
Geometric Aspects of Online Packet Buffering: An Optimal
Randomized Algorithm for Two Buffers?

Marcin Bienkowski1 and Aleksander Mądry1,2

1 Institute of Computer Science, University of Wroclaw, Poland
2 CSAIL, MIT, Cambridge, MA, USA

Abstract. We study packet buffering, a basic problem occurring in network switches. We con-
struct an optimal 16/13-competitive randomized online algorithm PB for the case of two input
buffers of arbitrary sizes. Our proof is based on geometrical transformations which allow to identify
the set of sequences incurring extremal competitive ratios. Later we may analyze the performance
of PB on these sequences only.

Key words: online algorithms, network problems, packet buffering.

1 Introduction

Nowadays, the performance of network backbones depends on the speed, with which network
devices can switch data packets arriving at the input ports to the appropriate output ports.
Since the traffic is usually bursty, the rate of arriving packets might be much higher than the rate
with which the device can transmit them, and in result packets might get lost. This motivates
the use of buffers attached to the input ports; these buffers can accumulate incoming packets
and store them for later transmission. The capacity of buffers — although usually large — is
limited, which makes buffer management techniques crucial for minimizing the data loss.

We study a basic problem in this context. We consider a network device which has m input
ports and one output port. Each input port has an attached buffer which can store up to B
packets; we assume that all packets are of unit size. Time is slotted into time steps. At any
time step, any number of packets may arrive at the input ports and they are appended to the
appropriate buffers. If a buffer cannot accommodate all the packets, the excess is lost. At any
time step, the device can transmit one packet from one buffer; the buffer managing algorithm
has to choose which buffer to send from. The scenario described above is typical for input-
queued switches or routers. Additionally, this model, in which packets are equally important, is
typical for current IP networks.

In our setting no information about the future is available to the algorithm. In particular, we
make no probabilistic assumptions about the input. For analyzing the efficiency of our algorithms
we use competitive analysis [13], and — on any input sequence — compare the throughput (the
number of packets transmitted) of our algorithm and the optimal offline schedule. For any
algorithm A and any sequence of packets arrival τ , we denote the throughput of A on τ by
TA(τ). We call a deterministic algorithm Alg c-competitive if for all sequences τ , it holds
that c · TALG(τ) ≥ TOPT(τ), where Opt denotes the optimal offline algorithm. Number c is
called a competitive ratio of the algorithm Alg. If Alg is a randomized algorithm, then in the
definition above we replace TALG(τ) with its expected value.

? Full version. Extended abstract appeared in the proceedings of LATIN 2008. Research supported by MNiSW
grant number N206 001 31/0436, 2006–2008, MNiSW grant number N N206 1723 33, 2007–2010, and by an
Akamai Presidential Fellowship.

Previous Results. There are several results for the basic model described above. As the
optimal competitive ratios can differ depending on the values B and m, the results address
particular classes of these values.

First, we consider deterministic algorithms. The general upper bound holding for all values
of B and m was given by Azar and Richter [2]. They proved that any deterministic work-
conserving (i.e. serving a non-empty queue) algorithm is 2-competitive. They showed that for
B = 1 no deterministic strategy can be better than (2− 1

m)-competitive and presented a lower
bound on the competitive ratio of 1.366 − Θ(1

m) which holds for any fixed B. Albers and
Schmidt [1] improved that bound showing that for any fixed B and for large m the lower
bound can be arbitrarily close to e/(e − 1) ≈ 1.582. They also showed an algorithm Semi-
Greedy which is 1.944-competitive for B ≥ 2 [12]. For B = 2 this algorithm is optimal and
1.857-competitive; for B → ∞ the algorithm is 1.889-competitive. For m = 2 and B → ∞,
Schmidt [11] demonstrated a lower bound of 16/13 = 1.231 and proved that a greedy algorithm
achieves a ratio of 9/7 ≈ 1.286.

Randomized algorithms were also considered: Schmidt [11] showed a 3/2-competitive Ran-
dom Permutation algorithm; the competitive ratio holds for any values of B and m. For the
lower bound, define h(n, k) as

h(n, k) =
k + n

k + 1 + (n−1)k+1

nk

and h(n) = min
k∈N

h(n, k) . (1)

A lower bound claimed by Albers and Schmidt in [1], whose proof can be found in [12], states
that for any value of B the competitive ratio of any randomized algorithm is at least h(m).
This value is equal to 16/13 for m = 2 and approaches 1.466 for m→∞.

Our Contribution and Paper Outline. In this paper, we present a randomized online
algorithm which — for the case of m = 2 buffers with arbitrary buffer size B — achieves the
optimal competitive ratio of 16/13 ≈ 1.231.

Most papers on packet buffering concentrate around developing a smart algorithm and then
comparing its behavior to the optimal one. Hence, the optimal algorithm is considered only in
the analysis. We employ a different approach. In each step, we trace the set of possible states
of the algorithm, which would so far serve the sequence in optimal manner. Then, by keeping
the state of our online algorithm as close to the center of this set as possible, we ensure that
it performs well compared to the optimal solution. This technique bears some similarities to
the well-known work-function technique, used for constructing many optimal or almost optimal
online algorithms (for example, for k-server [7] or page migration [3]).

Initially, we construct and analyze a deterministic algorithm PBF in a setting that allows
PBF to have fractional number of packets in its buffers. We note that the lower bound on
the competitive ratio of h(2) = 16/13 holds also for such model. The proof of PBF optimality
consists of two parts. In Sect. 3.2, we show how the hardest sequences for PBF look like. We
show that these input sequences (we call them regular) have very special structure, which we
exploit to bound the competitiveness of PBF. We prove this by developing a geometric view
on the packet buffering problem; such approach turns out to be surprisingly successful. Finally,
using a potential function-like argument, in Sect. 3.3, we show that the performance ratio of
PBF on any regular sequence is at most 16/13. We note that the idea of reductions of arbitrary
sequences to the most difficult ones can be found in the previous papers, for example in [11].

As we mentioned above, PBF is a deterministic algorithm which is optimal in an extended,
fractional model. We note that the most straightforward translation of this solution into a ran-
domized non-fractional one does not work. Instead, using techniques similar to randomized

2

rounding [10], we construct a two-dimensional rounding technique, which yields an optimal
algorithm PB.

For clarity, the proofs of technical lemmas were moved to the appendix.

Related Work. One of the most straightforward generalizations of the considered simple
scenario is the model in which packets have values and the objective is to maximize the total
value of packets sent. Although yet not commonly seen in practice, these Differentiated Services
allow Internet Service Providers to assign different levels of Quality of Service to different data
streams.

There are several results concerning the case of maintaining a single buffer, where packets
have to be transmitted in FIFO order and where preemption (eviction of packets already in
buffer) is allowed. Currently, the best deterministic preemptive greedy algorithm due to Englert
and Westermann [4] achieves a competitive ratio of 1.732 and the best known lower bound for
this problem, 1.419, is due to Kesselman et al [6]. There has also been work on a so-called
bounded-delay model, in which no FIFO order is enforced but packets have deadlines (see,
e.g., [5]). Azar and Richter [2] showed how to cope with multiple queues, presenting a general
technique of transforming algorithms for single queue into multiple queue algorithms, losing
factor 2 in the competitive ratio.

The packet buffering problems were also considered under some probabilistic assumptions
on the input sequence (see e.g. [9]). However, there is an observed evidence that the nature of
data traffic in networks is chaotic [8] and does not follow standard patterns like Poisson arrival
model.

2 Preliminaries

First, let us formally define the input sequence. We transform a description of packets arrivals τ
into a sequence of requests σ with more convenient form. For each time step in which there are
no new incoming packets, we append a request Idle to sequence σ. For a step in which there
are new packets at input ports, say x0 packets at buffer 0 and x1 packets at buffer 1, we append
Add(0)x1 Add(1)x2 Idle to σ.

By σt we understand the t-th element of σ and by σ|ba the contiguous subsequence of σ
starting at position (step) a and ending at b. Additionally we define σt as the first t elements
of σ, i.e. σ|t1; in particular, σ0 denotes an empty sequence ε. We say that the request σt is
processed in step t. For any two sequences σ and σ′ we denote their concatenation by σσ′.

Semantics of Request Sequence. For any algorithm Alg, the state of its buffers at the end
of a given step can be described by a pair xALG ∈ {0, . . . , B}×{0, . . . , B}, where the coordinates
denote the number of packets in the respective buffers. For any request (sub)sequence σ, we use
xALG(σ) to denote the state of Alg after it starts with empty buffers and serves the sequence σ.
In particular, by xALG(σt) we mean the state of Alg after processing the first t steps of σ, and
thus xALG(σ0) = (0, 0).

The semantics of the requests from σ sequence is straightforward. Fix any step t. For an Idle
request, Alg may choose a non-empty buffer i and transmit one packet from it. Although the
algorithm may also choose not to transmit a packet, any such algorithm can be transformed
to a work-conserving one, which sends a packet whenever possible, and the competitiveness of
the obtained algorithm is not worse. The way of choosing the buffer for transmission is called
pivoting rule. Note that this rule is the only factor that determines the behavior of the algorithm.

