
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015 October 6, 2015

Lecture 7
Lecturer: Aleksander Mądry Scribe: Mathieu Dahan

1 Overview
In this lecture, we continue our study of fast linear system solving, with a special focus on solving
Laplacian systems. In particular, we introduce the notion of preconditioners and discuss how it can be
used to speed up iterative linear solving approaches such as the conjugate gradient method. Finally, we
will also construct simple but non-trivial preconditioners for Laplacian matrices.

2 Recap of the Last Lecture
Last lecture, we continued our interest in solving the following linear system

Ax = b, (1)

where A is a PSD matrix, that is, it is symmetric (AT = A) and positive-definite (A � 0). This implies,
in particular, that the eigenvalues λ1 ≤ . . . ≤ λn of the matrix A are all real and positive. So, in
particular, the matrix A is invertible.

Our important achievements in this regard was developing and analyzing the performance of the
conjugate gradient method. This method can compute a solution xT to the linear system (1) with
‖xT − x∗‖2A ≤ ε in time

O

(
τ(A)

√
κ(A) log

‖x∗‖2A
ε

)
, (2)

where x∗ is the exact solution to that system. Here, τ(A) is the time needed to multiply A by a vector
y and κ(A) := λn

λ1
is the condition number of A.

2.1 Spectrum of a Laplacian matrix
Our main motivation for development of the fast linear system solving machinery was to apply it to
solving Laplacian systems, which have the form

LGϕ = σ, (3)

where LG is the Laplacian matrix of an underlying graph G = (V,E). (In this lecture, we focus on the
case of G being unweighted, but everything we say can be extended to the weighted case in a straight-
forward manner.) There is a number of ways to define a Laplacian, but the one that will be the most
convenient today is to view it as a sum of elementary Laplacians Le, for e ∈ E, where each Le is a
Laplacian of a graph with the vertex set V and containing only a single edge e. In other words, we have

LG =
∑
e∈E

Le =
∑
e∈E

χeχ
T
e (4)

where

χe(i) :=

−1 if i = u,

1 if i = v,

0 otherwise,

for u (resp., v) being the tail (resp., head) of e according to its orientation.
So, to apply the conjugate gradient method to the Laplacian system (3), we needed to understand

the spectrum of the Laplacian. To this end, we stated last time the following theorem.

1

Theorem 1 Let LG be a Laplacian of a graph G and λ1 ≤ . . . ≤ λn be its eigenvalues.

(a) λ1 = 0 and an all-ones vector ~1 is an eigenvector corresponding to this eigenvalue;

(b) λ2 > 0 iff G is connected;

(c) λn ≤ 2dmax, where dmax is the maximum (weighted) vertex degree, i.e., the largest entry of the degree
matrix D.

The above theorem highlights an important issue with the Laplacian matrix: the fact that LG is not
and invertible matrix. Fortunately, as we explained last time, this is not a major problem. When G is
connected, which will be always the case in our considerations, LG is an invertible matrix provided we
work with vectors that are orthogonal to its one-dimensional kernel spanned by the all-ones vector ~1. In
particular, the demand vector σ in our Laplacian system (3) has to be orthogonal to the vector ~1 since
it has to be balanced, i.e., the total amount of flow excesses at all the vertices has to be equal to the
total amount of flow deficits.

To make all of this mathematically precise, in case of a Laplacian LG, we do not think about its
inverse L−1G , as it does not exist, but instead about its Moore-Penrose pseudo-inverse L+

G defined as

L+
G :=

n∑
i>1

λi
−1viv

T
i

where vivTi is the orthogonal projector onto the eigenspace associated to the eigenvalue λi.
Consequently, one can adjust the analysis of the conjugate gradient method to obtain that when

we work in the space orthogonal to the eigenspace corresponding to λ1 = 0 – or, more generally, in
the space orthogonal to the (possibly many-dimensional) eigenspace corresponding to the eigenvalues
λ1 = . . . = λk = 0 – the analog of the bound (2) is a bound of

O

(
τ(A)

√
κ+(A) log

‖x∗‖2A
ε

)
, (5)

where κ+(A) := λn
λ2

(or, more generally, κ+(A) := λn
λk+1

) is the pseudo-condition number of A.

