6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015

Problem Set 1

Out: October 11, 2015

Due: October 28, 2015

- (1) Submit the solutions as a PDF file (typeset in PT_EX) by emailing it to Aleksander.
- (2) You can solve the problems in collaboration with one other person, but your writeup has to be prepared independently. Also, please provide the name of the collaborator.

Problem 1. (Reducing the directed max flow to the undirected max flow.) Consider a directed graph G = (V, E) (with unit capacities), a source vertex s and a sink vertex t. Now, let $\hat{G} = (V, \hat{E})$ be an *undirected* graph $\hat{G} = (V, \hat{E})$ over the same vertex V set as G. The edges set \hat{E} of \hat{G} is defined as follows: for each arc $e = (u, v) \in E$ in G, with u being the tail and v being the head of e, the graph \hat{G} has edges (s, v), (u, v), and (u, t) added to \hat{E} .

- (a) Let F* be the value of the maximum s-t flow in G. Argue that the value F* of the maximum s-t flow in G is exactly 2F* + |E|.
 Hint: Use the max-flow min-cut theorem.
- (b) (Extra credit) Design a nearly-linear time procedure that given a maximum s-t flow \hat{f}^* in \hat{G} returns a maximum s-t flow in G. Hint: You might need to use here some advanced data structure result.

Note: This construction extends to arbitrary capacities in a straight-forward manner.

Problem 2. (**Implementing the conjugate gradient method.**) Recall the linear system solving via conjugate gradient method that we discussed in class.

Algorithm 1 Conjugate gradient method.

Compute

$$x_T := \underset{x \in \mathcal{K}_T}{\operatorname{argmin}} g(x), \tag{1}$$

where $\mathcal{K}_T := \operatorname{span}(b, Ab, \dots, A^{T-1}b)$ is the Krylov's subspace of order T and

$$g(x) := \frac{1}{2} \left(\|e(x)\|_A^2 - \|x^*\|_A^2 \right) = \frac{1}{2} \|x\|_A^2 - b^T x.$$

return x_T .

Let $v_1, \ldots, v_T \in \mathbb{R}^n$ be an A-orthogonal basis for \mathcal{K}_T . That is, we have that, for each $x \in \mathcal{K}_T$, $x = \sum_{s=1}^T \alpha_s v_s$, for some $\alpha_1, \ldots, \alpha_T \in \mathbb{R}$; and $v_i \cdot_A v_j = 0$, if $i \neq j$, where

$$x \cdot_A y := x^T A y$$

is the inner A-product.

(a) Show that the optimization problem (1) is equivalent to the following formulation

$$\underset{\alpha_1,\dots,\alpha_T \in \mathbb{R}}{\operatorname{argmin}} \sum_{s=1}^T \left(\frac{\alpha_s^2}{2} \| v_s \|_A^2 - \alpha_s b^T v_s \right).$$

$$\tag{2}$$

(b) Argue that, given the A-orthogonal basis v_1, \ldots, v_T , we can solve problem (2) using only T matrixvector multiplications of A. (c) Prove that one can compute the A-orthogonal basis v₁,..., v_T using only O(T) matrix-vector and vector-vector multiplications.
Hint: Proceed in phases. In phase s, given an A-orthogonal basis v₁,..., v_{s-1} for K_{s-1}, extend it to an A-orthogonal basis v₁,..., v_{s-1}, v_s for K_s by applying the Gram-Schmidt orthogonalization procedure to the vector v'_s := Av_{s-1}. (Why K_s = span(v₁,..., v_{s-1}, v'_s)?) What can you say about v_i · A v'_s, for each i < s − 2?

Problem 3. (Understanding the lower end of the spectrum of a Laplacian matrix.) Let us fix an (unweighted) graph G = (V, E, w) and let L be its Laplacian matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.

- (a) Prove that all the eigenvalues of the Laplacian L are non-negative, i.e., that $\lambda_1 \geq 0$.
- (b) Show that $\lambda_1 = 0$ and the all-ones vector $\vec{1} := (1, \ldots, 1)$ is the corresponding eigenvector.
- (c) Prove that, for any $k \ge 1$, $\lambda_k = 0$ iff G has at least k connected components. Note: This means, in particular, that if G is connected then $\lambda_2 > 0$.

Hint: The fact that we mentioned in class that, for any vector $x \in \mathbb{R}^n$, $x^T L x = \sum_{e=(u,v)\in E} (x_u - x_v)^2$ might be useful here.

Problem 4. (Bipartiteness and the value of λ_n .) Let G = (V, E) be a bipartite graph and let $\lambda_1 \leq \ldots \leq \lambda_n$ be the eigenvalues of its Laplacian. (A graph is bipartite iff one can partition its vertices into two sets P and Q such that each edge has one endpoint in P and the other one in Q.)

- (a) Show that whenever G is d-regular (but not necessarily bipartite) we have that $\lambda_n \leq 2d$. (A graph is d-regular iff each vertex of G has its degree equal to d.) Note: One can show in a similar way that even when G is not d-regular then $\lambda_n \leq 2d_{\max}$, where d_{\max} is a maximum degree.
- (b) Prove that for a *d*-regular graph G, if G is bipartite then $\lambda_n = 2d$.
- (c) (Extra credit) Let G be d-regular and connected. Argue that if we have that $\lambda_n = 2d$ then G is bipartite. Does this implication always hold if G is not connected?