3

If σt is an Add(i) request, a new packet is added to the buffer i. If the number of packets at
the i-th buffer is already B, then the packet is immediately lost. Let `ALG(σt) be the number
of packets that are actually added to the buffer in step t, `ALG(σt) ∈ {0, 1}. We extend this
definition to Idle steps, setting `ALG(σt) = 0 for them.

At the end of the input sequence, the algorithm empties all the buffers; we may assume that
they are all transmitted in one batch.

Let H = [0, B]× [0, B]. We may view xALG, the state of Alg, as a point from H∩N2. Then,
the Idle and Add operations described above have obvious geometric interpretation. For any
state x , x0 and x1 denote the number of packets in the respective buffers, and ‖x ‖ = x0 + x1.

Fractional Model. It is now straightforward to generalize the above description to a fractional
model, where the state ofAlg can be any point fromH (also the one with fractional coordinates).
In particular, the algorithm serving Idle request may choose to transmit fractional parts of
packets from different buffers, with the only requirement that the total mass of transmitted
packets is at most 1. More formally, during an Idle request in step t of σ, Alg chooses a vector
∆(t) = (δ0, δ1) ∈ [0, 1] × [0, 1] such that δ0 + δ1 ≤ 1 and xALG

i (σt−1) ≥ δi(t) for i ∈ {0, 1}.
Then the effect of this request is reflected by a new state xALG(σt) = xALG(σt−1) − ∆(t) of
the algorithm. Note that the definition of `ALG(σt) can be extended to the fractional model in
a straightforward manner.

Although we allow online algorithms to use fractional parts of the packets, to simplify our
analysis we compare them to the optimal offline algorithm which still works in the standard
model.3 We note that the lower bound of 16/13 holds in the fractional model, as well.

Competitiveness. For any sequence σ and any deterministic (not necessarily online) algorithm
Alg, we define a function lossALG(σ) as the number of packets lost by the strategy Alg on σ,
under the condition that ALG starts with empty buffers. For any algorithm Alg and two
sequences σ and τ we define ∆σ lossALG(τ) = lossALG(στ)− lossALG(σ).

Obviously, the losses can occur only due to Add requests which overflow some buffer. There-
fore, if σ is the whole sequence, lossALG(σ) =

∑
t:σt=ADD(1 − `ALG(σt)). Let S(σ) denote the

total number of packets added in σ, i.e. the number of Add requests. The throughput of Alg
(the number of transmitted packets), denoted TALG(σ), is then equal to S(σ)− lossALG(σ).

Consider a sequence σ. Let Opt be an optimal (offline) algorithm for the packet buffering
problem, i.e. the one which minimizes the number of packets lost. We define the performance
ratio of (an online) algorithm Alg on σ as

RALG(σ) =
TOPT(σ)

TALG(σ)
=
S(σ)− lossOPT(σ)

S(σ)− lossALG(σ)
. (2)

If Σ is any set of sequences, then RALG(Σ) = supσ∈Σ{RALG(σ)}. Let Q be the set of all possible
sequences; then the competitive ratio can be defined as RALG = RALG(Q). If RALG ≤ α, then
we call Alg α-competitive.

OPT State Space As mentioned in the introduction, we would like to rely the behavior of our
algorithm on tracing the state of some optimal off-line algorithm buffers in each step. Obviously,
the complete knowledge about this state is not available to an on-line algorithm. Instead, we
will focus on extrapolating a set of possible Opt states which can be inferred from the already

3 Although it is not needed for our reasoning, it appears that this restriction does not constrain the power of
Opt.

4

seen prefix of σ. In each step we trace a certain set I(σt) of possible states whose relation to
an optimal solution is presented in Lemma 2.

We define set I inductively as I(σ0) = {(0, 0)}, and

Ipre(σt) =

(I(σt−1)− (1, 0)) ∪ (I(σt−1)− (0, 1)) if σt = Idle

I(σt−1) + (1, 0) if σt = Add(0)

I(σt−1) + (0, 1) if σt = Add(1)

, (3)

I(σt) =

Ipre(σt) ∩H if Ipre(σt) ∩H 6= ∅
I(σt−1) otherwise .

(4)

An intuition behind the set I(σt) is that it contains states of all algorithms which try to
greedily reduce their loss, i.e. postpone losing packets. A straightforward induction shows that
the number of packets in each state from the set I is the same (we denote this number by ‖I‖)
and I consists of non-fractional states contained in an anti-diagonal interval (see Fig. 1a). We
call an Add request hit if it reduces the number of elements in I.

We say that a state (k1, k2) is majorized by (k′1, k
′
2) (we write (k1, k2) ≤ (k′1, k

′
2)) if k1 ≤ k′1

and k2 ≤ k′2. We define shadow of I, denoted SH(I), as the set of all the states which are
majorized by some state from I. The following technical lemmas show the relation between the
set I, optimal solutions and other work-conserving algorithms.

Lemma 1. For any input σ and any work-conserving algorithm Alg, xALG(σ) ∈ SH(I(σ)).

Lemma 2. There exists an algorithm A, such that xA(σt) ∈ I(σt) for any step t. Every algo-
rithm with such property is optimal and loses a packet in step t on Add request if and only if
I(σt) = I(σt−1).

The main implication of Lemma 2 is that we get a convenient description of the loss of
an optimal algorithm. Namely, we can compute lossOPT(σ) by counting all Add requests, for
which I(σt) = I(σt−1). Note that such equality may occur only when I(σt−1) is a singleton set
at one of the upper boundaries.

Of course, we would like to achieve the performance of A, but the main difficulty in con-
structing an online algorithm mimicking such A is that usually knowing only σt, we can neither
predict the exact state of A in step t+1, nor the future shape of I sets. However, as we already
said, on the basis of computed I(σt), we can in some way extrapolate I(σt+1) and the behavior
of an optimal algorithm A.

3 Algorithm PBF

In this section, we present an algorithm PBF, which is optimal in the fractional model. Let

ri(σ) = xPBFi (σ)− min
z∈I(σ)

zi for i ∈ {0, 1} . (5)

Assume that the adversary decides to issue a maximum number of Add(i) requests without
incurring a loss to Opt. Then ri would be the number of packets lost by PBF. If ri ≤ 0, PBF
cannot lose packets in this way (see r1 in Fig. 1b). We note that ri can be efficiently computed
by an online algorithm (as I can be described by a few parameters). Let bal(σ) = r0(σ)− r1(σ)
be called balance.

5

(B,B)

(B, 0)

(0, 0)

(0, B)

state from set I

shadow of I

main diagonal (MD)

main anti-diagonal

up
pe
r
0-
bo
un
da
ry

lo
w
er
0-
bo
un
da
rylow

er
1-boundary

upper
1-boundary

x PBF

perpendicular bisector of I

r0

−r1

a) b)

Fig. 1. Illustration of the set I and PBF parameters; r0 > 0, r1 < 0

When PBF encounters Idle request in step t of σ, it computes a new shape of the set I(σt)
first. Then it transmits a total mass of 1 packet, so that the resulting value of |bal(σt)| is as
small as possible. This rule can be interpreted geometrically as choosing a new state xALG(σt)
as close to the perpendicular bisector (hence the abbreviation PB; F stands for fractional model)
of the set I as possible.

3.1 Outline of the Proof

In the remaining part Sect. 3, we prove the following theorem.

Theorem 1. For any buffer size B, PBF on two buffers is 16/13-competitive.

We prove it inductively on B. Obviously, for B = 0, the theorem trivially holds (with com-
petitiveness 1). Below we present the roadmap of the proof. As we mentioned in the introduction,
the proof is divided into two parts. In the first one, we narrow down instances on which PBF
has high competitive ratio. In the second part, we restrict our analysis only to these instances.

For any integers x and y, by a block B(x, y) we denote a subsequence IdlexAdd(0)y. We also
denote the sequence Add(0)B Add(1)B by A. By main diagonal (MD) we mean the diagonal of
the square, which contains all fractional states z such that ‖z ‖ = B. We say that I is above, at,
or below MD if ‖I‖ is, respectively, greater, equal, or less than B. We introduce the following
classes of sequences.

Definition 1. We denote the set of all sequences by Q. We also define the following sets of
sequences.

– QN : non-trivial.
σ ∈ QN if it ends with Add incurring loss to PBF and x PBF(σt) 6= (0, 0) for t > 0.

– QP : proper.
σ ∈ QP if it is non-trivial, starts with A, and I(σt) is above MD for all t ≥ |A|.

– QU : uniform.
σ ∈ QU if σ is proper and after initial A, consists only of Add(0) and Idle requests.

– QR: regular.
σ ∈ QR if σ is uniform and has the form AB(x1, y1)B(x2, y2) . . . B(xn, yn), where after
each block B(xi, yi), x PBF0 = B.