3 Upperbounding the Pseudo-condition Number of a Laplacian
In the light of bound (5), we want to understand now what is the value of the pseudo-condition number
κ+(LG) = λn

λ2
of a Laplacian of a graph G. By Theorem 1, we know that λn ≤ 2dmax and this bound

turns out to be fairly tight for most graphs.
We thus need to focus on lower bounding the value of λ2. How small can λ2 be for a given Laplacian

matrix LG of an unweighted and connected graph G?
Observe that Theorem 1 indicates that there is a qualitative connection between the value of λ2 and

the fact that G is connected. As it turns out, this qualitative connection can be strengthened to yield
a quantitative connection as well. This connection is known as Cheeger’s inequality. We will not state
this inequality now but very roughly speaking it tells us that the value of λ2 is proportional to how well
connected the underlying graph G is.

In particular, if G is an expander graph, i.e., a constant-degree graph in which the size of every cut is
within a constant of the size of the smaller side of that cut, λ2 is Ω(1). As in this case, λn ≤ 2dmax = O(1),
we have that κ+(LG) is O(1) too. This implies that by (2) the conjugate gradient method solves a linear
system in LG in nearly-linear time!

This is a quite remarkable fact and a testament to the power of conjugate gradient method. After
all, expanders tend to have very non-trivial structure – in fact, they essentially look like random graphs
– and there seems to be no obvious direct way of solving linear systems in them. Yet, they are very easy
to crack for conjugate gradient method.

Unfortunately, despite shining when dealing with expander graphs, the conjugate gradient method
performs quite poorly when confronted with a very simple graph: a path graph on n vertices. In contrast

2

to the expander graph that can be seen as the “most connected” graph among all (unweighted) connected
sparse graphs, the path graph is the “least connected” among such graphs. Specifically, one can show
that λ2 = Θ(1

n2) in this case.
As λn ≤ 2dmax = O(1) here again, the pseudo-condition number κ+(LG) becomes as large as Θ(n2).

By (5), this means that the conjugate gradient method requires Ω(
√
κ+(LG)) = Ω(n) iterations to

deliver any non-trivial solution to a linear system in LG.
It is worth pointing out here that this example also shows that the square-root dependence on the

(pseudo-)condition number that the conjugate gradient method achieves is essentially best possible in
our iterative framework. Roughly speaking, it is not hard to convince oneself that one needs to work
with at least (n − 1)-th powers of the Laplacian matrix to be able to propagate the information from
one endpoint of the n-vertex path graph to its other endpoint. Recall, however, that in our iterative
framework, working with k-th power of the Laplacian matrix requires the iterative method to run for
at least k iterations. So, in the case of the Laplacian of a path graph, the number of iterations has to
be at least n− 1 and we cannot have significantly better than square-root dependence of the number of
iterations on the (pseudo-)condition number.

4 Solving Laplacian Systems for Trees
The very poor performance of the conjugate gradient method on a path Laplacian that we described
above should be somewhat surprising. After all, it is not hard to solve a linear system in path Laplacian
directly!

Specifically, if we enumerate the vertices v1, . . . , vn of a path graph from left to right, the Laplacian
of a path graph becomes this simple tri-diagonal matrix

1 −1 0 . . . 0

−1 2
.

...

0
. 0

...
. 2 −1

0 . . . 0 −1 1

,

and we can solve a Laplacian system (3) in such a matrix via simple pivoting.
More precisely, consider changing our variables by making a substitution

ϕ′v2 ← ϕv2 + ϕv2 and ϕ′vi ← ϕvi .

for all i 6= 2. This corresponds to adding the first column of the Laplacian to the second one. Observe
that after this substitution our linear system (3) becomes

1 0 0 . . . 0

−1 1
.

...

0
. 0

...
. 2 −1

0 . . . 0 −1 1

ϕ′ = σ.

Then, if we change our demand vector as

σ′v2 ← σv1 + σv2 and σ′vi ← σvi ,

for all i 6= 2, this will correspond to adding the first row of our constraint matrix to its second row. As

3

a result, our linear system becomes

1 0 0 · · · 0

0 1 −1
. . .

