
6.S978 Graphs, Linear Algebra, and Optimization – Fall 2015

Problem Set 1
Out: October 11, 2015 Due: October 28, 2015

(1) Submit the solutions as a PDF file (typeset in LATEX) by emailing it to Aleksander.
(2) You can solve the problems in collaboration with one other person, but your writeup has to be prepared

independently. Also, please provide the name of the collaborator.

Problem 1. (Reducing the directed max flow to the undirected max flow.) Consider a directed
graph G = (V,E) (with unit capacities), a source vertex s and a sink vertex t. Now, let Ĝ = (V, Ê) be
an undirected graph Ĝ = (V, Ê) over the same vertex V set as G. The edges set Ê of Ĝ is defined as
follows: for each arc e = (u, v) ∈ E in G, with u being the tail and v being the head of e, the graph Ĝ
has edges (s, v), (u, v), and (u, t) added to Ê.

(a) Let F ∗ be the value of the maximum s-t flow in G. Argue that the value F̂ ∗ of the maximum s-t
flow in Ĝ is exactly 2F ∗ + |E|.
Hint: Use the max-flow min-cut theorem.

(b) (Extra credit) Design a nearly-linear time procedure that given a maximum s-t flow f̂∗ in Ĝ returns
a maximum s-t flow in G.
Hint: You might need to use here some advanced data structure result.

Note: This construction extends to arbitrary capacities in a straight-forward manner.

Problem 2. (Implementing the conjugate gradient method.) Recall the linear system solving
via conjugate gradient method that we discussed in class.

Algorithm 1 Conjugate gradient method.
Compute

xT := argmin
x∈KT

g(x), (1)

where KT := span(b, Ab, . . . , AT−1b) is the Krylov’s subspace of order T and

g(x) :=
1

2

(
‖e(x)‖2A − ‖x∗‖2A

)
=

1

2
‖x‖2A − bTx.

return xT .

Let v1, . . . , vT ∈ Rn be an A-orthogonal basis for KT . That is, we have that, for each x ∈ KT , x =∑T
s=1 αsvs, for some α1, . . . , αT ∈ R; and vi ·A vj = 0, if i 6= j, where

x ·A y := xTAy

is the inner A-product.

(a) Show that the optimization problem (1) is equivalent to the following formulation

argmin
α1,...,αT∈R

T∑
s=1

(
α2
s

2
‖vs‖2A − αsbT vs

)
. (2)

(b) Argue that, given the A-orthogonal basis v1, . . . , vT , we can solve problem (2) using only T matrix-
vector multiplications of A.

1



(c) Prove that one can compute the A-orthogonal basis v1, . . . , vT using only O(T ) matrix-vector and
vector-vector multiplications.
Hint: Proceed in phases. In phase s, given an A-orthogonal basis v1, . . . , vs−1 for Ks−1, extend
it to an A-orthogonal basis v1, . . . , vs−1, vs for Ks by applying the Gram-Schmidt orthogonalization
procedure to the vector v′s := Avs−1. (Why Ks = span(v1, . . . , vs−1, v′s)?) What can you say about
vi ·A v′s, for each i < s− 2?

Problem 3. (Understanding the lower end of the spectrum of a Laplacian matrix.) Let us
fix an (unweighted) graph G = (V,E,w) and let L be its Laplacian matrix with eigenvalues λ1 ≤ λ2 ≤
. . . ≤ λn.

(a) Prove that all the eigenvalues of the Laplacian L are non-negative, i.e., that λ1 ≥ 0.

(b) Show that λ1 = 0 and the all-ones vector ~1 := (1, . . . , 1) is the corresponding eigenvector.

(c) Prove that, for any k ≥ 1, λk = 0 iff G has at least k connected components.
Note: This means, in particular, that if G is connected then λ2 > 0.

Hint: The fact that we mentioned in class that, for any vector x ∈ Rn, xTLx =
∑
e=(u,v)∈E(xu − xv)2

might be useful here.

Problem 4. (Bipartiteness and the value of λn.) Let G = (V,E) be a bipartite graph and let
λ1 ≤ . . . ≤ λn be the eigenvalues of its Laplacian. (A graph is bipartite iff one can partition its vertices
into two sets P and Q such that each edge has one endpoint in P and the other one in Q.)

(a) Show that whenever G is d-regular (but not necessarily bipartite) we have that λn ≤ 2d. (A graph
is d-regular iff each vertex of G has its degree equal to d.)
Note: One can show in a similar way that even when G is not d-regular then λn ≤ 2dmax, where
dmax is a maximum degree.

(b) Prove that for a d-regular graph G, if G is bipartite then λn = 2d.

(c) (Extra credit) Let G be d-regular and connected. Argue that if we have that λn = 2d then G is
bipartite. Does this implication always hold if G is not connected?
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