The course of the proof is to show each of consecutive relations below.

RPBF ≤ RPBF(QN) ≤ RPBF(QP) = RGR(QP) ≤ RGR(QU) ≤ RGR(QR) (6)

6

RGR denotes the performance ratio of a natural Greedy algorithm (see [11]), which is de-
fined formally later. We show these inequalities in Sect. 3.2. Then, in Sect. 3.3, we prove
that RGR(QR) ≤ 16/13. On the other hand, on the sequence ν(B) = AB(B,B)B(B,B).
PBF transmits 13

4 · B packets, whereas Opt transmits 4 · B. Hence, for B ≥ 1, it holds that
RPBF ≥ RPBF(ν(B)) = 16

13 , and therefore all inequalities above can be replaced by equalities.
We note that by [1,12], the competitive ratio of any online algorithm Alg is at least h(2) = 16

13 ,
and therefore PBF is optimal.

3.2 Worst-case Sequences

In this section, we consecutively prove all inequalities of (6) but the last one. In general, in
order to show that RALG(Q1) ≤ RALG(Q2), we show that for any σ ∈ Q1, we can transform
it to obtain a sequence σ̂ ∈ Q2, such that the performance ratio of Alg does not decrease.
Intuitively, σ̂ is more difficult for Alg than σ.

Changes in Balance. We start from several simple definitions and observations. We define
len(I) as the length of the smallest interval containing set I. This amount is equal to the number
of I elements minus 1.

We conceptually divide each step into two parts. In the first one, the adversary issues
a request and as a result the set I is changed. In case of an Add request, x PBF is changed as
well. In the second part, which is present only for Idle requests, PBF transmits some packets.

As a result of an Add(i) request, ri may decrease by one. This can happen only if just before
this request the set I touches (i.e. has non-empty intersection with) the upper i-boundary of H,
where upper i-boundary is H ∩ {(k0, k1) : ki = B}. We call such an Add(i) request a hit; such
an Add reduces the value of len(I) by one.

If I is above MD, then in a step with Idle request, both ri increase by 1, and therefore the
balance remains unchanged. On the other hand, if I is at or below MD and it touches the lower
i-boundary of H, the corresponding ri remains unchanged. If I touches only one boundary, the
balance may therefore change by one. In total, upon an Idle request, in the first part of a step
len(I) increases by 1 minus the number of lower boundaries I touches and in the second part
PBF changes its state according to its pivoting rule. These observations lead to the following
technical lemmas.

Lemma 3. For any sequence σ, if I(σ) is below or at the main diagonal, then bal(σt) = 0.

Lemma 4. For any sequence σ, there exists a non-trivial sequence σ̂, such that RPBF(σ) ≤
RPBF(σ̂).

Proper Sequences. Consider a non-trivial sequence σ. By the definition, at the end of σ, set I
touches an upper boundary (in the following informal description, we assume that it touches
both boundaries). However, if we look from the adversary point of view, it is not obvious when
this should happen for the first time. It is also not clear that keeping the set I below the
main diagonal is not preferable — even if this constraints the growth of the set I, the resulting
constraints on PBF’s behavior might be beneficial for the adversary.

We address the issues above by showing that proper sequences incur the worst performance
ratio of PBF. Namely, we prove that for any non-trivial sequence σ, there exists another se-
quence σ̂ with not smaller performance ratio, such that σ̂ starts with filling the buffers with
packets and later it keeps the set I all the time above the diagonal.

7

We construct σ̂ on the basis of σ, so that after initial filling the buffers, σ̂ contains almost
the same steps as σ. We can imagine that we have two instances of PBF running “in parallel”
on σ and on σ̂. We show that it is possible to maintain an invariant that the set I and the point
x PBF for σ̂ are equal to I and x PBF for σ translated by some vector. This invariant allows us
to prove that the performance of PBF can only worsen by replacing σ with σ̂.

How do we create σ̂? If the request of σ does not change len(I) and the spatial relation
between I and x PBF, we do not append anything to σ̂. Otherwise, if we have an Add request
in σ, which is a hit, then this Add appended to σ̂ is a hit as well (as I(σ̂) touches both
boundaries). The only problem arises when we have an Idle request in σ occurring when I
touches both lower boundaries, as in this case len(I) decreases. To simulate such change also on
the instance σ̂, we introduce an additional request Lift. We justify this enhancement later in
this section, by showing that the adversary does not need Lift to impose the worst competitive
ratio.

Making Sequences Proper. For the formal proof, we have to extend the notion of proper
sequences. Let H(k0, k1) be the largest square contained entirely in H, with an upper corner at
(k0, k1), i.e., the edge length of such square is min{k0, k1}. Note that H(B,B) = H. We say that
a sequence σ is (k0, k1)-proper (or just proper if k0 = k1 = B) if it begins withAdd(0)k0Add(1)k1

and I(σt) is always contained in the triangle corresponding to the half of H(k0, k1) above its
main diagonal. By a straightforward induction, we get the following fact.

Fact 2 If σ is (k0, k1)-proper, then I(σt) has always maximal possible length, i.e., it contains
all states of H(k0, k1) with ‖I(σt)‖ packets.

Let bi(σt) = minz∈I(σt)B−zi be the distance between I and the upper i-boundary in step t.
Let b∗i (σ) = min1≤t≤|σ| bi(σt). We note that both ‖b ‖ and ‖b ∗‖ start from 2 · B. Moreover,
b∗i never increases during runtime.

We also introduce a new request Lift, which adds a half of a packet to both buffers of PBF.
When it is issued in step t, it changes set I in a way opposite to the effect an Idle request
would have. Namely, we extend definition (3) by the following case.

Ipre(σt) = (I(σt−1) + (1, 0)) ∩ (I(σt−1) + (0, 1)) ∩ H(b0(σt−1), b1(σt−1)) if σt = Lift (7)

It appears that this artificial request helps us to normalize the behavior of PBF. Our goal is to
show a transformation from an arbitrary sequence without Lifts to a proper sequence possibly
containing Lifts. The most important property of this transformation is that in each step t it
preserves the spatial relation between I(σt) and x PBF(σt).

Let Pσ(σ) be constructed in the following manner. We define ∆σ len(a) ≡ len(I(σa)) −
len(I(σ)). Let Pσ(ε) = Add(0)B−b

∗
0(σ)Add(1)B−b

∗
1(σ). Let

Pσ(σt+1) =

Pσ(σt) Idle if σt+1 = Idle and ∆σt len(σt+1) = 1,

Pσ(σt)Lift if σt+1 = Idle and ∆σt len(σt+1) = −1,
Pσ(σt)Add(i) if σt+1 = Add(i) and this Add(i) is a hit,

Pσ(σt) otherwise.

(8)

Although this is not necessary in our reasoning, we observe that if σ is proper, then
Pσ(σ) = σ.

Lemma 5. For any σ and corresponding Pσ(σ), the following invariants hold for all 0 ≤ t ≤ |σ|:

8

set I(Pσ(σ))

(B − b∗0(σ), B − b∗1(σ))

square H(B − b∗0(σ), B − b∗1(σ))

set I(σ)

xPBF(σ)

xPBF(Pσ(σ)) b1(σ)b0(σ)

Fig. 2. Transformation P

(i) len(Pσ(σt)) = len(σt);
(ii) ri(Pσ(σt)) = ri(σ

t) for i ∈ {0, 1};
(iii) S(σt)− S(Pσ(σt)) + ‖b ∗(σ)‖+mini{bi(σt)− b∗i (σt)} ≥ 0;
(iv) lossOPT(Pσ(σt)) = lossOPT(σ

t) and lossPBF(Pσ(σt)) = lossPBF(σt);
(v) Pσ(σt) is (B − b∗0(σ), B − b∗1(σ))-proper.

Proof. We prove the invariants inductively. At the very beginning, for t = 0, invariants (i), (ii),
(iv) and (v) trivially hold. For invariant (iii), we note that S(ε) = 0, S(Pσ(ε)) = ‖b ∗(σ)‖, and
b ∗(σ0) = b (σ0).

Assume that invariants hold for some t < |σ|; we show that they hold also for t + 1. The
cases are depicted on Fig. 3. By MD’ we mean the main diagonal of H(B − b∗0(σ), B − b∗1(σ)).

1. σt+1 = Idle. Invariant (iv) holds trivially as Idle request cannot generate loss. Since σ is
non-trivial, it holds that ‖x PBF(σt)‖ ≥ 1. We prove invariants (i), (ii), (iii) and (v) for the
following three subcases, depending on the value of ∆σt len(σt+1).

(a) If ∆σt len(σt+1) = 1, then an Idle request is appended to Pσ(σt). We note that in this
case len(σt) has to be shorter than the length of MD’. By invariant (i), len(Pσ(σt)) =
len(σt), and thus Fact 2 implies that I(Pσ(σt)) lies strictly above MD’. Therefore,
∆P(σt)len(Idle) = 1, which proves invariants (i) and (v). Moreover, both values of ri for
σt and Pσ(σt) increase by 1, which yields invariant (ii). Invariant (iii) is fulfilled trivially,
as none of the terms on its left hand side changes.