...

0 −1
. 0

...
. 2 −1

0 · · · 0 −1 1

ϕ′ = σ′

Now, since the first row and column of our constraint matrix has only a single non-zero entry, solving
this system immediately reduces to solving the subsystem corresponding to the constraint submatrix
one obtains by dropping this first row and column. However, this problem is again a Laplacian system
in a path graph. Only the number of vertices of this path is now n− 1 instead of n.

Clearly, using O(1) operations we reduced the size of our problem by 1. Therefore, a Laplacian
system for a path graph can be solved directly (and exactly!) in O(n) time.

In fact, it is not hard to generalize this approach to the case when the underlying graph is a tree.
(One just has to apply the analogous pivoting sequentially to each degree-one vertex – as the graph is a
tree, there always will be at least one such vertex.) We can conclude with the following lemma.

Lemma 2 If G is a tree, then we can solve a Laplacian system (3) in the Laplacian LG of G in O(n)
time.

5 Preconditioning
The above discussion highlighted a significant issue with the conjugate gradient method. On one hand,
this method can handle some highly non-trivial graphs, such as expanders, extremely well. On the other
hand, its performance completely deteriorates when confronted with relatively simple graphs, due to its
inability to take direct advantage of these graph simple structure. Is there some way of remedying this
deficiency by providing a way of incorporating such direct structural insights into the whole iterative
solving framework?

It turns out that the answer to this question is affirmative1 and it corresponds to a fundamental
notion of preconditioning.

As the notion of preconditioning applies much more broadly than just to Laplacian matrix, let us
forget for a moment about Laplacians and consider the general question: what to do if we want to apply
an iterative method to solving a linear system in a matrix A whose condition number κ(A) is very large?

To illustrate our discussion, let us consider the following example of a matrix A

C :=

 1000000 2500 0.1
2500 10000 0.2
0.1 0.2 1

 .

This matrix is PSD but its condition number is very large κ(C) ≈ 1000000, making running conjugate
gradient method on a linear system in C very slow (given that this is only a 3× 3 matrix).

At first glance, it seems that in this situation this bad performance of conjugate gradient method is
unavoidable. However, a moment of thought might hint at a way to go around this. Namely, instead of
solving the original linear system

Cx = b,

how about solving a linear system
D−1Cx = D−1b,

1In a sense, it has to be such – if there was no good way of incorporating these structural insights, the conjugate descent
method wouldn’t be as widespread and practical algorithm as it is. After all, in practice, the matrices one is dealing with
tend to have a lot of structure and one must have a way of taking advantage of that.

4

where D is obtained from C by simply dropping all the off-diagonal entries? That is,

D :=

 1000000 0 0
0 10000 0
0 0 1

 .

Somewhat surprisingly, even though the condition number κ(C) of the matrix C was very large (and
so is the condition number κ(D−1) of the matrix D−1), the condition number κ(D−1C) of the matrix
D−1C is very small – only around 1.4. This means that if we apply the conjugate gradient method to
that second (essentially, equivalent) linear system then its number of iterations will be very small and its
running time will be dominated by the time τ(D−1C) needed to multiply the matrix D−1C by a vector.
As D is a diagonal matrix, the latter can be easily done in O(n) + τ(C) = O(τ(C)) time.

Thus, we see that per-multiplying both sides of our linear system by the D−1 matrix dramatically
improved the performance of the conjugate gradient method on it. How to apply this idea more broadly
then?

The key notion here is the notion of a preconditioner. Given a linear system (1) in some matrix A,
a preconditioner of that matrix is a matrix P that has two properties’:

(1) The condition number κ(P−1A) of the matrix P−1A is small;

(2) The time τ(P−1) needed to multiply the matrix P−1 by a vector should be small as well.

Intuitively, the first condition above tells us that the matrix P−1A is close to being an identity matrix
I. Or, in other words, that P−1 ≈ A−1. So, P should be thought of as a reasonably good approximation
of the matrix A. (Note that in our example above, the diagonal D of the matrix C seems to indeed be
a good sketch of C.)

Clearly, once this condition holds, the conjugate gradient method applied to the linear system (1)
after pre-multiplication of both sides by P−1 takes only a small number of iterations to converge.

