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1 Overview
Today, we take a detour and explore a topic that seems unrelated to the theme of the class: decision
making under total uncertainty. In particular, we will consider a simple stock market model that
captures the task of aggregation of conflicting advice and design optimal algorithms for that setting.
Then, we will introduce the general learning from expert advice framework as well as state and analyze
the fundamental algorithm for this framework: multiplicative weights update method. This algorithm
turns out to have wide-spread applications throughout computer science – most notably, in machine
learning, optimization, and game theory, and we will see some of them in this class.

2 Decision Making or How to Get Rich (with Good Advice)
Let us start our discussion with a motivating scenario: a very simplified version of stock market predic-
tion. In this version, we view the stock market as a single evolving index. (One can think of it as, e.g.,
the value of the Dow Jones or NASDAQ.) In each day (round) t, it can either go or down up by one.
Our task is to predict at the beginning of each day which one of these two possibilities will occur. We
are interested in minimizing our total number of prediction mistakes over a fixed (but large) number T
of days this games repeats.

It is not hard to see that if we are not equipped with any knowledge on the behavior of the stock
market, we cannot hope for any gain over random guessing. Such random guessing would make us
mis-predict every other round, in expectation. In fact, in the (not that unrealistic) case when we do
not have access to true randomness and the market is completely adversarial to us, one might end up
mis-predicting in every round.1

Therefore, to make this model interesting, we introduce a set of n “experts” (or sources of information)
such that at the beginning of each round t, each one of them provides us with his/her “prediction” of the
behavior of the stock market in that round. (For instance, one can think of these experts as financial
advisors from CNN, Wall Street Journal, etc., or even our neighbor or barber.)

Now, the key feature (and difficulty) of this scenario is that these “experts” might be experts in the
name only. That is, most – if not all – of these experts might be unreliable and the advice they are
feeding us could be random, arbitrarily correlated or straight misleading.

So, our goal here is to develop an algorithm that can still utilize this“noisy” information. Specifically,
we want to make fairly good predictions as long as at least one (initially unknown to us) expert is
consistently providing good advice. The way we make this desire precise is by focusing on minimizing
our regret Regret(T ) after T rounds, which is defined here as

Regret(T ) := M(T )−min
i
Mi(T ), (1)

whereM(T ) (resp. Mi(T )) is the number of mis-predictions our algorithm (resp. expert i) made in all T
rounds. In other words, we want to minimize the difference between the number of prediction mistakes
we made and the number of prediction mistakes made by the expert that was the best one in hindsight.
(Observe that it does not really matter here what exactly are the two possible predictions in each round.
All that matters is whether we chose the “correct” one or not.)

1Of course, one could argue that the stock market behavior is far from completely random or adversarial and, after all,
many market analysts use sophisticated stochastic models to describe it. Still, even if that’s true, we might not have access
to these models or they might be too computationally expensive for us to compute. Also, taking this radical, adversarial
point of view will make the results that we develop much more broadly applicable.
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3 The Weighted Majority Algorithm
Once we described our setting, let us think about what kind of algorithms could we apply to it. If at
some round t, we presented with conflicting advice, which decision should we make?

One natural approach is to simply go with the majority advice. However, this is not the best idea.
After all, what could happen is that there is one expert who always gives us correct advice and everyone
else mis-predicts in each step. Going with majority each time would make us mis-predict in every step
making our regret Regret(T ) be T , i.e., maximal possible.

Fortunately, it is not hard to fix the above approach. Roughly speaking, the problem with it is that
we always treat each expert in the same way, irregardless of their past performance. In particular, the
influence on the decision of an expert who has not made any mistake up to now is exactly the same the
influence of an expert that mis-predicted in every hitherto step. Clearly, this is a flaw and we should
remedy it somehow.

The most natural solution is to maintain a weight wti for each expert i that change with time and
measure how “trustworthy” the expert i is given his/her performance so far. Given these weights, our
prediction corresponds then to taking a weighted majority of all the experts’ advice. The exact algorithm
is presented as Algorithm 1.