(b) If ∆σt len(σt+1) = 0, nothing is appended to Pσ(σt), and thus len(Pσ(σt)) does not
change. This proves invariants (i) and (v). The considered case may occur only if I(σt)
is at or below the diagonal of H(B − b∗0(σ), B − b∗1(σ)), which, by Lemma 3, implies
that bal(σt) = bal(σt+1) = 0. As ‖x PBF(σt)‖ ≥ 1, PBF is able to transmit a packet,
and it can compensate the increase of one of ri caused by the shift of I. This proves
invariant (ii). For proving invariant (iii), we note that only bi can change, but they may
only increase.

(c) If ∆σt len(σt+1) = −1, then a Lift is appended to Pσ(σt). Since Pσ(σt) is (B−b∗0(σ), B−
b∗1(σ))-proper, by Fact 2, the corresponding set I(Pσ(σt)) has maximal possible length
and therefore ∆Pσ(σt)len(Lift) = −1, which shows invariant (i) and (v). The proof of
invariant (ii) is the same as in the previous case, because bal(Pσ(σt)Lift) = bal(Pσ(σt)).
For proving invariant (iii) , we note that the increase of S(Pσ(σt)) is compensated by
the increase of b0 and b1.

2. σt+1 = Add(j) request. We consider two subcases, depending on whether this request was
a hit.

9

set I(Pσ(σt))

state (B − b∗0(σ), B − b∗1(σ))

square H(B − b∗0(σ), B − b∗1(σ))

set I(σt)

xPBF(Pσ(σt)) or xPBF(σt)

(0, δ1)

1b) Idle1a) Idle 1c) Idle

2b) Add(0) (hit)2a) Add(0) (not hit)

Fig. 3. Illustration for the case analysis of Lemma 5.

(a) If Add(j) is not a hit, then Pσ(σt+1) = Pσ(σt), and thus the increase of len(I(P(σ)) and
len(I(σ)) is equal to 0. In this case, ri values remain unchanged both for sequence σt

and Pσ(σt). Additionally, there is no loss incurred neither on Opt nor on PBF since by
Lemma 1 only a hit can incur loss to PBF. This proves invariants (i), (ii), (iv), and (v).
For invariant (iii), we note that S(σt)− S(Pσ(σt)) increases by 1 and bj decreases by 1.
If b∗j (σ

t) does not change, then the invariant holds. If b∗j decreases, it may happen only
if b∗j (σ

t) = bj(σ
t). In this case, the last term on the left side of the inequality is equal to

zero, and the invariant holds as well.
(b) If Add(j) is a hit, then Add(j) is appended to Pσ(σt) sequence. Obviously, invariant (v)

is preserved. By Fact 2, Add(j) is also a hit in Pσ(σ), i.e., both I(σt) and I(P(σt)) touch
the upper j-boundary. By invariant (i), we have that I(Pσ(σt)) = I(σt)+(δ0, δ1), where
δ1−j ≥ 0 and δj = 0. Furthermore, this observation combined with invariant (ii) for
step t implies x PBF(Pσ(σt)) = x PBF(σt) + (δ0, δ1). Because the shift caused by Add(j)
is perpendicular to the vector (δ0, δ1), lossOPT and lossPBF incurred in this step depend
only on the length len(I) and ri values. We conclude that invariant (ii) and (iv) are
preserved. Finally, since Add(j) is a hit, b ∗ and b do not change and both S(.) increase
by one, which proves invariant (iii).

This finishes the proof of all invariants. ut

We use the lemma above to show that in the analysis of PBF, we may restrict our consid-
eration to proper sequences only.

Lemma 6. For any non-trivial sequence σ, there exists a proper sequence σ̂ (possibly containing
Lift requests) such that RPBF(σ) ≤ RPBF(σ̂).

Proof. As σ is non-trivial, by Lemma 1, it ends with a hit. W.l.o.g., we may assume that it ends
with Add(0). Therefore, b∗0(σ) = b0(σ) = 0, and by the technical lemma above, Pσ(σ) is (B,B−
b∗1(σ))-proper. If additionally b∗1(σ) = 0, then by invariant (iii) of Lemma 5, S(σ) ≥ S(Pσ(σ)).
This combined with invariant invariant (iv) of the same lemma allows to take σ̂ = Pσ(σ) and
obtain RPBF(σ) ≤ RPBF(σ̂).

10

The problem arises if b∗1(σ) > 0. Consider P ′σ(σ) equal to Pσ(σ) but with b∗1(σ) of Add(0)
requests removed from its beginning. By Lemma 5, P ′σ(σ) is a proper sequence in square [0, B−
b∗1(σ)]× [0, B − b∗1(σ)]. The only difference between P ′σ(σ) and Pσ(σ) is that P ′σ(σ) uses b ∗1(σ)
packets less and thus, by invariant (iii) of Lemma 5, S(σ) ≥ S(Pσ(σ)). In effect, RPBF(σ) ≤
RPBF(P ′σ(σ)). We note that the latter performance ratio holds if it is computed for smaller
buffer sizes, namely for B′ = B − b∗1(σ). However, by the inductive assumption, PBF is 16/13-
competitive for B′, and henceRPBF(σ) ≤ 16/13. At this point we may stop our analysis, because
this is what we want to prove in Thm. 1. On the other hand, we may prove the lemma itself by
choosing σ̂ = ν(B) or any other proper sequence with the performance ratio equal to 16/13. ut

Uniform Sequences. An important observation at this stage is that when we constrain
our consideration only to proper sequences σ (possibly containing Lifts), PBF behaves like
a Greedy algorithm. The set I always touches both upper boundaries of H (and in fact, the
whole set I is therefore defined by a single variable ‖I‖). Thus, its perpendicular bisector always
coincides with the main anti-diagonal of H and PBF just tries to move as close to it as possible,
i.e., transmits packets to minimize the maximal level of packets in its buffers. This is exactly the
pivoting rule of Greedy. Note that it does not mean that PBF is just a Greedy algorithm,
which is known to be not optimal. It only means that it behaves in such manner on special kind
of sequences (the proper ones). The worst-case behavior for the Greedy algorithm is incurred
by a sequence which do not start from full buffers (see [11]). Now, we want to further simplify
the structure of the worst-case instances.

Lemma 7. For any proper sequence σ, which may contain Lift requests, there exists a uniform
sequence σ̂, such that RGR(σ) ≤ RGR(σ̂).

Proof. We show a series of transformations of σ, which eventually lead to a uniform sequence σ̂.
If σ is not uniform, it contains some Lift and/or Add(1) requests; let σk+1 be the last of them.
We show that if we replace σk+1 by Add(0) and possibly exchange the roles of Add(0) and
Add(1) in σk, then the resulting sequence, called σ̃, incurs non-smaller loss on Greedy. As the
number of injected packets is the same for σ and σ̃ and on proper sequences the set I behaves
identically for any injection request (Add(0), Add(1) or Lift), we obtain RGR(σ̃) ≥ RGR(σ).
After repeating the above operation at most |σ| times, we end up with a desired uniform
sequence σ̂. (This sequence is equal to σ with allAdd(1) and Lift requests replaced byAdd(0).)

In the following, for succinctness, we omit GR subscripts and superscripts. If x0(σk) ≥
x1(σ

k), then we set σ̃k = σk, otherwise we set σ̃k to be equal to σk with the roles of Add(0) and
Add(1) exchanged. This way, it is guaranteed that x0(σ̃k) ≥ x1(σ̃k) and ‖x (σ̃k)‖ = ‖x (σk)‖. As
already stated above, σ̃k+1 = Add(0). Moreover, σ̃ has the same length as σ and σ̃||σ|k+2 = σ||σ|k+2.

Recall that x0(σ̃k) ≥ x1(σ̃
k). Furthermore, all the requests within σ̃||σ|k+1 are either Add(0)

that increase only x0 coordinate or Idle requests that (for Greedy) cannot change the ordering
of x0 and x1. Therefore,

x0(σ̃
t) ≥ x1(σ̃t) (9)

for any t ∈ {k, . . . , |σ|}. Now, we show inductively show that the following invariants hold for
any t ∈ {k, . . . , |σ|}.

(i) ‖x (σt)‖ ≥ ‖x (σ̃t)‖
(ii) x0(σ̃

t)− x1(σ̃t) ≥ x0(σt)− x1(σt)

The induction basis holds trivially by the choice of σ̃k. We assume that these invariants hold
for some t < |σ| and we consider two cases.

11

1. σ̃t+1 = Idle. In this case, invariant (i) is trivially preserved. For showing invariant (ii), we
define δ = x0(σ

t)− x1(σt). If δ ≥ 1, then both instances of Greedy transmit a packet from
buffer 0 and thus invariant (ii) is preserved. If 0 ≤ δ < 1, then x0(σ

t+1) − x1(σt+1) = 0. If
δ < 0, then again we use the fact that Greedy does not change the relation between x0
and x1, and therefore x0(σt+1)−x1(σt+1) ≤ 0. But (9) implies that x0(σ̃t+1)−x1(σ̃t+1) ≥ 0,
which settles invariant (ii).