On the other hand, the second condition ensures that each iteration of the conjugate gradient method
applied to the pre-multiplied system is fast too. After all,

τ(P−1A) ≤ τ(P−1)τ(A).

Note that we do not ever need here to perform the – potentially, computationally expensive – explicit
multiplication of the matrices P−1 and A. Also, we do not really need to compute the inverse P−1 of
the matrix P either. Multiplying a vector y by the matrix P−1 corresponds to simply solving a linear
system

Pz = y,

where z will be the product P−1y that we want to compute.
This second condition is also the reason why simply taking P = A –which would make the first

condition satisfied in the best possible way (κ(A−1A) = 1) – does not really help. This choice would
require us to develop a fast way of solving a linear system in A anyway.

Finally, there are two more technical points that we should address. First one is the fact that the
matrix P−1A might not be symmetric, even if both P and A are. Fortunately, this is not much of a
problem. Even though P−1A might not be symmetric, it still has the key property we actually needed
for the analysis of conjugate gradient method to go through: all its eigenvalues are real. To see that,
observe that the matrix P−

1
2AP−

1
2 is symmetric and thus it has all its eigenvalues real. Furthermore,

if some vector v is an eigenvector of the matrix P−
1
2AP−

1
2 corresponding to an eigenvalue λ then

P−1A
(
P−

1
2 v
)

= P−
1
2

(
P−

1
2AP−

1
2 v
)

= λ
(
P−

1
2 v
)
.

That is, the vector P−
1
2 v is an eigenvector of the matrix P−1A corresponding to the same eigenvalue λ.

In other words, the matrix P−1A not only has real eigenvalues but its eigenvalues are exactly the same
as the eigenvalues of the matrix P−

1
2AP−

1
2 .

5

The second more technical point relates to the error guarantee that the conjugate gradient method
applied to the pre-multiplied system gives us. Note that direct adaptation of the canonical error guaran-
tee of the conjugate gradient method – see (2) – would give us that a guarantee in terms of the ‖ · ‖P−1A

norm, instead of the original ‖ · ‖A norm. However, in the lecture notes from Lecture 6, we know that
the conjugate gradient descent provides the same type of error guarantee for any matrix norm ‖ · ‖M , so
taking M = A, recovers the error bound in the “right” norm.

6 Constructing Preconditioners for Laplacian Matrices
We know now that finding an appropriate preconditioning matrix P for our linear system in a matrix A
enables us to dramatically improve the performance of the conjugate gradient method. Recall that this
matrix P , on one hand, should constitute a good approximation of A, i.e., κ(P−1A) should be small;
and, on the other hand, should have enough structure to allow us to solve a linear system in it fast, i.e.,
to have τ(P−1) be small. The key question that was left unanswered so far is: how to find such a matrix
P?

Unfortunately, there is no general answer to this question. Constructing preconditioners is more of a
black art than science, with practitioners trying to come up with them on mostly ad-hoc basis, depending
on the particular properties and structure of the matrices they are dealing with. In particular, there is
plenty of heuristics in this domain, e.g., preconditioning with the diagonal of the input matrix, but no
real rigorous and systematic approaches.

However, the above picture becomes very different once we focus our attention on Laplacian systems.
It turns out that there exists a principled approach to constructing preconditioners for Laplacian ma-
trices. The basic underlying principle is to precondition Laplacians with other Laplacians. That is, to
make the preconditioner of a Laplacian LG of a graph G be a Laplacian LH of some different, “simpler”
graph H.

This general design principle will be extremely fruitful and we will first consider its simplest incar-
nation: taking the graph H that defines our Laplacian preconditioner for LG to be just some spanning
tree T of the graph G.

Observe that by Lemma 2 we know that τ(L+
T) = O(n). So, the second property we require of a

preconditioner is already satisfied. How about the first one? That is, what is the pseudo-condition
number κ+(L+

TLG) of the matrix L+
TLG?

