
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 October 1, 2015

Lecture 6
Lecturer: Aleksander Mądry Scribe: Christina Lee

1 Recap of the Last Lecture
Last time we consider the problem of solving a linear system

Ax = b,

where A is symmetric and positive definite, i.e., a PSD, matrix. This means that its eigenvalues are all
real and positive. We enumerated them in a non-decreasing order 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

We intended to apply iterative methods to this task and our measure of progress relied on two notions:
the right-hand side error r(x) := b−Ax and the left-hand side error e(x) := x− x∗.

We cast the task of linear system solving as the following convex optimization problem,

min
x
g(x), (1)

where
g(x) :=

1

2
xTAx− bTx =

1

2
‖e(x)‖2A −

1

2
(x∗)TAx∗, (2)

and ‖ · ‖A is an A-norm defined as
‖y‖2A := yTAy.

That is, the function g(x) is just a “shifted” version of the A-norm ‖e(x)‖2A of the left-hand side error of
our candidate solution x.

To solve this optimization problem, we applied the gradient descent method to it. The resulting
algorithm is presented as Algorithm 1.

Algorithm 1 Gradient descent method when applied to the optimization problem (1).
x1 ← 0
for s = 1 . . . T − 1 do

xs+1 ← xs − η∇g(xs) = xs + η · r(xs)
end for
return xT

Last time, we exploited the fact that g is strong λ1-convexity and λn-smooth to obtain a very strong
bound on the running time of that algorithm. Specifically, we proved the following general theorem about
the convergence of gradient descent method when applied to strongly convex and smooth functions.

Theorem 1 Let f be a L-smooth and strongly `-convex function and let us set η = 2
L+` in gradient

descent method, then

|f(xT )− f(x∗)| ≤
L

2
exp

(
−4(T − 1)

κ+ 1

)
‖x1 − x∗‖22,

where κ := L
` is called the condition number of f .

Applying the above theorem to Algorithm 1 and noting the fact that ` = λ1 and L = λn for g, we
get that the number of iterations Tε to obtain ‖xT ‖2A ≤ ε is at most

Tε = O
(
κ ln

(
λn‖x∗‖22ε−1

))
. (3)

1



2 Building Polynomials with Gradient Descent
Looking at the iteration bound (3), we see that the dependence on ε−1 is only logarithmic – which is
what we want – and the key factor influencing the complexity of Algorithm 1 is the linear dependence
on the condition number κ = λn

λ1
. It is natural to wonder then: can we improve this dependence?

In order to answer this question, we need to develop a different perspective on Algorithm 1. To this
end, observe that

rs+1 = b−Axs+1 = b−A(xs + ηrs) = (I − ηA)rs = (I − ηA)sr1 = (I − ηA)sb,

where rs is a shorthand for r(xs). Consequently, we have that

xT = xT−1 + ηrT−1 =

T−1∑
i=1

η(I − ηA)ib = pT,η(A)b,

where

pT,η(x) :=

T−1∑
i=1

η(1− ηx)i (4)

is a univariate polynomial of degree-(T − 1) that was applied to the matrix A.
In other words, one can view the output xT of the Algorithm 1 as an application of degree-(T − 1)

polynomial pT,η(x) to A and then multiplying it by the vector b.
Now, observe that the Algorithm 1 and its analysis is completely basis independent. So, we can

choose a basis that is most convenient for us. The right choice here is to work in the eigenbasis of the
matrix A, i.e., the orthonormal basis given by the eigenvectors of A. In this basis, all the objects we are
analyzing become extremely simple, that is, diagonal. In particular, the matrix A becomes

A =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,
and the polynomial pT,η(x) applied to A is simply

pT,η(A) =


pT,η(λ1) 0 . . . 0

0 pT,η(λ2)
. . .

...
...

. . . . . . 0
0 . . . 0 pT,η(λn)

 .
To understand what is the property of the polynomial pT,η(x) that we are looking for, recall that

ideally we would like to compute x∗ = A−1b. So, our goal is to have the matrix pT,η(A) to become as
close to possible to being A−1, which in the eigenbasis of A is just

A−1 =


λ−11 0 . . . 0

0 λ−12

. . .
...