Algorithm 1 Weighted majority algorithm
Set w0

i ← 1, for each expert i
for t = 1 . . . T do

Follow the advice of the weighted majority of experts (wrt weights wt−1i ), breaking ties arbitrarily
Once the actual outcome is revealed, set

wti ←

{
(1− η)wt−1i if the expert i made a mistake this round
wt−1i otherwise,

where 0 < η ≤ 1
2 is a parameter of the algorithm

end for

The parameter η above is often referred to as learning rate. The larger it is the stronger the penalty
for each mistake.

Let us now analyze this algorithm performance.

Lemma 1 For any expert i and any 0 < η ≤ 1
2 , the number of mistakes M(T ) of the weighted majority

algorithm after T rounds is at most

M(T ) ≤ 2(1 + η)Mi(T ) +
2 lnn

η
,

where Mi(T ) is the number of mistakes the expert i made after T rounds.

Proof Our argument will be potential based, with our potential function being

W t =
∑
i

wti ,

i.e., the sum of all the weights in round t.
Clearly, W 0 = n and W t can only decrease with time, i.e.,

W t ≤W t−1, (2)

for each 1 ≤ t ≤ T .
We want to understand now how much this potential function decreases whenever the algorithm

makes a mistake. By definition of the algorithm, if we make a mistake in round t then the total weight
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of the experts that were incorrect is at least W t−1/2. As their weight is reduced by a factor of (1− η),
we must have that

W t ≤
(

1− η

2

)
W t−1 (3)

in such rounds.
Putting (2) and (3) together, we can conclude that after the last round T it is the case that

WT ≤
(

1− η

2

)M(T )

W 0 =
(

1− η

2

)M(T )

n.

On the other hand, by definition of the algorithm, at the end of round T we have that

wTi = (1− η)
Mi(T )

.

As, obviously,
wTi ≤WT ,

we can use (3) to conclude that

(1− η)
Mi(T )

= wTi ≤WT ≤
(

1− η

2

)M(T )

n.

Taking natural logarithm of both side and using the fact that, for any x with |x| ≤ 1
2 ,

− x− x2 ≤ ln(1− x) ≤ −x, (4)

we get that
Mi(T ) ln(1− η) ≤M(T ) ln

(
1− η

2

)
+ lnn

and thus
−η(1 + η)Mi(T ) ≤ −η

2
M(T ) + lnn.

Dividing both sides by −η2 and rearranging the terms gives us the desired bound.

Observe that the bound in Lemma 1 holds for any choice of the expert i. So, in particular, it holds
for the one that is the best in hindsight. Consequently, even though our algorithm does not know who
this best expert i∗ is upfront it able to achieve a performance that, in the limit of large T , is within a
factor of 2(1 + η) of that expert’s performance.

More precisely, if we divide both sides of the bound from Lemma 1 by T , we obtain that

M̂ ≤ 2(1 + η)M̂i∗ +
2 lnn

ηT

T→∞
= 2(1 + η)M̂i∗ ,

where M̂ (resp., M̂i∗) is the average number of mistakes of our algorithm (resp., expert i∗) over the
whole sequence of T rounds.

We thus see that the learning rate η governs the trade-off between the multiplicative approximation
bound of 2(1+η) – that corresponds to large T regime – and the additive approximation bound of 2 lnn

η .
The larger T is the smaller value of η we should choose, and vice versa. In fact, one can show that we
do not even need to know the value of T in advance. There is a way of adaptively changing the learning
rate η to guarantee performance that is close to the one offered by the optimal choice of η.

4 Randomized Weighted Majority Algorithm
The performance of the weighted majority algorithm (Algorithm 1) as expressed by Lemma 1 is quite
satisfying. However, asymptotically, it only promises being within a factor of 2 of the best expert. Can
we improve this guarantee?
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It is not hard to show that this factor of 2 slack is unavoidable, at least as long as we insist on
our algorithm to be deterministic. However, once our algorithm is allowed to use private randomness,
i.e., randomness that is independent of the chosen sequence of “correct” decisions, one can obtain an
improved bound.

The improved algorithm – called randomized weighted majority algorithm – is just a simple modifi-
cation of the weighted majority algorithm we have seen before. Namely, we make it take a randomized
weighted majority vote, instead of a deterministic one. That is, in each round t we sample one of the
experts i proportionally to their current weight, i.e., with probability pti defined as

pti :=
wt−1i

W t−1 , (5)

where W t :=
∑
i w

t and follow his/her advice. The resulting algorithm is presented as Algorithm 2.

