
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 September 24, 2015

Lecture 4
Lecturer: Aleksander Mądry Scribe: Jarosław Błasiok

1 Overview
In this lecture, we will introduce a technique of smoothing. This technique will enable us to apply the
projected gradient descent method we developed last time to optimization problems that have non-
smooth objective functions. A prime example of such problem is the maximum flow problem. We will
see that smoothing the `∞ objective function in this problem’s formulation by a smooth “soft max”
function smaxδ and then applying projected gradient descent algorithm to it allows us to obtained a
better convergence rate than we previously got with the subgradient descent method.

We will then focus on the basic primitive that we somewhat neglected so far: computing a projection
onto the set of valid s-t flows, which corresponds to electrical flow computations. We will see how general
duality theory for non-linear optimization enables us to reduce electrical flow computations to a strictly
linearly algebraic problem: solving a system of linear equations. Finally, we will start our discussion of
general approaches to solving such linear systems.

2 Recap of the Last Lecture
Much of our discussion in this course revolves around the general problem of constrained convext opti-
mization problem, that is, solving a problem of the following form

min f(x)

s.t. x ∈ K,

where the objective function f and the feasible set K are both convex.
As we know, these kind of problems can be solved in polynomial-time, e.g., via ellipsoid method.

However, we are interested in much faster – if not necessarily exact – algorithms. In particular, in
the previous lecture we have analyzed the classic algorithm called projected gradient descent, whose
description appears below.

Algorithm 1 Projected gradient descent
Take x1 to be an arbitrary point in K
for s = 1 . . . T − 1 do

xs+1 ← ΠK (xs − η∇f(xs))
end for

Here, ΠK is an (`2-)projection onto a convex set K, defined as

ΠK(x) := argminy∈K ‖x− y‖. (1)

Note that the gradient descent algorithm is well-defined only if the gradients of the objective function
f are so. Moreover, in order to have good guarantees on the performance of this algorithm, we need
even stronger assumptions on the function f called L-smoothness.

Definition 1 (L-smoothness) We say f is L-smooth, for some L ≥ 0 iff

∀ x, y, ‖∇f(x)−∇f(y)‖2 ≤ L · ‖x− y‖2.

1

Observe that L-smoothness corresponds to having the gradient ∇f of f be a Lipschitz function with
parameter L.

Last time, we have proved the following theorem.

Theorem 2 If f is L-smooth and we set η = 1
L then, after T iterations of the Algorithm 1, we have

that

f(xT)− f(x∗) ≤ O
(
LR2

T

)
, (2)

where x∗ is an optimal solution (i.e., a point x∗ ∈ K that minimizes f), and R := ‖x1 − x∗‖ is bounded
by the radius supx,y∈K ‖x− y‖ of K.

The convergence bound provided by this theorem should be contrasted with the RG√
T

convergence
bound that the projected subgradient descent algorithm yielded. There, G was the Lipschitz constant of
f (instead of ∇f), and the guarantee was on the convergence of the average x̄T of all the visited points
(instead of the sequence of the points itself).

So, we can see that the L-smoothness of f allows us to achieve a much better – only quadratic –
dependence on T . (Although the dependence on R is worse.)

3 Smoothing Technique
Let us get back now to our formulation of the maximum flow problem.

min ‖f‖∞

s.t. Bf = χs,t

Recall that here

Bv,e :=

−1 v is the head of e
1 v is the tail of e
0 otherwise

, (3)

where the orientation of the edges of G is arbitrary, and χs,t is defined as

χs,t(v) :=

−1 v = s

1 v = t

0 otherwise
. (4)

Given the better performance of the projected gradient method, we would like to use it – instead
of projected subgradient descent method – to obtain a faster maximum flow algorithm. At first, this
seems to be a hopeless task. After all, our objective function ‖ ·‖∞ is not even differentiable everywhere.
Consequently, its gradient might not even exist at some points, let alone be Lipschitz.

Observe, however, that as long as the coordinates of x are all non-zero and have distinct values the
gradient of ‖x‖∞ exists and is very well behaved – in fact, its Lipschitz constant is only 1. Can we thus
maybe “fix” this function somehow by changing it slightly to make it smooth also in the critical regions
where some of the coordinates are zero? Having such a “fixed” function at our disposal we would be able
to run gradient descent on it and thus hopefully take advantage of the improved convergence provided
by Theorem 2.