2. σ̃t+1 = Add(0). By adding invariants (ii)) and (i) for step t and reorganizing terms, we
obtain x1(σt) ≥ x1(σ̃t). As the buffer 1 is left untouched in step t+ 1, x1(σt+1) ≥ x1(σ̃t+1).
For showing invariant (i), we observe that if x0(σt) ≤ B − 1, then the LHS of invariant (i)
increases by 1 and the RHS increases by at most 1. Otherwise, ‖x (σt+1)‖ = B+x1(σ

t+1) ≥
B + x1(σ̃

t+1) ≥ ‖x (σ̃t+1)‖. For showing invariant (ii), we observe that if x0(σ̃t) ≤ B − 1,
then the LHS of invariant (ii) increases by 1 and the RHS increases by at most 1. Otherwise,
x0(σ̃

t+1)− x1(σ̃t+1) = B − x1(σ̃t+1) ≥ B − x1(σt+1) ≥ x0(σt+1)− x1(σt+1).

Finally, we may compare the losses of Greedy on σ and σ̃. During any packet injection,
the loss of an algorithm plus the increase of ‖x ‖ is equal to 1. Therefore, invariant (i) implies
that loss(σ̃) ≥ loss(σ). ut

Regular Sequences. We cannot analyze uniform sequences easily, because Idle and Add(0)
requests can be arbitrarily mixed. In order to alleviate this problem, we show how to change
a uniform sequence into a regular one.

Lemma 8. For any uniform sequence σ, there exists a regular sequence σ̂, such that RGR(σ) ≤
RGR(σ̂).

Proof. We denote a subsequence Add(0) Idle by F . We process σ from the beginning to the
end, looking for F . We show that if σ contains F and xGR

0 ≤ B − 1 before processing this F ,
then we show that such F can be removed from σ without decreasing the performance ratio.
Moreover, after the removal the sequence remains proper (and thus also uniform). By applying
this removal inductively to any occurrence of F in σ, we eventually get a regular σ̂.

Assume that σ = σprecF σsucc. We look separately at the change of the throughput of Opt
and Greedy. If xGR

0 (σprec) ≤ B − 1, then obviously the removal of F from σ does not change
the state of Greedy and decreases its throughput by 1. The change of TOPT is twofold. First,
it decreases by 1, since one Idle was removed. Second, the throughput on σsucc may only
increase, because ‖I(σprec)‖ ≥ ‖I(σprecF)‖. Moreover, in either case, ‖I‖ can only increase
after the removal, which implies that the new sequence is also uniform. ut

3.3 Performance Ratio on Regular Sequences

In this section we prove that the performance ratio of Greedy on any regular sequence is at
most 16/13. By the previous section, this will prove the competitiveness of PBF. We begin with
an observation on the behavior of Greedy on regular sequences.

Lemma 9. Fix any regular sequence σ = AB(x1, y1),B(x2, y2) . . .B(xn, yn). Then xGR(σ) =
(B,B − γi), where γ0 = 0 and γi ∈ [0, B) for all i ≤ n. Moreover, we have the following
recurrence relation for γi

γi =

γi−1 if xi ≤ γi−1
γi−1+xi

2 if xi > γi−1
.

12

−2

1

2

3

4

1
2

3
4

7
8

15
16 1

s(x)

x
0

−1

16
3 x− 2

Fig. 4. Function s(x)

Proof. We prove the lemma inductively. For i = 0, Greedy ends at (B,B) and the lemma
follows trivially.

Assume that the lemma holds for i− 1. If xi ≤ γi−1, then during Idlexi steps the algorithm
transmits from the first buffer, ending in the state (B − xi, B − γi). On the other hand, if xi >
γi−1, then during the Idlexi requests Greedy first transmits γi−1 packets from the buffer 0 and
then 1

2 ·(xi−γi−1) packets from each buffer, ending at the state (B− 1
2(γi−1+xi), B− 1

2(γi−1+xi)).
Since σ is regular, within the following Add(0)yi requests, Greedy fills up buffer 0, ending

at state (B,B−γi−1) or (B,B− 1
2(γi−1+xi)), respectively. As σ is proper, xi ≤ B, and therefore

γi < B for all i ≤ n. ut

Function s and the Competitive Ratio. Before we continue with the proof of the com-
petitiveness, we need to introduce a function s on interval [0, 1). We use it to lower-bound the
number of packets needed by the adversary to achieve a specific state of the algorithm. We re-
frain from giving a closed-form formula, as it makes the construction unnecessarily complicated.
Fix any x ∈ [0, 1). Let i be an integer such that x ∈ [1− 2−i, 1− 2−(i+1)). We define

s(x) = i+
x− (1− 2−i)

2−(i+1)
. (10)

It is easy to check that s(x) is continuous, piecewise linear, and monotonically increasing. Its
plot is presented in Fig. 4. In the appendix, we present the proofs of the two following technical
lemmas.

Lemma 10. For any 0 ≤ a < b ≤ 1, it holds that s(a+b2)− s(a) ≤ b.
Lemma 11. For any a ∈ [0, 1), it holds that s(a) ≥ 16

3 · a− 2.

Lemma 12. For any regular sequence σ = AB(x1, y1)B(x2, y2) . . . B(xn, yn), and a corre-
sponding sequence γ1, γ2, . . . , γn, it holds that

∑n
i=1 xi/B ≥ s(γn/B).

Proof. We note, without proof, that if all xi were equal to B, then in the lemma statement
we would have an equality. We prove the lemma inductively, i.e., we show that

∑j
i=1 xi/B ≥

s(γj/B) holds for any 1 ≤ j ≤ n. For j = 0, we have s(γ0) = s(0) = 0.
Assume that the bound holds for j − 1. We consider two cases. If xj ≤ γj−1, then by

Lemma 9, γj = γj−1 and the lemma follows. If xj > γj−1, then by Lemma 10 and Lemma 9, it
holds that

xj/B ≥ s
(
xj/B + γj−1/B

2

)
− s(γj−1/B) = s(γj/B)− s(γj−1/B) .

By adding the inequality above to the induction hypothesis, we get
∑j

i=1 xi/B ≥ s(γj/B). ut

13

(3, 2)

(3, 3)

(3, 0)

(3, 1)

(2, 3)

(1, 3)

(0, 3)

xPBF = (k1 + a, k2 + b)

(k1, k2)

xPB distribution

support

Fig. 5. Distribution of PB possible states

Lemma 13. For any regular sequence σ, RGR(σ) ≤ 16/13.

Proof. Let σ = AB(x1, y1)B(x2, y2) . . . B(xn, yn). This determines the sequence γ1, γ2, . . . , γn.
Since σ is non-trivial, both Opt and Greedy transmit packets during all

∑n
i=1 xi Idle requests

of σ. Afterwards, xGR = (B − γn, B) and Opt has at most 2 · B packets; these packets are
transmitted at the end of σ. Therefore, the reciprocal of the performance ratio on σ is

1

R(σ) =
(
∑n

i=1 xi) +B + (B − γn)
(
∑n

i=1 xi) +B +B
= 1− γn/B

2 +
∑n

i=1 xi/B
≥ 1− γn/B

2 + s(γn/B)
≥ 1− 3

16
=

13

16
,

where the last two inequalities follow by Lemma 12 and Lemma 11, respectively. ut

We note that (6) (and thus Thm. 1) follows directly from combining Lemmas 4, 6, 7, 8,
and 13.

4 Randomization

In this section, we describe a randomized algorithm PB, which works in a standard model and
whose expected loss on a sequence σ is exactly the same as the loss of PBF on σ in the fractional
model.
PB traces the current state of PBF. In case of Idle requests, PB tries to transmit a packet

in such a way, that the expected number of packets in its buffers is equal to the actual number
of packets in the buffers of PBF. In the appendix we show an argument why a straightforward
randomization of the fractional solution is inappropriate. We define PB algorithm implicitly,
i.e., in each step we show what its probability distribution over possible states should be. First,
we define this distribution for any possible state of PBF. Later, we show how to infer the actual
behavior of the algorithm on the basis of the distribution.

Definition 2. Fix any (fractional) state of the buffers x = (k0 + a, k1 + b), where k0, k1 ∈ N
and a, b ∈ [0, 1]. Let µ(x) be a random variable with the following distribution.