Algorithm 2 Randomized weighted majority algorithm
Set w0

i ← 1, for each expert i
for t = 1 . . . T do

Choose an expert it with probability pti (defined in (5)) and follow his/her advice
Once the actual outcome is revealed, set

wti ←

{
(1− η)wt−1i if the expert i made a mistake this round
wt−1i otherwise,

where 0 < η ≤ 1
2 is a parameter of the algorithm

end for

The performance of this algorithm is described by the following lemma.

Lemma 2 For any expert i and any 0 < η ≤ 1
2 , the expected number of mistakes M(T ) of the randomized

weighted majority algorithm after T rounds is at most

E [M(T )] ≤ (1 + η)Mi(T ) +
lnn

η
,

where Mi(T ) is the number of mistakes the expert i made after T rounds.

Proof The proof is quite similar to the proof of Lemma 1. Again, we will use the potential function
W t :=

∑
i w

t
i . As before, W 0 = n and

wTi = (1− η)Mi(T ). (6)

Now, let F t be the weighted fraction of experts that made a mistake in round t. Observe that

E [M(T )] =

T∑
t=1

Ft. (7)

We also have that

WT ≤ (1− ηF1)(1− ηF2) . . . (1− ηFT )W 0 =

T∏
t=1

(1− ηFt)n.

Putting this and (6) together, as well as noting again that wTi ≤WT , we obtain

(1− η)Mi(T ) = wTi ≤WT ≤
T∏
t=1

(1− ηFt)n
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Taking a natural logarithm of both sides gives us that

Mi(T ) ln(1− η) ≤ lnn+

T∑
t=1

ln(1− ηFt).

Using the same Taylor approximation (4) as before, we get that

−η(1 + η)Mi(T ) ≤ lnn− η
T∑
t=1

Ft = lnn− ηE [M(T )] ,

where we also used (7).
Dividing both sides by −η and rearranging the terms gives us the desired bound once again.

Comparing the bound obtained in this lemma with the bound for weighted majority algorithm
presented in Lemma 1, we see that we managed to get rid of the extra factor of 2 entirely, at the cost of
using randomness and obtaining the desired performance only in expectation.

By our discussion after Lemma 1, we see that in the regime of large T the randomized weighted
majority algorithm’s performance essentially matches the performances of the expert i∗ that is the best
one in hindsight. Also, observe that by setting η =

√
lnn
T , Lemma 2 implies that the expected regret

(see (1)) of the randomized weighted majority algorithm can be bounded as

E [Regret(T )] = E [M(T )]−Mi∗(T ) ≤ (1 + η)Mi∗(T ) +
lnn

η
−Mi∗(T )

= ηMi∗(T ) +
lnn

η
≤ ηT +

lnn

η
= 2
√
T lnn,

where we used a trivial bound that Mi∗(T ) ≤ T .
Finally, it is worth noting that the performance bound of the randomized weighted majority algorithm

described in Lemma 2 is essentially the best possible one for any (randomized) algorithm.

5 The Learning From Expert Advice Framework
It turns out that the above ideas give rise to a much more general and versatile framework, which that
encompasses many more scenarios than just our above stock market toy model. This framework is called
learning from expert advice.

Here, we again have n “experts” – although now, one might view them as choices/options – and we
are playing a T -round repeated game described as Algorithm 3.

Algorithm 3 Learning from expert advice framework
for each round t = 1 . . . T do

Choose a convex combination pt := (pt1, . . . , p
t
n) ∈ ∆n of experts

Once we have made our choice of pt, a “loss” lti ∈ [−1, 1] is revealed for each expert i
Our resulting loss in round t is lt :=

∑
i p
t
i l
t
i

end for

Above, ∆n ⊂ Rn denotes the n-dimensional simplex, i.e., a set of n-dimensional points whose coor-
dinates are non-negative and sum up to 1. (Thus, any point in the simplex corresponds to a probability
distribution over n objects.)

As before, our goal is to devise a strategy for choosing the convex combinations pt in each step t, so
that the total loss we incur is not much worse than the total loss of the best-in-hindsight expert. More
precisely, we again want to minimize the regret

Regret(T ) := L(T )−min
i
Li(T ), (8)
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where L(T ) (resp., Li(T )) is the total loss
∑T
t=1 l

t of our algorithm (resp., the total loss
∑T
t=1 l

t
i of the

expert i).
Observe that in this framework we allow lti to be negative – we interpret such negative loss as gain.