It turns out that such a “fixing” of a function – usually referred to as smoothing – is indeed possible.
In fact, it is a powerful and widespread tool in many areas of continuous (and not even necessarily
convex) optimization.

2

Figure 1: Plots of smaxδ functions for δ ∈ {1, 3, 5}, compared to | · |

3.1 The smaxδ Function
In the context of the `∞-norm that we are interested here, the function to consider is the so-called
soft-max function smaxδ defined as

smaxδ(x) := δ ln

(∑n
i=1 e

xi
δ + e

−xi
δ

2n

)
, (5)

where δ is a parameter. See Figure 1 for a visualization of this function in one dimension.
Note that this function has all the properties that make it convenient to optimize with respect to it.

It is easy to evaluate it, compute its gradient, as well as is convex and smooth.

Lemma 3 For every δ > 0, the function smaxδ is convex and 1
δ -smooth.

(The proof is left as an exercise.)
Of course, the fact that the soft-max function is “nice” from the optimization point of view is only

one of the aspects we care about. After all, a function that is constant everywhere would be even “nicer”
in this regard. So, the other important property of soft-max is that it approximates the `∞ norm very
well, i.e., only up to a small additive error.

Lemma 4 For every x ∈ R, we have

‖x‖∞ − δ ln(2n) ≤ smaxδ(x) ≤ ‖x‖∞. (6)

Proof For an upper bound, we will just bound every summand in the sum in the argument of the
natural logarithm in smax(x) by the maximum one.

3

smaxδ(x) = δ ln

(∑n
i=1 e

xi
δ + e

−xi
δ

2n

)

≤ δ ln

(∑n
i=1 2e‖x‖∞/δ

2n

)
= δ ln e‖x‖∞/δ

= ‖x‖∞

Whereas for lower bound we will observe that the very same sum is larger than its largest summand.

smaxδ(x) = δ ln

(∑n
i=1 e

xi
δ + e

−xi
δ

2n

)

≥ δ ln

(
e‖x‖∞/δ

2n

)
= ‖x‖∞ − δ ln(2n)

Looking at Lemmas 3 and 4, we see that there is a certain tension between the two aspects of the
function smax. On one hand, we want this function to be as smooth as possible, which translates to
keeping δ large. On the other hand, we want it to approximate `∞-norm closely, which requires δ be
small. Optimizing this trade-off between the quality of approximation and the smoothness offered is the
key challenge in the context of smoothing. The better trade-off we achieve the better algorithm we get
(but it is not hard to see that there are fundamental limits to how good a trade-off one can get).

3.2 Solving the Maximum Flow Problem via Smoothing
Now, once we introduced the smaxδ function, we can use it to smoothen the `∞ norm and apply the
gradient descent algorithm to such smoothened version of the maximum flow problem. Specifically, let
us consider the following optimization problem.

min smaxδ(f)

s.t. Bf = χs,t

where we set δ := ε
ln(2n) . By Lemma 4 we know that working with this smoothened version of the

maximum flow problem leads to an additive error of at most δ ln(2n) = ε, which is entirely acceptable
for us. (After all, our algorithm incurs an additive error of ε anyway.)

Once we are working with the smaxδ objective, we are able to apply the projected gradient descent
(Algorithm 1) to it. By Lemma 3, the smoothness parameter of smaxδ is equal to L = 1

δ = ln(2n)
ε and,

from previous lecture, we know that R ≤
√
n. Consequently, by Theorem 2 and our discussion above,

we have that after

TPGD = O
(
LR2

ε

)
= O(nε−2 log n) = Õ(nε−2) (7)

iterations we obtain a flow solution that is within 2ε additive error of the optimal one.

3.3 Why Does Smoothing Help?
Observe that the number TPGD of iterations we achieved now is significantly smaller – by a factor of
roughly m – than the bound of TSGD = O(mnε−2) we got last time, when we applied the subgradient
descent method directly to the maximum flow problem. Where is this improvement coming from?