...
. . . . . . 0

0 . . . 0 λ−1n

 ,
Consequently, we see that there is an underlying optimization task at hand. Namely, we want to find

a (univariate) polynomial p(z) that, on one hand, approximates the (univariate) function 1
z well at each

point corresponding to the eigenvalues of A, i.e., has

p(λi) ≈ λ−1i , (5)

2



1

2

3

λ1
λ1+λn

2
λn

1/x
k=1
k=2
k=3

Figure 1: Approximation of the function 1/z around the point z = λ1+λn

2 using Taylor approximation
of orders k = 1, k = 2, and k = 3.

for all i = 1, . . . , n, while, on the other hand, has its degree be at most T − 1. The latter constraint
arises since the degree of this polynomial corresponds directly to the number of iterations Algorithm 1
takes. (Observe that if there was no upper bound on the degree of that polynomial then we could get
an arbitrarily good approximation in (5).)

It turns out that the polynomial pT,η(z) (see (4)) that the Algorithm 1 uses is very special. Namely, it
is actually the (T−1)-th order Taylor series approximation of the function 1

z around the point 1
η = λ1+λn

2 .
In other words, the way our gradient descent method algorithm approaches the approximation task (5)
is by computing the (T − 1)-th order Taylor approximation of the intended function 1

z around the point
λ1+λn

2 , which is the middle of the interval [λ1, λn] in which all the points of interest lie. This is really
remarkable that such a principled and sophisticated choice came up out of our very general gradient
descent design scheme!

As we implicitly proved in the last lecture, the choice of polynomial pT,η leads to the bound (3), i.e.,
linear dependence of T on the condition number κ. Is there maybe a better choice of the polynomial?

In short, the answer is: yes. The intuition here is that Taylor polynomials are not really best
suited for solving the approximation tasks as (5). They are invented with the goal of providing the
best possible local approximation around the given point. In (5), however, we are interested in getting
good approximation on a number of points that are spread out over the whole interval [λ1, λn]. As a
result, while the polynomial pT,η focuses on getting a very good fit around the middle point λ1+λn

2 , the
corresponding much looser fit on the endpoints of that interval undermines the whole effort. See Figure
1 for an illustration.

Consequently, instead of the local approximation provided by Taylor series one should focus on
Fourier-like series that were designed to provide such global type of approximation.

3 Conjugate Gradient Method: Beyond Taylor Approximation
Once we understood better the optimization question underlying our iterative linear system solving
framework, let us try to abstract away the problem at hand and design a more direct algorithm for it.

To this end, let us note that in our framework each intermediate solution xs, obtained after s

3



iterations, belongs to a so-called Krylov subspace (of order s) Ks, defined as

Ks := span
{
b, Ab,A2b, . . . As−1b

}
.

Furthermore, each vector x ∈ Ks corresponds to multiplying some polynomial in the matrix A of degree
at most s− 1 by the vector b. So, in principle, if we knew what this polynomial is, it could be computed
in s iterations in our framework.

Now, from this perspective, we can view the Algorithm 1 as an approach to choosing a sequence
of specific points xs ∈ Ks for s = 1, . . . , T . As we discussed above, these choices correspond to taking
successful higher-order Taylor series approximation of the function 1/x around the middle of the interval
[λ1, λn]. They, in turn, give us a solution to the approximation problem (5) that results in the iterations
bound (3), which has a linear dependence on the condition number κ.

However, once we know what our real goal is: to choose a point xT in the Krylov subspace KT of order
T that aims to solve the problem (5), there might be a better approach to achieving it. In particular,
instead of picking an explicitly constructed point xT in hopes it will result in good performance, we can
make our algorithm solve the underlying optimization directly.

This idea leads to an algorithm called conjugate gradient method that is presented as Algorithm 2.
In oder words, this algorithm simply chooses xT to be minimizer of our proxy objective function g (see

Algorithm 2 Conjugate gradient method.
Compute

xT := argmin
x∈KT

g(x). (6)

return xT .

(2)) for our target error measure ‖e(x)‖2A.

3.1 Efficient Implementation of the Conjugate Gradient Method
The first point we need to address is the implementation of the Algorithm 2. After all, our description
of conjugate gradient method does not really explain how to find the point xT efficiently. Also, the
optimization problem (6) that defines the point xT does not seem to be too different to our original
optimization problem (1). Why should it be easier to solve?