To answer this question, let us first lower bound the value of λ2(L+
TLG), i.e., the value of the second

smallest eigenvalue of the matrix L+
TLG. (It is not hard to show that λ2(L+

TLG) is positive.) Note that,
for any vector y, we have that

yTLT y = yT

(∑
e∈T

χeχ
T
e

)
y =

∑
(u,v)∈T

(yu − yv)2 ≤
∑

(u,v)∈G

(yu − yv)2 = yT

(∑
e∈G

χeχ
T
e

)
y = yTLGy,

where the inequality follows since T is a subgraph of G and we also used the definition (4) of the Laplacian
matrix. In other words, we have that

LG � LT ,

which implies that
L+
TLG � I

+,

where I+ is an identity matrix on the space orthogonal to ker(L+
TLG) = ker(LT) = ker(LG) = span(~1).

Consequently, we have that
λ2(L+

TLG) ≥ 1. (6)

6.1 Effective Resistance and Upper Bounding λn(L
+
TLG)

So, we know that the smallest non-zero eigenvalue of the matrix L+
TLG is at least one. We thus need to

obtain now an upper bound on the value of the largest eigenvalue λn(L+
TLG) of that matrix.

6

To this end, we will use the fact that all the eigenvalues of the matrix L+
TLG are non-negative and

therefore we have that

λn(L+
TLG) ≤

n∑
i=1

λi(L
+
TLG) = Tr(L+

TLG),

where Tr(·) denotes the matrix trace operator that corresponds to taking the sum of all the eigenvalues.
We can thus focus on bounding the trace Tr(L+

TLG) of the matrix L+
TLG. By linearity of the Tr(·)

operator and the fact that Tr(AB) = Tr(BA), we obtain that

Tr(L+
TLG) = Tr

(
L+
T

(∑
e∈G

χeχ
T
e

))
=
∑
e∈G

Tr
(
L+
T χeχ

T
e

)
=
∑
e∈G

Tr
(
χTe L

+
T χe

)
=
∑
e

RTeff(e), (7)

where RHeff(e) denotes the effective resistance of the edge e in graph H defined as

RHeff(e) := χTe L
+
Hχe. (8)

(Note that χTe L
+
Hχe is a scalar, so Tr(χTe L

+
Hχe) is simply χTe L

+
Hχe.)

It turns out that the effective resistance RHeff(e) is a very important quantity (and we will see it
a number of times in the future). Observe that ϕ = L+

Hχe can be interpreted as a vector of vertex
potentials that induces an electrical u-v-flow of value 1 in H between the endpoints of the edge e = (u, v).
Consequently, the effective resistance of e inH RHeff(e) = ϕv−ϕu is the vertex potential difference between
the endpoints of e induced in this electrical flow. (Note that ϕv − ϕu is always non-negative.)

6.2 Bounding the Total Stretch of a Tree
Now, let us get a better grasp of the sum we obtained in (7) by understanding what the effective
resistance RHeff(e) of an edge e corresponds to if the graph H is a tree T . Note that in this case, there
is only one way of routing a flow from one endpoint u to the other endpoint v of the edge e: sending it
along the unique u-v-path in the tree T . As a result, the effective resistance is equal to the length of
this path. In other words,

RTeff(e) = distT (u, v) = stretchT (e), (9)

where the stretch stretchT (e) of an edge e = (u, v) in T is defined as

stretchT (u, v) :=
distT (u, v)

l(e)
,

i.e., the ratio of the distance between the endpoints of e in the tree T (this is the “stretched” length of
the edge e in T) and the “original” length l(e) of the edge e – see Figure 1. (Here, we are working in the
unweighted case, so all l(e) = 1. But if our Laplacian LG corresponded to a weighted graph G then the
lengths would become l(e) = 1

we
, for each edge e.)

By (7), we can summarize our considerations so far with the following bound

λn(L+
TLG) ≤

n∑
i=1

λi(L
+
TLG) = Tr(L+

TLG) =
∑
e∈G

stretchT (e), (10)

where the last sum is sometimes called the total stretch stretchT (G) of the tree T with respect to the
graph G.

The obvious question now is: how large can stretchT (G) =
∑
e∈G stretchT (e) be?

Clearly, stretch of an edge can be at most n (at least in the unweighted case that we are considering
here) and, in principle, this worst-case bound is tight. The latter follows by considering G to be a cycle.
Every spanning tree in such G has to remove a single edge and this edge will have a stretch n− 1.