– If a+ b ≤ 1, then

µ(x) = (k0, k1) +

(1, 0) with probability a

(0, 1) with probability b

(0, 0) with probability 1− a− b

14

– If a+ b ≥ 1, then

µ(x) = (k0, k1) +

(1, 0) with probability 1− b
(0, 1) with probability 1− a
(1, 1) with probability a+ b− 1

We observe that E[µ(x)] = x . We note that this definition is purposely made ambiguous.
In particular, it can be easily verified that if a number of packets in the first buffer is an integer,
then the resulting value of µ is the same, no matter whether we pick a = 0 or a = 1. The
same holds for the second buffer. Also, if a+ b = 1, we may choose any of the two rules above
for setting µ(x) above, and both would yield the same distribution. For more intuitions about
function µ, see Fig. 5. Each point from the square represents a legal state of an algorithm in
the fractional model. Legal states of the algorithm in the standard model are represented by
dots (points with integer coordinates). Then µ(x) is just a function which assigns probabilities
to the vertices of a triangle enclosing x . If x lies on a triangle edge or at a triangle vertex, then
µ(x) has non-zero probability on two points (ends of the edge) or at one point (the vertex),
respectively.

The following lemma shows that whenever PBF changes is state from x to x ′, it is possible
for PB to change the probability distribution from µ(x) to µ(x ′).

Lemma 14. It is possible to construct a randomized online algorithm PB for the standard
model, such that x PB(σ) = µ(x PBF(σ)) for any sequence σ. In effect, lossPB(σ) = lossPBF(σ).

Theorem 3. PB is 16
13 -competitive for the packet buffering problem on two buffers.

5 Conclusions

Although we presented an optimal algorithm for a specific case of two buffers, its main idea of
tracing set I and trying to stay close to its center can be generalized; the game is then played
in a m-dimensional cube H. The main open question is whether such algorithms can approach
the lower bound of h(m).

References

1. S. Albers and M. Schmidt. On the performance of greedy algorithms in packet buffering. In Proc. of the
36th ACM Symp. on Theory of Computing (STOC), pages 35–44, 2004.

2. Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. In Proc. of the 35th ACM
Symp. on Theory of Computing (STOC), pages 82–89, 2003.

3. M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook. Page migration algorithms using work functions.
Journal of Algorithms, 24(1):124–157, 1997. Also appeared in Proc. of the 4th ISAAC, pages 406–415, 1993.

4. M. Englert and M. Westermann. Lower and upper bounds on FIFO buffer management in QoS switches. In
Proc. of the 14th European Symp. on Algorithms (ESA), pages 352–363, 2006.

5. M. Englert and M. Westermann. Considering suppressed packets improves buffer management in QoS
switches. In Proc. of the 18th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 209–218, 2007.

6. A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS buffering. Algorith-
mica, 43(1–2):63–80, 2005. Also appeared in Proc. of the 11th ESA, pages 361–372, 2003.

7. E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42(5):971–983,
1995. Also appeared in Proc. of the 26th STOC, pages 507–511, 1994.

8. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Transactions on Networking, 2(1):1–15, 1994.

9. M. May, J. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differentiated services schemes
for the internet. In Proc. of the IEEE INFOCOM, pages 1385–1394, 1999.

15

10. P. Raghavan and C. D. Tompson. Randomized rounding: a technique for provably good algorithms and
algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

11. M. Schmidt. Packet buffering: Randomization beats deterministic algorithms. In Proc. of the 22nd Symp.
on Theoretical Aspects of Computer Science (STACS), pages 293–304, 2005.

12. M. Schmidt. Online Packet Buffering. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2006.
13. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of

the ACM, 28(2):202–208, 1985.

A Proofs of Technical Lemmas

A.1 The Set I

Proof (of Lemma 1). We prove the lemma inductively. At the very beginning xALG = (0, 0) ∈
I ⊆ SH(I). Assume that this lemma holds for sequence σt−1. It means that there exists a state
(k0, k1) ∈ I(σt−1), which majorizes xALG(σt−1).

– If σt = Idle, then we consider two cases. If xALG(σt−1) = (0, 0), then Alg remains in this
state and the lemma trivially holds. Otherwise Alg transmits a packet from a non-empty
buffer, say from buffer 0, which implies k0 ≥ 1. But (k0 − 1, k1) ∈ I(σt), and this state
majorizes xALG(σt−1)− (1, 0) = xALG(σt).

– If σt = Add(0), then we consider three subcases. Analogous reasoning applies if σt =
Add(1).
• k0 < B. In this case, xALG(σt) ≤ xALG(σt−1) + (1, 0) ≤ (k0 + 1, k1) ∈ I(σt).
• k0 = B and I(σt−1) is a singleton set. In this case I(σt) = I(σt−1). We get xALG

0 (σt) ≤
B = k0 and xALG

1 (σt) = xALG
1 (σt−1) ≤ k1, and therefore xALG(σt) ≤ (k0, k1) ∈ I(σt).

• k0 = B and I(σt−1) is not a singleton set. By the construction of I, I(σt−1) contains also
(k0−1, k1+1), and therefore I(σt) contains (k0, k1+1). Similarly to the previous subcase,
xALG
0 (σt) ≤ B = k0, xALG

1 (σt) = xALG
1 (σt−1) ≤ k1 < k1 + 1, and thus xALG(σt) ≤

(k0, k1 + 1).

Hence, in either case the lemma holds for σt. ut

Proof (of Lemma 2). In order to prove the first part of the lemma, we show that for each step
t ≥ 1 and x ∈ I(σt), there exists a state x prev ∈ I(σt−1), such that after request σt and a proper
choice of packet transmitted, x prev becomes x . Thus, if we choose any sequence σ and any final
state from I(σ), we can reconstruct the sequence of states of an algorithm A, which remains
for the whole sequence σ in the corresponding I set.

We introduce a notion of `∗ which is the same measure for set I as `ALG is for an algorithm
Alg, i.e., `∗(σt) is the number of packets added during an Add request in step t to a state
from I. For an Idle request in step t, `∗(σt) = 0. This means that for an Add(0) request in
step t, I(σt) = I(σt−1) + (`∗, 0) and for Add(1), I(σt) = I(σt−1) + (0, `∗).

If σt = Idle, then it follows from the definition of I(σt) that either x + (1, 0), x + (0, 1) or
x itself belongs to I(σt−1). Choosing x prev as such element of I(σt−1) guarantees that x can
be reached from x prev by transmitting packet from an appropriate buffer or not transmitting at
all. On the other hand, if σt = Add(0), then we choose x prev = x − (`∗, 0). By the observation
above, x prev ∈ I(σt−1). The case of σt = Add(1) is analogous.

Moreover, we observe that for all the requests, it holds that `A ≡ `∗, which means that A
loses a packet during an Add request which does not change the set I.4

For proving the second part of the lemma, we fix any algorithm A, which is always in the
set I. Note that ‖xA‖ ≡ ‖I‖. For proving the optimality of A, we show that for any algorithm

4 It may only happen if I is a singleton set.

16

Alg and any input sequence σ, lossALG(σ) ≥ lossA(σ). Without loss of generality, we may
assume that Alg is work-conserving.

When we look at the number of packets lost by Alg in the consecutive steps, we notice
that the fewer packets it has, the harder it is to force it to lose another packets. Thus, one may
try a strategy of losing more packets than strictly necessary at some step, and then winning
back not only the surplus lost, but also some additional ones. We show that no such strategy is
feasible.

We inductively prove that for any input σ and step 0 ≤ t ≤ |σ|, it holds that

‖xALG(σt)‖+ lossALG(σ
t) ≥ ‖xA(σt)‖+ lossA(σt) . (11)

Obviously, it holds for t = 0. For an Add requests, both sides of inequality increase by 1,
i.e., either the Add request incurs a loss to an algorithm or shifts its position in appropriate
direction. For an Idle request, there is no loss generated. By Lemma 1, ‖xALG‖ ≤ ‖xA‖, and
therefore if Alg transmits a packet, A does this as well. Hence, (11) holds.

Finally, ‖xALG‖ ≤ ‖xA‖ together with (11) implies lossALG(σ) ≥ lossA(σ), which finishes
the proof. ut

A.2 Non-trivial Sequences

Proof (of Lemma 3). It is sufficient to show that the balance is at most max{‖I‖ − B, 0}.
Initially, this condition is trivially fulfilled. Assume that this condition holds at the end of
step t.

If σt+1 = Add(i), then the balance changes by 1 only if this Add(i) is a hit, in which case
I has to be above or at MD. As a result, max{‖I‖ −B, 0} increases as well.

If σt+1 = Idle, then the balance may increase only if I is below or at MD and touches
exactly one lower boundary. In this case, the PBF decreases the balance back in the second
part of the step. ut

Proof (of Lemma 4). First, we show that we may cut off our sequence σ after the last Add
request which incurs a loss to PBF. Indeed, if σ does not end with Add request inflicting loss to
PBF, then let σ′ = σ|σ|−1. We have S(σ′) ≤ S(σ), lossOPT(σ

′) ≤ lossOPT(σ), and lossPBF(σ′) =
lossPBF(σ). Therefore, RPBF(σ′) ≥ RPBF(σ). By proceeding inductively, we obtain a sequence
ending with an Add request which incurs a loss to PBF.