Also, as we already mentioned, the convex combinations pt can be directly interpreted as a probability
distributions. So, by taking a random choice according to them in each round, one can get the same
performance bound in expectation. This is important in some applications where taking a convex
combination of the available experts is not feasible.

Finally, note that this framework indeed generalizes our toy stock market model. One just needs to
take lti to be 1 if the expert i makes a wrong prediction in round t and lti to be 0 otherwise. Clearly, our
total (expected) loss will be equal to the expected number of mistakes we make.

6 The Multiplicative Weights Update Algorithm
Once the general learning from expert advice framework is setup, we are able to lift the randomized
weighted majority algorithm to this setting. The resulting algorithm is called the multiplicative weights
update method and is presented as Algorithm 4

Algorithm 4 Multiplicative weights update method
Set w0

i ← 1, for each expert i
for t = 1 . . . T do

Choose pti :=
wt−1

i

W t−1 , for each expert i, i.e., each expert is taken proportionally to his/her weight.
Once the losses lti for all the experts i are revealed, set

wti :=
(
1− ηlti

)
wt−1i ,

where 0 < η ≤ 1
2 is a parameter of the algorithm

end for

Observe that, since we have always that lti ∈ [−1, 1], each multiplicative update (1 − ηlti) to the
weights wt−1i is a factor between (1− η) and (1 + η).

Now, the performance of the MWU algorithm is provided by the following theorem.

Theorem 3 For any 0 < η ≤ 1/2 and any expert i, the total loss L(T ) of the multiplicative weights
update method (Algorithm 4) after T rounds is

L(T ) ≤ Li(T ) + η
T∑
t=1

|lti |+
lnn

η
,

where Li(T ) =
∑T
t=1 l

t
i is the total loss of expert i after T rounds.

Observe that, again, the performance above means that our algorithm matches the performance of
the best expert when T → ∞. In particular, if all the losses lti are non-negative then the above bound
becomes

L(T ) ≤ Li(T ) + η

T∑
t=1

|lti |+
lnn

η
= Li(T ) + η

T∑
t=1

lti +
lnn

η
= (1 + η)Li(T ) +

lnn

η
,

which is an expression analogous to what we obtained in Lemma 2 for the randomized weighted majority
algorithm.

Also, setting η =
√

lnn
T in the bound from Theorem 3 gives us a bound on regret

Regret(T ) = L(T )−min
i
Li(T ) ≤ η

T∑
t=1

|lti |+
lnn

η
≤ ηT +

lnn

η
= 2
√
T lnn
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that is analogous to the bound we obtained for randomized weighted majority algorithm.
Finally, similarly to the case of the randomized weighted majority algorithm, the performance of the

multiplicative weights update method can be shown to be essentially bes possible.
Let us now prove the theorem.

Proof Once again, the proof relies on understanding the evolution of the quantities W t and wti for
our fixed expert i.

To understand the former, notice that W 0 = n. Also, in each round t, we have

W t =
∑
i

wti =
∑
i

(1− ηlti)wt−1i = W t−1 − ηW t−1
∑
i

ptil
t
i = (1− ηlt)W t−1,

where lt is the loss of the algorithm in round t. So, we have that

WT =

T∏
t=1

(1− ηlt)n. (9)

The evolution of wti is also very simple, we have w0
i = 1 and then

wTi =

T∏
t=1

(1− ηlti).

Now, we can just lower bound WT by wTi to obtain that

T∏
t=1

(1− ηlti) = wTi ≤WT ≤
T∏
t=1

(1− ηlt)n.

Taking a natural logarithm of both sides and using our Taylor approximation (4) we get that

−η
T∑
t=1

(lti + η(lti)
2) ≤ −η

T∑
t=1

lt + lnn = −ηL(T ) + lnn.

Rearranging the terms, dividing both sides by −η and using the fact that (lti)
2 ≤ |lti |, we obtain

L(T ) ≤ Li(T ) + η
∑
t

|lti |+
lnn

η
,

as desired.
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