Consequently, the total stretch stretchT (G) can be bounded by mn. Putting this together with (6)
and (10) gives us that the condition number κ(L+

TLG) is at most

κ(L+
TLG) =

λn(L+
TLG)

λ2(L+
TLG)

≤ stretchT (G) ≤ mn.

7

u
v

e

Figure 1: A stretch of an edge e = (u, v) in a graph. The plain edges represent a spanning tree T . The
bold edges represent the path in T connecting u to v. The stretch stretchT (e) of this edge is 3.

This bound, however, is not too satisfying. After all, it does not even provide any significant improve-
ment over the “worst-case” O(n2) condition number bound that we claimed in Section 4 in the context
of the path graph. Given that we are utilizing tree preconditioners here and thus taking the Laplacian
of this path graph as such preconditioner is completely legitimate, this should be an indication that our
analysis is probably far from being tight.

Indeed, even though the worst-case stretch can be indeed close to n, bounding stretchT (G) corre-
sponds to bound the average stretch stretchT (G). That is, we have that

stretchT (G) = m · stretchT (G),

where stretchT (G) := 1
m

∑
e∈G stretchT (e).

Note that in our example of G being a cycle graph the worst-case stretch is n − 1, but the average
stretch stretchT (G) is only 2(1− 1

n).
So, for an arbitrary G, how small average stretch can the best choice of a spanning tree T achieve?

Somewhat astonishingly, one can prove the following theorem.

Theorem 3 (Low-stretch Spanning Trees) For any graph G, one can construct in Õ(m) time a
spanning tree T of G such that

stretchT (G) = Õ(log n).

(The Õ(log n) above hides log log n factors.)
In other word, no matter what the graph G is, there always exists a tree T with average stretch being

essentially logarithmic. (Even though the worst-case stretch can be still close to n.) Furthermore, such
tree can be found very fast – in nearly-linear time.

As a result, by Theorem 3, (6) and (10), we can conclude that

κ(L+
TLG) =

λn(L+
TLG)

λ2(L+
TLG)

≤ Tr(L+
TLG) ≤ m · stretchT (G) = Õ(m), (11)

which by (5) enables us to solve Laplacian systems in time

O

(
τ(L+

TLG)
√
κ(L+

TLG) log
‖x∗‖2LG

ε

)
= Õ

(
(m+ n)

√
m log

‖x∗‖2LG
ε

)
. (12)

6.3 Going Beyond the Õ(m
3
2) Pseudo-Condition Number Bound

The bound (12) constitutes some progress. However, it turns out that we can tighten our analysis even
further. To this end, let us simplify our notation and denote the eigenvalues of the matrix L+

TLG simply
as 0 = λ1 < λ2 ≤ . . . ≤ λn. Observe that taking T to be a low-stretch spanning tree as per Theorem
3 allows us to not only bound the largest eigenvalue λn = λn(L+

TLG) of the matrix L+
TLG but also the

sum of all its eigenvalues. Specifically, by (11) and the definition of the trace, we have that∑
i

λi = Tr
(
L+
TLG

)
≤ m · stretchT (G) = Õ(m). (13)

8

This statement turns out to give us a much stronger grasp of the complexity of the conjugate gradient
method than what we can get from merely looking at the pseudo-condition number κ+(L+

TLG).
Recall from the previous lecture that the number of iterations of the conjugate gradient method is tied

to existence of certain univariate polynomial q(z) that is equal to 1 for z = 0 and vanishes as quickly as
possible at the points z = λi. Formally, in our case, the number of iterations that the conjugate gradient
descent method takes to get a solution x to the linear system in the matrix L+

TLG with ‖x‖2LG ≤ ε‖x
∗‖2LG

is the minimum degree of a polynomial q(z) such that

q(0) = 1 (14)
|q(λi)|2 ≤ ε,

for i > 1.
Also, we showed then that, for any 0 < ε and 0 < λ ≤ λ′, one can construct a polynomial q∗ε,λ,λ′(z)

such that

q∗ε,λ,λ′(0) = 1 (15)

|q∗ε,λ,λ′(z)|2 ≤ ε,

for all z ∈ [λ, λ′], and the degree of q∗ε,λ,λ′(z) is only

O

(√
λ′

λ
log ε−1

)
. (16)

Thus, taking λ = λ2 and λ′ = λn recovers the standard pseudo-condition number based running time
bound (5).