For proving the second part of the non-triviality property, we show that if σ contains a step t,
such that x PBF(σt) = (0, 0), then there exists a strictly shorter sequence σ̃, such thatRPBF(σ̃) ≥
RPBF(σ). If a newly obtained sequence σ̃ is not non-trivial, then we may apply this scheme
inductively on σ̃. After finitely many steps, we get a non-trivial sequence σ̂, such thatRPBF(σ̂) ≥
RPBF(σ).

To show this, we take the last step t for which x PBF(σt) = (0, 0). By a straightforward
induction, we observe that it may only happen when I(σt) touches both lower boundaries. Let
L = ‖I(σt)‖. Our goal is now to show that if we insert L Idle requests directly after step t, then
we may change the remaining suffix of σ, so that the performance ratio of PBF does not decrease.
Sequences τ = σt and λ = σ

|σ|
t+1 fulfill the requirements of Lemma 15 (see below). By applying

this lemma L times, we obtain a sequence σt IdleL η, such that RPBF(σt IdleL η) ≥ RPBF(σ)
and |η| = |λ|. Moreover, x PBF(σt IdleL) = (0, 0) and I(σt IdleL) = {(0, 0)}, which means
that after the first t+ L steps the game between PBF and the adversary starts over. In effect,
RPBF(σt IdleL η) ≤ max{RPBF(σt),RPBF(η)}. We pick σ̃ to be either σt or η, choosing the
one with higher performance ratio. Finally we note that for any such choice |σ̃| < |σ|, and thus
the lemma follows. ut

17

a) d = 0

d = B

d = 0

d = −B

b)

perpendicular bisector(s)
set I(τλ)
set I(τ̂ λ̂)t

x (τλt)

x (τ̂ λ̂t)

c)

Fig. 6. Types of steps defined in the proof of Lemma 15

Lemma 15. Fix any sequence τ , such that x PBF(τ) = (0, 0), 1 ≤ ‖I(τ)‖ ≤ B, and I(τ) touches
both lower boundaries. Let τ̂ = τ Idle. Fix any sequence λ, such that x PBF(τλt) 6= (0, 0) for
any t = 1, . . . , |λ|. There exists a sequence λ̂, such that |λ̂| = |λ| and RPBF(τ̂ λ̂) ≥ RPBF(τλ).

Proof. Note that values of S, lossOPT and lossPBF are the same on τ and on τ̂ . In the following,
we omit subscripts and superscripts at x .

We create sequence λ̂ iteratively on the basis of λ, thinking that λ is created by an adversary.
We refer to λ as the original sequence and to λ̂ as the modified one. To simplify the analysis
later, we want to make λ̂ quite similar to λ. In particular, λ̂ will have the same length as λ and
will inject packets in exactly same steps. That said, λ̂ may inject packets to different buffers
than λ.

Additionally, we employ the following swapping operation. As at the beginning I(τ) and I(τ̂)
touch both lower boundaries and x (τ) = x (τ̂) = (0, 0), the buffers are completely symmetric.
This means that at step t we may replace all Add(0) requests in λ|t1 by Add(1) and vice versa.
Note that this does not restrict the power of the adversary of creating an arbitrary sequence:
we may think that upon swapping operation the adversary performs the same replacement in
the not yet processed part of λ. This way, we merely swapped the meaning of two buffers in the
original sequence.

We define a couple of general invariants.

(I1) lossOPT(τλ
t) = lossOPT(τ̂ λ̂

t);
(I2) ‖I(τλt)‖ = ‖I(τ̂ λ̂t)‖+ 1.

Additionally, we divide steps into two different types and define invariants for each type. To
this end, we first introduce a few notions. By pb(I) we denote the perpendicular bisector of the
smallest interval containing set I. For any point of y ∈ H, we define its horizontal position as
d(y) = y1−y0. Thus, the horizontal position of the leftmost point of H is −B and the rightmost
one is B, cf. Fig. 6a. Note that points from the same vertical lines of H (in particular from the
pb(I)) have the same horizontal positions. We call a difference between the values of d of two
points the horizontal distance between these two points.
A T1-type step t is depicted in Fig. 6b. Its invariants are:

(P1a) len(I(τλt)) = len(I(τ̂ λ̂t)) + 1;
(P1b) pb(I(τλt)) = pb(I(τ̂ λ̂t));
(P1c) ‖x (τ̂ λ̂t)‖ ≤ ‖x (τλt)‖ ≤ ‖I(τ̂ λ̂t)‖;
(P1d) x (τλt) and x (τ̂ λ̂t) lie on pb(I(τλt)) = pb(I(τ̂ λ̂t)).

A T2-type step t is depicted in Fig. 6c. Its invariants are:

18

(P2a) len(I(τλt)) = len(I(τ̂ λ̂t));
(P2b) either I(τλt) = I(τ̂ λ̂t)+(0, 1) and both I(τλt) and I(τ̂ λ̂t) touch the upper 0-boundary

(we call I(τλt) right-shifted),
or I(τλt) = I(τ̂ λ̂t) + (1, 0) and both I(τλt) and I(τ̂ λ̂t) touch the upper 1-boundary
(we call I(τλt) is left-shifted);

(P2c) ‖x (τ̂ λ̂t)‖ ≤ ‖x (τλt)‖;
(P2d) d(x (τ̂ λ̂t)) ≤ d(x (τλt));
(P2e) d(x (τ̂ λ̂t)) ≤ d(pb(I(τ̂ λ̂t)));
(P2f) d(x (τλt)) ≤ d(pb(I(τλt))).

The inequalities in invariants (P2d)–(P2f) hold for a right-shifted I(τλt). For a left-shifted one,
they are reversed.

We inductively show that the invariants hold. Clearly, step t = 0 is of type T1: all invariants
are trivially preserved as x (τ) = x (τ̂) = (0, 0). We assume that the invariants hold for step
t < T and we show them for step t+1. We refrain for formally showing invariants related solely
to sets I (i.e., (I1), (I2), (P1a), (P1b), (P2a), (P2b)) as they will follow immediately from our
construction. Unless specified otherwise, we choose λ̂t+1 = λt+1,

Preserving invariants when t is of type T1.
1. λt+1 = Add and this Add is not a hit in sequence τλt+1. In this case, this Add is also

not a hit in sequence τ̂ λ̂t+1. By invariants (P1c) and (P1d), no loss is incurred to any of
the two instances of PBF. Hence, this Add just shifts both sets I and points x and all
invariants are preserved.

2. λt+1 = Add and this Add is a hit in sequence τλt+1. We show that t+1 is of type T2. As
there is no hit for the sequence τ̂ λ̂t+1, invariants (P1c) and (P1d) guarantee no loss for
both instances of PBF. This implies invariant (P2c). As d(x (τλt+1)) = d(x (τ̂ λ̂t+1)) =
d(pb(I(τ̂ λ̂t+1))) = d(pb(I(τλt+1)))± 1, invariants (P2d)–(P2f) follow.

3. λt+1 = Idle. By the lemma assumption, ‖x (τλt+1)‖ ≥ 0. In this case, ‖I‖ and the
number of packets in the buffers of PBF run on the original sequence decrease by 1. The
number of packets in the buffers of PBF run on the modified sequence may decrease by a
smaller amount if ‖x (τ̂ λ̂t+1)‖ = 0. In either case, invariant (P1c) follows. Invariant (P1d)
follows trivially.

Preserving invariants when t is of type T2.
Without loss of generality, we assume that at step t, I(τλt) is right-shifted, i.e., I(τλt) =
I(τ̂ λ̂t)+(0, 1). Recall that this means that both I(τλt) and I(τ̂ λ̂t) touch upper 0-boundary
and the horizontal distance between their pbs is exactly 1.
1. λt+1 = Idle. If I(τ̂ λ̂t) lies strictly above the main diagonal, then pbs remain intact.

As both instances of PBF are trying to reduce their distance to the respective pbs,
whose mutual horizontal distance is 1, invariants (P2d)–(P2f) are preserved. Invariant
(P2c) follows trivially. If, however, I(τ̂ λ̂t) lies on the main diagonal, then step t+1 is of
type T1, where invariant (P1c) follows trivially and invariant (P1d) follows by Lemma 3.

2. λt+1 = Add(0). Such request is clearly a hit. If both I are points on the boundary then
this incurs a loss of a packet for Opt in both instances. The pbs remain in place, while x
corresponding to PBF instances may be shifted. This preserves invariants (P2d)–(P2f).
Invariant (P2c) of step t states that there exists c ≥ 0 such that ‖x (τ̂ λ̂t)‖+c = ‖x (τλt)‖.
On the other hand, invariant (P2d) of step t states x1(τ̂ λ̂t)−x0(τ̂ λ̂t) ≤ x1(τλt)−x0(τλt).
Therefore, x0(τ̂ λ̂t) ≥ x0(τλ

t) − c/2. By adding a packets to the buffer 0 in step t + 1,
the loss incurred to the modified instance can be at most c/2 smaller than the loss
incurred to the original one. Therefore, ‖x (τ̂ λ̂t+1)‖ + c/2 ≤ ‖x (τλt+1)‖, which yields
invariant (P2c).