It turns out that despite this seeming similarity to the problem (1), solving the optimization problem
(6) can indeed be done efficiently. The key reason for that is the fact that this optimization problem
exhibits a very convenient structure when one works in an appropriate basis. Specifically, a basis
v1, . . . , vT that is A-orthogonal, i.e., a one in which each vi and vj with i 6= j are orthogonal with respect
to the A-inner product ·A defined as

x ·A y := xTAy.

In such A-orthonormal basis, our objective function g becomes separable, breaking down in T indepen-
dent and simple to solve problems. Also, by applying Gram-Schmidt orthogonalization procedure in a
careful manner, one can compute such an A-orthogonal basis v1, . . . , vT in only O(T ) (as opposed to
O(T 2)) matrix-vertex multiplications of A. Working out the details of this implementation are a part
of the Problem set 1. We will show there that indeed one can compute xT in the conjugate gradient
method can be implemented using only O(T ) matrix-vector multiplications of A overall.

3.2 Analyzing the Performance of the Conjugate Gradient Method
Once we discussed the implementation of the conjugate gradient descent, we can turn our attention to
analyzing its performance. Specifically, once we know that computing the point xT requires only O(T )
iterations of our framework, we would like to know how large T has to be to obtain the desired quality
of the solution.

4



To this end, let us reformulate the underlying optimization question (5) into a slightly more convenient
to work with form. More precisely, let us note that if our solution xT is represented as pT (A)b, for some
degree-(T − 1) univariate polynomial p(z), then we have that

e(xT ) = xT − x∗ = pT (A)b− x∗ = pT (A)Ax
∗ − x∗ = qT (A)(−x∗), (7)

where qT (z) is also a degree-T polynomial defined as

qT (z) := 1− zpT (z). (8)

So, there is a one-to-one correspondence between polynomials pT (z) and polynomials qT (z). Namely,
any degree-(T − 1) polynomial pT (z) defines a degree-T polynomial qT (z) via (8). On the other hand,
any degree-T polynomial qT (z) with qT (0) = 1 defines a degree-(T − 1) polynomial pT (z) := qT (z)−1

z .
(Note that the requirement that qT (0) = 1 implies that the polynomial qT (z)− 1 is divisible by z. )

Therefore, instead of thinking of the polynomials pT (z) and the corresponding problem (5) of ap-
proximating the 1/z function on the eigenvalue points, one can think of trying to design polynomials
qT (z) that make the initial error −x∗ in (7) vanish as quickly as possibly. More formally, the latter task
boils down to finding for a given desired error parameter ε a polynomial q(z) that has as small degree
as possible while satisfying

q(0) = 1 (9)
|q(λi)|2 ≤ ε,

for all i = 1, . . . , n. Once we find such a polynomial, we will know that by (7)

‖e(x)‖2A = ‖qT (A)(−x∗)‖2A ≤ ‖qT (A)‖22‖x∗‖2A = max
i
|qT (λi)|2‖x∗‖2A ≤ ε‖x∗‖2A,

where we also used the fact that the eigenvectors of the matrix qT (A) are qT (λ1), . . . , qT (λn). This is
exactly the error guarantee that we would like to get in our algorithm. It is also worth noting that the
above error guarantee bound works for any M -norm ‖ · ‖2M , i.e., we have

‖e(x)‖2M ≤ ε‖x∗‖2M ,

for any PSD matrix M , even if it is unrelated to A.
In the light of the above, from now on, we just need to focus exclusively on the question underlying

the optimization problem (9). That is, to bound the minimum degree Tε that a polynomial q(z) has to
have in order to satisfy the conditions (9).

Observe that this question is no longer algorithmic! It is now just a question from approximation
theory, a well-studied branch of mathematics. In particular, we would be completely satisfied by a purely
existential statements, i.e., the polynomial q(z) of the minimal degree just has to exist, we do not need
to be able to efficiently compute it. (Although, one can show that the constructions we will use below
can be performed efficiently.)

Now, turning to that question, if we were able to have the polynomial q(z) have degree at most n
then we can just resort to interpolation to get a perfect fit at all the eigenvalues. That is, we can consider
a degree-n polynomial qint(z) defined as

qint(z) :=

n∏
i=1

(
1− z

λi

)
.

Clearly, qint(0) = 1 and qint(λi) = 0, for all i. So, Tε ≤ n or, in other words, once we allow the conjugate
gradient method run for n iterations, the computed point xT will be exactly x∗.