Now, it turns out that one can use (13) to construct a polynomial that has even better performance
than the polynomial q∗ε,λ2,λn

(z) in our setting. To this end, for a given γ > 1, let i(γ) be the largest
index i such that λi(γ) ≤ γ. Observe that by (6), λi ≥ 1, for all i ≥ 2, and thus, by (13), we can bound
the number n− i(γ) of eigenvalues larger than γ as

n− i(γ) ≤
∑n
i=i(γ)+1 λi

γ
≤

Tr
(
L+
TLG

)
γ

≤ Õ
(
m

γ

)
. (17)

Let us consider now a polynomial Qε(z) defined as

Qε(z) := q∗ε,λ2,λi(γ)
(z) · q>γ(z),

where

q>γ(z) :=

n∏
i=i(γ)

(
1− z

λi

)
.

Intuitively, Qε(z) is a product of two polynomials. One q∗ε,λ2,λi(γ)
(z) is “taking care” of all the eigenvalues

λi being at most γ, while the other one q>γ(z) handles all the eigenvalues λi that are greater than γ via
interpolation. See Figure 2.

Note that
Qε(0) = q∗ε,λ2,λi(γ)

(0) · q>γ(0) = 1,

as desired. Further, we have that, for any i(γ) < i ≤ n,

|Qε(λi)|2 =
∣∣∣q∗ε,λ2,λi(γ)

(λi)
∣∣∣2 · |q>γ(λi)|2 = 0 ≤ ε,

since q>γ(λi) = 0. Also, for any of the remaining eigenvalues λi with 2 ≤ i ≤ i(γ), we obtain that

|Qε(λi)|2 =
∣∣∣q∗ε,λ2,λi(γ)

(λi)
∣∣∣2 · |q>γ(λi)|2 ≤ ε,

9

0

1

0 λ2 λi(γ) γ λi(γ)+1 λn

Qε
q∗ε,λ2,λi(γ)

q>γ

Figure 2: Examples of polynomials Qε, q∗ε,λ2,λi(γ)
, and q>γ .

where we used (15) and the fact that |q>γ(z)|2 ≤ 1 if z ∈ [−γ, γ].
So, the polynomial Qε(z) satisfies the properties (14) and thus its degree deg(Qε) provides an upper

bound on the number of iterations of gradient descent method. The running time bound that Qε(z)
implies is thus

O
(
τ(L+

TLG) · deg(Qε′)
)

= O
((
τ(LG) + τ(L+

T)
) (

deg
(
q∗ε′,λ2,λi(γ)

)
+ deg (q>γ)

))
= Õ

(m+ n)

√λi(γ)

λ2
log

1

ε′
+
m

γ

 = Õ

(
m

(
√
γ log

‖x∗‖2LG
ε

+
m

γ

))
,

where we used (6), (16), (17) as well as Lemma 2, and

ε′ :=
ε

‖x∗‖2LG

is the accuracy needed to ensure that the solution x we compute has ‖x‖2LG ≤ ε.
Taking γ = m

2
3 in the expression above allows us to conclude the following theorem.

Theorem 4 For any graph G and ε > 0, the conjugate gradient method with low-stretch spanning tree
preconditioning computes a solution φ to the Laplacian system in the Laplacian LG of G such that
‖φ‖2LG ≤ ε in time

Õ

(
m

4
3 log

‖φ∗‖2LG
ε

)
.

10

	Overview
	Recap of the Last Lecture
	Spectrum of a Laplacian matrix

	Upperbounding the Pseudo-condition Number of a Laplacian
	Solving Laplacian Systems for Trees
	Preconditioning
	Constructing Preconditioners for Laplacian Matrices
	Effective Resistance and Upper Bounding n(LT+LG)
	Bounding the Total Stretch of a Tree
	Going Beyond the O"0365O(m32) Pseudo-Condition Number Bound