After all, the general approach that we employed is exactly the same in both cases – we are using
local informations provided by the (sub) gradient to guide our greedy improvement in every step. The

4

Figure 2: Intuitive picture presenting a oscillation around optimum of subgradient descent for mini-
mizing |x|. Brown dots represents subsequent steps of algorithm — the position along x axis is a value
xt, where the y-coordinate of every such dot represents the iteration t. Red line depicts the objective
function |x|.

functions we apply this procedure to are different, but only slightly. Was the previous, worse, bound
just an artifact of our analysis, or is our new algorithm different in some fundamental way?

To get more intuition about this, let us consider a very simple optimization problem: unconstrained
minimization of the `∞-norm in one dimension. Clearly, in this case, ‖x‖∞ is simply the absolute value
|x| of x.

Let us think now what happens when we apply the subgradient descent method to this problem with
our starting point being some x1 > 0 – see Figure 2. At first, the algorithm will take steady steps toward
the optimum point, x = 0. As long as x 6= 0, the gradient (which is now simply a derivative) is either
1 or −1, depending on whether x is positive or not. So, each step of this algorithm will have exactly
the same length η. Once this sequence of steps reaches the neighborhood of the optimum point, i.e.,
0 ≤ xs ≤ η, the point xs will start osculating around x = 0 indefinitely – each step “overshooting” the
optimum and never converging.

This constant overshooting and corresponding indefinite oscillation illustrates the key problem with
applying gradient descent–type approaches to non-smooth functions. Namely, the local information on
such function, i.e., the (sub)gradients, might not give us any information on how far from the optimum
we are – only what is the direction in which the optimum lies. This is a big problem when we need to
choose the step size. After all, on one hand, we want to take large steps when we are far away from
the optimum – so as make sufficient progress. But, on the other hand, we want to take only small
steps once we are in the optimum’s vicinity – in order to avoid too large oscillations around it. The
lack of any hints on the current distance to the optimum forces us to make one, suboptimal, fit-it-all
choice of the step size. This need to make a fixed choice already leads to a slower convergence. Also, the
possibility of indefinite oscillations around the optimum necessitates focusing on the, slower, convergence
of the sequence of averages of all the intermediate points instead of on the direct convergence of the
intermediate points, as the latter sequence might not even converge.

The above discussion highlights the key goal of smoothing: encoding the information about the critical
non-smooth regions of the function in the local (gradient) structure of these region’s neighborhood. In

5

particular, in our example of |x| minimization, if we work with the smaxδ(x) function instead, then the
gradients of smaxδ(x) will become increasingly smaller the closer we are to the optimum. Consequently,
the resulting gradient descent step size will be always appropriately attuned – large when far away from
the optimum, smaller when in optimum’s vicinity – and will yield fast and direct convergence. We thus
see that applying the smoothing technique, even if seemingly innocent, might have a dramatic effect
both on the algorithm itself and its performance.

4 Computing a Projection on the Space of s-t Flows
The performance of all the algorithms for the maximum flow problem that we developed so far was
measured in terms of the number of (sub)gradient-descent steps that the algorithm takes. However,
taking each such steps involved not only computing a gradient (that was so far a straight-forward
operation) but also computing a projection ΠFs,t of our new point on the feasible set Fs,t of all the valid
s-t flows of value 1. The latter operation seems non-trivial. So, in order to bound the actual running
time of our algorithms we need to discuss now how to perform it efficiently.

4.1 Electrical Flows
By definition, computation of the projection ΠFs,t of a given point (flow) g is captured by the following
`2-minimization problem.

argmin ‖g − f‖2

s.t. Bf = χs,t,

where the matrix B (defined in (3)) and the vector χs,t (defined in (4)) describe the affine space Fs,t.
Taking h := g − f , we can consider an equivalent problem

argmin ‖h‖2

s.t. Bh = σ,

where σ := χs,t−Bg is a fixed vector of demands that the flow h has to obey in order to have f = h−g
be a valid s-t flow.

In other words, our problem is to find a flow h that minimizes `2 norm over all the flow that obey
the flow demand pattern described by σ. It turns out that this kind of question is very well studied,
both in optimization and in physics and corresponds to the notion of electrical flow.

Electrical flow problem:

• Input: A graph G = (V,E), a demand vector σ, and a positive resistance re associated with each
edge e.