The above statement should not be too surprising, as one could expect that the span of the Krylov
subspace Kn is the whole of Rn. Our key interest, however, is in obtaining bounds on Tε that are
much smaller than n. To get a hold on this regime, we need to resort to certain fundamental results in

5



−1

0

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

T2
T4
T40

Figure 2: Chebyshev polynomials T2, T4, and T40.

approximation theory. Specifically, the object of our interest will be a family of extremal polynomials
{Tk(z)}k called Chebyshev polynomials (of the first kind), defined as

Tk(z) :=
1

2

((
z +

√
z2 − 1

)k
+
(
z −

√
z2 − 1

)k)
.

Note that, despite appearances, each Tk(z) is indeed a polynomial. (Try working this out for k being 1
and 2.) This polynomials are extremal in a number of ways. The way we will care about here most is
that

|Tk(z)| ≤ 1, (10)

when z ∈ [−1, 1] (they actually oscillate between −1 and 1 in that interval) and the value of |Tk(z)| has
the sharpest increases outside of that interval among all the polynomials of degree k.

Let us consider now, for a given k ≥ 1, a degree-k polynomial q∗k(z) defined as

q∗k(z) :=
Tk
(
λn+λ1−2z
λn−λ1

)
Tk
(
λn+λ1

λn−λ1

) . (11)

Observe that due to our normalization by Tk
(
λn+λ1

λn−λ1

)
, we have that

q∗k(0) = 1,

as desired. Furthermore, for any z ∈ [λ1, λn] we have by (10) that

|q∗k(z)|2 ≤ Tk
(
λn + λ1
λn − λ1

)−2
(12)

= Tk
(
κ+ 1

κ− 1

)−2
= 4

((√
κ+ 1√
κ− 1

)k
+

(√
κ− 1√
κ+ 1

)k)−2

≤ 4

(√
κ− 1√
κ+ 1

)2k

≤ 4 · exp
(
− 4k√

κ+ 1

)
,

6



0

1

0 λ1
λ1+λn

2
λn

q∗3
q∗4
q∗40

Figure 3: Polynomials q∗3 , q∗4 , and q∗40 over the interval [λ1, λn].

where κ = λn

λ1
is the condition number and we used the fact that, by (10),∣∣∣∣Tk (λn + λ1 − 2z

λn − λ1

)∣∣∣∣ ≤ 1,

for any z ∈ [λ1, λn].
As a result, by using this polynomial q∗k(z) to solve our optimization problem (9), we obtain the

following bound on the performance of the conjugate gradient method.

Theorem 2 After T iterations of the conjugate gradient method (Algorithm 2), we have that

‖e(xT )‖2A ≤ 4 · exp
(
− 4k√

κ+ 1

)
‖x∗‖2A.

In other words, we obtain that number of iterations Tε needed to get ‖e(xT )‖2A ≤ ε is at most

Tε ≤ O
(√

κ ln
‖x∗‖A
ε

)
, (13)

which improves our dependence on κ from linear (in (3)) to square root one.
Finally, it is important to note that the upper bound (12) on the value of our polynomial q∗k(z) holds

not only for all the eigenvalue points λi, but actually it is valid for all z in the whole interval [λ1, λn].
So, q∗k(z) provides a more robust solution than what is required by the problem (9).

4 Spectrum of the Laplacian Matrix
Recall that the reason why we were interested in solving linear systems was the need to compute `2-
projection

∏
Fs,t

onto the space of s-t flows. As we have shown in Lecture 4, this projection corresponds
to electrical flow computations and these, in turn, boil down to solving a Laplacian systems, i.e., a linear
system of the form

Lϕ = σ, (14)

where L is the Laplacian matrix of the underlying graph, ϕ is the vector of vertex potentials we want
to find, and σ is the vector of demands that we want our electrical flow to obey.

7



As we now have in hand algorithms for solving linear system, we need to examine how they can
be applied in the context of Laplacian and what would be the resulting running times. This, in turn,
requires us to analyze certain numerical properties of the Laplacian, such as its eigenvalue spectrum.

To this end, let us consider an undirected graph G = (V,E, r) with n = |V | vertices, m = |E| edges,
and edge resistances re assigned to each edge e ∈ E. Also, let us impose an arbitrary orientation on the
edges of G. In Lecture 4, we defined the Laplacian of G as

L = BTR−1B,

where B is an n×m edge-vertex incidence matrix given by

Bv,e :=


−1 v is the head of e
1 v is the tail of e
0 otherwise

,

and R is an m×m diagonal resistances matrix defined as

Re,e′ :=

{
re if e = e′

0 otherwise
.

