first inequality is Observation 6 and the second inequality is by Eq. (5). The difficulty now is
to handle the term ‖xs − x∗‖22 in the denominator. It is tempting to bound ‖xs − x∗‖2 by R, but this
turns out to be a subtle point. The definition R := ‖x1 − x∗‖22 does not generally imply ‖xs − x∗‖22 ≤ R
for every s. In our setting, however, we can obtain this bound by relying on the L-smoothness of f and
on the careful choice of the step size η = 1

L . Let us record it as a lemma:

Lemma 7 For every s, ‖xs − x∗‖2 ≤ R.

To keep the presentation clear, we now complete the proof of Theorem 5 relying on the Lemma 7. The
lemma will be proven in the next subsection.

Plugging Lemma 7 into Eq. (6), we get

δs − δs+1 ≥
δ2s

2LR2
,

and hence
1

δs+1
− 1

δs
=
δs − δs+1

δsδs+1
≥ δs − δs+1

δ2s
≥ 1

2LR2
.

Summing over all s = 1, . . . , T − 1, the left-hand side telescopes and we get

1

δT
− 1

δ1
≥ T − 1

2LR2
. (7)

We bound δ1:

δ1 = f(x1)− f(x∗) ≤ ∇f(x∗)T (x1 − x∗) +
L

2
‖x1 − x∗‖22 ≤

LR2

2
,

where the first inequality is by Lemma 4, and the second inequality by noting that ∇f(x∗) = 0 and
R = ‖x1−x∗‖. By plugging this back into Eq. (7) and rearranging, the proof of Theorem 5 is complete:

δT ≤ O
(
LR2

T

)
.

5.2 Proof of Lemma 7
We will prove the following statement which immediately implies Lemma 7:

∀s, ‖xs+1 − x∗‖2 ≤ ‖xs − x∗‖2. (8)

We highlight the difference between Eq. (8) and the convergence guarantee of the algorithm (which
is stated in Theorem 5): the latter states that the sequence of evaluations {f(xs)} converges to the
evaluation f(x∗) (in R), whereas Eq. (8) is concerned with distance of the actual points {xs} from x∗

(in Rn).
First, let us see why Eq. (8) is not true in general (without relying on the L-smoothness and on the

step size). Visualize the ball centered at x∗ with radius ‖xs−x∗‖. We are standing at xs, and are about
to step to xs+1. Eq. (8) holds if step keeps us inside that ball. The actual direction in which we step

5

is −∇f(x), while the “correct” direction is towards x∗, i.e. into the center of the ball. The convexity
of f ensures us that the angle between the correct direction and the actual direction cannot be obtuse.
Specifically, it follows from the subgradient condition

f(x)− f(y) ≤ ∇f(x)T (x− y)

after plugging x = xs and y = x∗.
However, the direction might still, in principle, be (close to) orthogonal. In such case, any sufficiently

large step we take in direction −∇f(xs) will increase the distance from x∗ and violate Eq. (8) – see the
right diagram in Figure 2 for illustration. So, only sufficiently small steps satisfy Eq. (8).

Figure 2:

The proof of Eq. (8) therefore needs to leverage the L-smoothness to infer that the angle is acute,
and that our selected step size η = 1

L is indeed sufficiently small. The former is encompassed in the
following lemma.

Lemma 8 For every x, y ∈ Rn,

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖22.

Proof

To prove Eq. (8), let us use the above lemma with x = xs and y = x∗ to obtain

∇f(xs)
T (xs − x∗) ≥

1

L
‖∇f(xs)‖22, (9)

where we used the fact that ∇f(x∗) = 0. We can now use this inequality to conclude that

‖xs+1 − x∗‖22 = ‖xs − 1
L∇f(xs)− x∗‖22

= ‖xs − x∗‖22 + ‖ 1
L∇f(xs)‖22 − 2 · 1

L∇f(xs)
T (xs − x∗)

≤ ‖xs − x∗‖22 + ‖ 1
L∇f(xs)‖22 − 2 · 1

L2 ‖∇f(xs)‖22
≤ ‖xs − x∗‖22,

which is exactly (8). Thus, Lemma 7 follows.

6 Conclusion and Future Lectures
Theorem 5 provides an improved bound for GD relying on the additional L-smoothness assumption, but
it suffers some limitations. First, we formulated it only to the unconstrained setting K = Rn, which

6

does not cover our motivating the maximum flow problem problem. In order to extend it to the general
constrained setting, we need to re-introduce the projection step into the algorithm – that is, to analyze
PGD. The difficulty is that the projection might shrink distances, destroying our progress lower bound
in Observation 6, which was crucial to the analysis. It turns out, however, that an appropriate extension
of the analysis to a projected version can overcome this obstacle.

Once this hurdle is behind us, we are faced with the more challenging limitation of Theorem 5:
it relies on the existence of gradients, i.e. on the differentiability of f . The maximum flow problem
formulation in Eq. (1) uses the `∞-norm, which is not differentiable everywhere. Our approach to this
issue will be to approximate the `∞-norm with a smooth objective function, which inevitably will be
lossy, since the program we are optimizing will no longer be an accurate formulation of the maximum
flow problem. The challenge will be to balance the loss in the approximation step against the gain from
the smoothness of the approximate objective function.

7

	Overview
	Maximum Flow Problem as an Optimization Problem
	Gradient Descent and Projected Gradient Descent Algorithms
	L-Smoothness
	The Analysis of the Gradient Descent Algorithm
	Proof of Theorem 5
	Proof of Lemma 7

	Conclusion and Future Lectures