• Goal: Find the optimal solution h∗ to the following minimization problem

min
1

2
hTRh

s.t. Bh = σ

Here, the matrix R is an m×m diagonal matrix defined as

Re,e′ :=

{
re if e = e′

0 otherwise
, (8)

and thus we have that
hTRh =

∑
e

reh
2
e (9)

6

is just the energy of the flow h, as we know it from physics.
Observe that by introducing the resistances re we made the above definition slightly more general.

However, we recover our original problem by taking all resistances to be equal to 1. (Note that the 1
2

scaling factor in front of the energy in the objective function does not change the problem – it is there
just for notational convenience.)

4.2 Electrical Flows and Linear Systems
Once we formalized the problem we need to solve, let us try to understand how we can go about solving it.
Clearly, electrical flow computation corresponds to a convex optimization problem, so as usual we might
just use some off-the-shelf method, such as ellipsoid method, to solve it. Needless to say, this answer is
hardly satisfying, as the whole point of our approach was to reduce the maximum flow computations –
which also can be solved via ellipsoid method – to solving a simpler task that admits much more efficient
algorithms.

As we will see soon, our hopes are not ill-founded. Electrical flow problem is indeed a much simpler
optimization question. In fact, it boils down to linear algebra – more precisely, to solving a linear system,
i.e., a system of linear equations, that has a very special structure.

In order to establish this connection we will need to make a very brief detour through so-called duality
theory. Duality theory is a very fundamental and useful concept in optimization. Very roughly speaking,
it relates to the fact that for every optimization problem P of the general form:

min f(x)

s.t. x ∈ K,

which is usually referred to as primal problem, there exists a different optimization problem D

max f̄(y)

s.t. y ∈ K̄,

which is called the dual problem that if very closely related to P.
Specifically, for any feasible solution x to the primal problem P and any feasible solution y to the

dual problem D, we have that
f(x) ≥ f̄(y). (10)

This phenomena is called weak duality. It implies, in particular, that any feasible primal solution provides
an upper bound on the value f̄(y∗) of an optimal solution y∗ to the dual problem and any feasible dual
solution provides a lower bound on the value f(x∗) of the optimal solution x∗ to the primal problem.

Even more interestingly, provided certain technical conditions are satisfied (which will be always the
case in our discussion), we also have strong duality:

f(x∗) = f̄(y∗). (11)

That is, the value f(x∗) of the primal optimal solution x∗ is equal to the value f̄(y∗) of the dual optimal
solution.

The connection of electrical flow problem to linear system solving is a consequence of the strong
duality for the so-called Lagrangian formulation of that problem that is given via the following min-max
optimization problem

min
h

max
ϕ
L(h, ϕ), (12)

where
L(h, ϕ) :=

1

2
hTRh− (Bh− σ)Tϕ (13)

and ϕ ∈ Rn is a vector of dual variables that are sometimes referred to as vertex potentials.
Observe that the problem (12) is an unconstrained problem, that is, both h and ϕ can be arbitrary

vectors. However, this problem turns out to be completely equivalent to the constrained optimization
problem that served as a definition of the electrical flow problem.

7

To see why this is the case, one should think about the min-max problem (12) as a two player game.
In this game, the first player, let’s call him/her the minimization player, has to first commit to some
vector h. Then, seeing this choice of h, the second player, let’s call him/her the maximization player,
chooses a vector ϕ so as to make the value of the Lagrangian L(h, ϕ) maximal. The optimal value of
this optimization problem is exactly the minimum value of L(h, ϕ) that the minimization player can
guarantee why playing that game.

With this interpretation in mind, it is not hard to see why this Lagrangian formulation indeed
captures electrical flow problem. Observe that if the minimization player chooses h that is not feasible
for our flow problem, i.e., Bh 6= σ, then the vector Bh− σ is non-zero, which enables the maximization
player to choose ϕ that will make the value of L(h, ϕ) arbitrarily large. So, despite the apparent freedom
to choose arbitrary h, the minimization player has to stick only to feasible hs. This means though that
we always have that Bh−σ = 0 and thus the maximization player has no impact on the value of L(h, ϕ)
anymore. Our problem boils down therefore to finding a feasible flow h that minimizes