However, there is a different, equivalent definition of the Laplacian. Namely, we have that

L = D −A,

where D is a diagonal n× n (weighted) degree matrix D defined as

Duv :=

{∑
e∈N(u) r

−1
e if u=v

0 otherwise,

and A is an n× n adjacency matrix given by

Auv :=

{
r−1e if (u, v) ∈ E
0 otherwise.

Consequently, one can express the entries of the Laplacian explicitly as

Luv :=


∑
e∈N(u) r

−1
e if u = v

−r−1e if e = (u, v) ∈ E
0 otherwise,

where N(u) is the set of edges incident to the vertex u.
Interestingly, one can also decompose the Laplacian of G into a sum of elementary Laplacians

L =
∑
e∈E

r−1e Le =
∑
e∈E

r−1e χeχ
T
e ,

where each Le is just a Laplacian of a simple graph on the vertex set V that contains only a single
(unweighted) edge e = (u, v) or, alternatively, an outer product of characteristic vectors χe with a −1
at u-th coordinate, 1 at v-th coordinate, and zeros at all the other coordinates. (So, each Le is an n×n
matrix with exactly four non-zero entries.)

Now, observe that L is a symmetric matrix. So, it has n real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.
Furthermore, one can prove the following theorem about them.

Theorem 3 Let L be a Laplacian of a graph G and λ1 ≤ . . . ≤ λn be its eigenvalues.

(a) λ1 = 0 and an all-ones vector ~1 is an eigenvector corresponding to this eigenvalue;

8



(b) λ2 > 0 iff G is connected;

(c) λn ≤ 2dmax, where dmax is the maximum (weighted) vertex degree, i.e., the largest entry of the degree
matrix D.

(We will leave proving this theorem as a problem on the upcoming problem set.)
One of important implication of the above theorem is that L is not positive definite. That is, L is

positive semi-definite, i.e., L � 0, but L � 0. Even more importantly, as λ1 = 0, the matrix L is also
not invertible. This is very undesirable for us, as our algorithms for linear system solving assumed the
underlying matrix is positive definite and, in particular, that it is invertible.

Fortunately, this turns out to be not too much of a problem. Observe that, as long as G is connected
(which is always the case for us), the eigenspace of L corresponding to the eigenvalue 0 is just the one
dimensional subspace of all the constant vectors, i.e., span(~1). So, the linear system (14) can be solved
whenever the demand vector σ is orthogonal to that subspace. Formally, instead of considering the
inverse L−1 of the Laplacian, which does not exist, one can consider the next best thing: the Moore-
Penrose pseudoinverse L+ defined as

L+ :=
∑
i>1

λ−1i viv
T
i ,

where vi is the eigenvector corresponding to eigenvalue λi in the orthonormal eigenbasis of L. In other
words, L+ behaves as an inverse of the Laplacian for every vector that is orthogonal to the eigenspaces
corresponding to eigenvalue 0.

Consequently, the linear system (14) has a solution, given by L+σ as long as σ⊥~1. Observe, however,
that the latter condition boils down to insisting that the demands of the demand vector σ sum up to
zero. This must be always the case anyway if we want to compute a flow satisfying such demands.
Therefore, the requirement σ⊥~1 is just a manifestation of the obvious inability to find an electrical flow
(or any flow, for that matter) whose demands do not balance out.

Furthermore, one can check that once this σ⊥~1 condition is satisfied, our algorithms end up computing
a correct solution with the condition number κ becoming the pseudo-condition number

κ+ :=
λn
λ2
.

Finally, it is worth pointing out that in this setting the solution that we end up computing will not
be unique. That is, for any solution ϕ∗ to the Laplacian system 14, the solution ϕ∗+α~1, for any α ∈ R,
will also be a solution. This is just a manifestation of the fact that Ohm’s law is invariant under shifts
of vertex potentials.

9


	Recap of the Last Lecture
	Building Polynomials with Gradient Descent
	Conjugate Gradient Method: Beyond Taylor Approximation
	Efficient Implementation of the Conjugate Gradient Method
	Analyzing the Performance of the Conjugate Gradient Method

	Spectrum of the Laplacian Matrix