L(h, ϕ) =
1

2
hTRh− (Bh− σ)Tϕ =

1

2
hTRh,

which is exactly our electrical flow formulation.
Once we convinced ourselves that the problem (12) indeed captures the electrical flow problem, let

us consider its Lagrangian dual
max
ϕ

min
h
L(h, ϕ), (14)

which is obtained by simply changing the order of maximization and minimization. This new program
can be interpreted as a game as well, the only difference is that it is the maximization player who has
to commit first to his/her choice. We thus have that

min
h

max
ϕ
L(h, ϕ) ≥ max

ϕ
min
h
L(h, ϕ),

as the changing of the order can only give more power to the minimization player. In other words, the
weak duality holds (cf. (10)).

Furthermore, the strong duality holds as well and it can be used to prove the following theorem.

Theorem 5 There exists primal and dual solutions h∗ and ϕ∗ such that:

(i) L(h∗, ϕ∗) = maxϕ L(h∗, ϕ);

(ii) L(h, ϕ∗) = minh L(h, ϕ∗);

(iii) ∇L(h∗, ϕ∗) = 0.

The first two conditions in the above theorem imply, in particular, that h∗ and ϕ∗ are optimal
solutions to the primal and dual problems. However, these conditions also provide us with a much
deeper and non-trivial statement.

Namely, going back to our game theoretic interpretation of these optimization problems, h∗ and
ϕ∗ are optimal strategies for both players irrespectively of the order in which they need to reveal their
choices. Even if one of these players can see first what the other one played, as long as the latter player
chose to play according to these strategies, there is no gain for the former player in not following the
strategy too. In other words, the strategies h∗ and ϕ∗ are Nash equilibrium of the underlying game. This
can be viewed as a generalization of the von Neumann’s MinMax theorem that proves existence of such
Nash equilibrium for any zero-sum game and connects this fact to duality theory for linear programs.

Finally, the third condition in the theorem above is so-called Karush-Kuhn-Tucker (KKT) condition
that is a necessary (but not always sufficient) condition for the solutions h∗ and ϕ∗ to be optimal.

Now, let us examine what does this KKT condition imply for our particular problem. By definition,
the gradient ∇L(h, ϕ) has n+m coordinates, first part corresponds to ϕ and the second one corresponds
to h.

For the first part, the KKT condition implies that

0 = ∇ϕL(h∗, ϕ∗) = −(Bh∗ − σ), (15)

8

which implies that h∗ has to be a flow whose demand pattern is exactly σ.
For the second part, the KKT condition implies that

0 = ∇hL(h∗, ϕ∗) = Rh∗ −BTϕ∗,

which is equivalent to the statement that

h∗ = R−1BTϕ∗. (16)

Let us take a moment to understand better what the above condition means. If we consider one coor-
dinate of this equation, corresponding to some edge e = (v, u), (16) will imply that

h∗e =
(ϕu − ϕv)

re
,

which is exactly the Ohm’s law that we know from physics. So, (16) tells us that Ohm’s law is just a
primal-dual optimality condition for electrical flows. This also justifies referring to dual variables ϕ as
vertex potentials.

Putting (15) and (16) together, we must have that

σ = Bh∗ = B
(
R−1BTϕ∗

)
=
(
BR−1BT

)
ϕ∗ = Lϕ∗, (17)

where L := BR−1BT .
Equation (17) implies that ϕ∗ correspond to a solution to a linear system in a matrix L = BR−1BT .

Moreover, once we compute ϕ∗ we can easily get the corresponding electrical flow h∗ by applying Ohm’s
law (16) to ϕ∗. Therefore, indeed computing the electrical flow h∗ corresponds to solving a linear system.

Before we continue, let us remark that the matrix L is an extremely important matrix – it is the
Laplacian matrix of the graph G. This matrix is a central object of the field of spectral graph theory that
aims to tie the linear algebraic properties of this matrix to the combinatorial properties of the graph it
describes. (Hopefully, we will be able to explore this topic in a bit more detail later in the semester.)

Also, as we will see soon, this matrix turns out to have a very interesting structure that will enable
us to solve linear system in it, i.e., a Laplacian system, extremely fast – that is, in nearly-linear time.
As a result, electrical flow computation ends up being a nearly-linear time computable primitive.

5 Fast Linear System Solving
Our quest for developing fast maximum flow algorithm brought us to another fundamental computational
problem: solving a linear system. Specifically, we have shown that in order to perform a projection step
in the projected gradient descent algorithm for the maximum flow problem, we need to solve a Laplacian
system Lϕ = σ, where L is Laplacian matrix of the underlying graph.

Let us, therefore, switch gears and put the maximum flow problem aside to focus our attention on
a new topic: fast algorithms for solving general linear systems. We will discover that there is a lot of
beautiful ideas and intimate connections to convex optimization there.

5.1 Direct Methods
Consider a system of linear equations

Ax = b.

How could we go about solving it?
The first instinct is to simply compute A−1 and then multiply both sides of the linear system through

it, obtaining an answer x∗ = A−1b.
Although this approach would certainly work, it has a couple of undesirable properties. First of all,

computing an A−1 is quite costly computationally. Applying Gaussian elimination requires O(n3) time
and if we resort to, fairly impractical, fast matrix multiplication algorithms we would obtain a running
time of O(nω), where 2 ≤ ω ≤ 2.373. In either case, the running time would be super-quadratic and thus

9

prohibitive from our point of view. Also, another problem with this approach relates to numerical issues.
Computing A−1 might involve division by small numbers, which is quite problematic when working with
real-world finite precision arithmetic.

A slightly better solution is to find a decomposition of A into A = LU where L is lower triangular
and U is upper triangular – so-called LU -decomposition of A. Once we have found such a decomposition,
the problem reduces to finding an x such that Ax = L (Ux) = b. This can be easily done in two steps
— first we would find z such that Lz = b, then we would find x, such that Ux = z. Each of those
steps consist of solving a system of linear equation in a triangular matrix — this can be easily done in
time O(n2) via simple back-substitution. (Other decompositions also could be used, most notably one
can use QR-decomposition: decompose A = QR, where Q is orthonormal and R is upper triangular.
Again, solving a linear system both in R as well as in Q is quite easy.) Unfortunately, computing such
decompositions also requires at least Ω(nω) time.

Finally, one other problem with this kind of approaches is that they do not exploit sparsity of the
matrix A. That is, many real-world matrices of interest are sparse, i.e., the number of their non-zero
entries m is much smaller than the total number of entries O(n2). In such situations, one would hope
to have methods whose complexity can take advantage of this fact. However, both A−1 and the LU -
decomposition of A might be dense, i.e., have Ω(n2) non-zero entries, even if A is very sparse, i.e., m is
O(n). This ability to exploit sparsity is particularly relevant in the context of Laplacian systems, as the
sparsity of a Laplacian is within a constant of the sparsity of the underlying graph.

5.2 Iterative Approaches
Given all these drawbacks of the above approaches (which are usually called direct methods), we focus
our attention on a different family of algorithms: iterative approaches.

These approaches, much in the spirit of this class, solve the linear system in a sequence of steps.
They start from some initial guess x1, and then iteratively refine it, which each consecutive answer xs
being increasingly better. The guiding principle here – and one of the key advantages of these method
– is making each refinement step very simple and easy to compute. In fact, each step boils down to a
small number of multiplications of A by some vector y. Note that this basic operation not only can be
implemented fast, i.e., in O(m) time, but it also exploits the sparsity of the problem.

On the other hand, one of the less desirable features of iterative methods is that they never really
compute the exact solution. Instead, they provide a sequence of answer that only converges to the exact
solution. Furthermore, the rate of this convergence will largely depend on numerical properties of the
matrix A (usually, on its eigenvalue or singular values). Consequently, for some matrices the convergence
will be very fast, while for others it might be extremely slow.

In the next lecture, we will embark on the study of these methods to get a much better grasp of both
their power and limitations.

10

	Overview
	Recap of the Last Lecture
	Smoothing Technique
	The `39`42`"613A``45`47`"603Asmax Function
	Solving the Maximum Flow Problem via Smoothing
	Why Does Smoothing Help?

	Computing a Projection on the Space of s-t Flows
	Electrical Flows
	Electrical Flows and Linear Systems

	Fast Linear System Solving
	Direct Methods
	Iterative Approaches