19

3. λt+1 = Add(1) and I(τλt) does not touch the upper 1-boundary. As this request is not
a hit, sets I and points x are just shifted and all invariants hold.

4. λt+1 = Add(1) and I(τλt) touches the upper 1-boundary. Note that in such case
d(pb(I(τλ))) = 0 and d(pb(I(τ̂ λ̂))) = −1. We consider two subcases.

(a) If d(x (τλt)) ≤ −1, then we set λ̂t+1 = Add(0). For such choice, both pbs remain
intact, and invariants (P2d)–(P2f) follow. Furthermore, this step incurs no loss on
PBF on the original sequence, and therefore invariant (P2c) follows as well. Note
that this step may incur a loss of Opt on the modified sequence in case when set
I(τ̂ λ̂t) contains a single point (on the upper boundary). However, in such case I(τλ)
consists of a single point {(B,B)} and λt+1 incurs a loss on Opt on the original
sequence, too. Hence invariant (I1) follows.

(b) If d(x (τλt)) ∈ (−1, 0], then we perform swapping operation. Note that the operation
does not change the shape of I(τλt) as this set is buffer symmetric. It does however
change the position of x (τλt), so that d(x (τλt)) ∈ [0, 1) and λt+1 = Add(0). In
particular, after performing this request, d(x (τλt)) < 0, and thus invariant (P2f) is
preserved. In this case, we set λ̂t+1 = Add(0) and apply the analysis from case 2.

After the input sequence ends, we analyze the performance ratio on the original and the
modified sequence. Clearly, S(τ̂ λ̂) = S(τλ). Within λ, PBF run on the original instance of PBF
transmitted load 1 for any Idle request and when run on the modified instance transmitted
load at most 1. Hence, by a simple induction we obtain the following relation: ‖x (τλ)‖ −
‖x (τ)‖ +∆τ lossPBF(λ) ≤ ‖x (τ̂ λ̂)‖ − ‖x(τ̂)‖ +∆τ̂ lossPBF(λ̂). As lossPBF(τ) = lossPBF(τ̂) and
‖x (τ)‖ = ‖x (τ̂)‖, it holds that lossPBF(τ̂ λ̂)− lossPBF(τλ) ≥ ‖x (τλ)‖ − ‖x (τ̂ λ̂)‖.

If the sequence ends with a step of type T1, then lossOPT(τ̂ λ̂) = lossOPT(τλ) (by invari-
ant (I1)) and lossPBF(τ̂ λ̂) ≥ lossPBF(τλ) (by invariant (P1c)). Same relations hold if a sequence
ends with a step of type T2 (by (I1) and (P2c)). Therefore, R(τ̂ λ̂) ≥ R(τλ). ut

A.3 Properties of Function s()

Proof (of Lemma 10). We fix any 0 ≤ a < b ≤ 1. Let i be an integer, such that 1− 2−i ≤ a <
1− 2−(i+1). Note that for any b > a, it holds that a+b

2 < 1− 2−(i+2). We consider two cases.

(i) If a+b
2 < 1− 2−(i+1), then both a and a+b

2 belong to the same linear segment of the function
s. Then,

s

(
a+ b

2

)
− s(a) =

(
i+

a+b
2 − (1− 2−i)

2−(i+1)

)
−
(
i+

a− (1− 2−i)
2−(i+1)

)

= 2i+1 ·
(
a+ b

2
− a
)

= 2i · (b− a)
≤ 2i ·

[
b− (1− 2−i)

]

= (2i − 1) · (b− 1) + b

≤ b .

20

(ii) If 1 − 2−(i+1) ≤ a+b
2 < 1 − 2−(i+2), then a and a+b

2 belong to the two consecutive linear
fragments of the function s. In this case,

s

(
a+ b

2

)
− s(a) =

(
(i+ 1) +

a+b
2 − (1− 2−(i+1))

2−(i+2)

)
−
(
i+

a− (1− 2−i)
2−(i+1)

)

= 1 +
(a+ b)− (2− 2−i)

2−(i+1)
− a− (1− 2−i)

2−(i+1)

= 1 + 2i+1 · (b− 1)

= (2i+1 − 1) · (b− 1) + b

≤ b .

Thus, in both cases it holds that s(a+b2)− s(a) ≤ b. ut

Proof (of Lemma 11). Let g(a) = 16
3 ·a−2. It suffices to show that s(a) ≥ g(a) for any a ∈ [0, 1].

The plot of both functions is depicted in Fig. 4, but the relation between s(a) and g(a) can be
also proved analytically.

For a ∈ [0, 12), s(a) = 2a, and for a ∈ [12 ,
3
4), s(a) = 4a− 1. It can be checked that for these

cases s(a) ≥ g(a). On the other hand, s(34) = g(34) and for a ≥ 3
4 , s(a) is growing faster than

g(a). To show this, it is sufficient to observe than the function s is continuous, differentiable
on the whole (0, 1) except for the points 1 − 2−i, and its first derivative on (34 , 1) is at least 4,
which is more than 16

3 , the first derivative of g(a). ut

A.4 Randomization

Proof (of Lemma 14). We prove the lemma by induction on the number of steps. At the begin-
ning, the invariant is trivially fulfilled, as both algorithms start with empty buffers. Assume that
x PB(σt−1) = µ(x PBF(σt−1)). Fix k0, k1 ∈ N, a, b ∈ [0, 1], such that x PBF(σt−1) = (k0+a, k1+b).
To keep the description of a random variable concise, we introduce the following notation. We
write x PB = {(t1, s1) : p1, (t2, s2) : p2, . . .} meaning that x PB is equal to (ti, si) with probabil-
ity pi. Furthermore, we call a triangle corresponding to the case a+ b ≥ 1 upper; the other ones
are called lower.

Assume that σt = Add(0) (for σt = Add(1), the reasoning is analogous). If x PBF1 (σt−1) ≤
B − 1, then adding a packet to the buffer of PBF and PB just changes the triangle, without
violating the relations between x PBF and x PB. The only problem may occur if xPBF1 (σt−1) >
B− 1. So let k0 = B− 1 and assume first that x PBF(σt−1) = (B− 1+a, k1+ b) lies in an upper
triangle. Hence, x PB(σt−1) = {(B, k1) : 1 − b, (B − 1, k1 + 1) : 1 − a, (B, k1 + 1) : a + b − 1}.
After adding a packet to the first buffer, x PBF(σt) = (B, k1 + b). On the other hand, PB
adds the packet only if it happens to be in the state (B − 1, k1 + 1), in other cases it just
loses this packet. Therefore, x PB(σt) = {(B, k1) : 1 − b, (B, k1 + 1) : b} = µ(x PBF(σt)) and
lossPB(σt) = lossPBF(σt). Similar reasoning can be applied if PBF lies in a lower triangle.

The reasoning for σt = Idle is more complicated. Essentially, we have to show that it is
possible to choose a strategy of (randomly) transmitting packets, such that the probability
distribution of PB changes from µ(x PBF(σt−1)) to µ(x PBF(σt)). Obviously, each possible state
of PB can transmit once from a single buffer only.

First, we note that PBF is work-conserving, i.e., the total mass of packets sent in step t is
equal to 1. The only exception of this rule occurs if PBF ends step t with the buffers completely
empty. This may occur only if x PBF(σt−1) belongs to the lower triangle with vertices (0, 0), (0, 1),
and (1, 0). By simply transmitting from a non-empty buffer if PB is at state (0, 1) or (1, 0), we
may assure that x PB(σt) = 0 = x PBF(σt).

21

a) b)

xPBF(σt−1)

set of possible xPBF(σt)

u3

u5

u6

u2

u4

u1

u5

u7

u2

u4

u6

u1

u3

states

S

AB C

S′

A′B′

C ′

Fig. 7. State transitions of PB

For the remaining part of the proof, we consider two cases, depicted on Fig. 7a and Fig 7b.
x PBF(σt−1) belongs either to an upper triangle S or to a lower triangle S′. Therefore, x PBF(σt)
may belong to one of the three triangles A, B, or C (or respectively A′, B′, or C ′ if it starts
from a lower triangle). A set of possible x PBF(σt) positions is an interval depicted with a thick
line in the figure. We fix k′0, k

′
1 ∈ N, a′, b′ ∈ [0, 1], such that x PBF(σt) = (k′0 + a′, k′1 + b′). The

behavior of PB is described by the table below. First two columns denote the starting and
ending triangle for x PBF. Instead of writing from which buffer PB has to transmit a packet we
write in which state it has to end (we guarantee that to achieve that it has to transmit a packet
from exactly one buffer). A rule ui → uj means that if PB is in state ui then it has to end in
state uj (see Fig. 7). A rule ui → (uj : pj , uk : pk) means that if PB is in state ui, it should end
in state uj with probability pj and in state uk with probability pk.

x PBF(σt−1) x PBF(σt) Rule Notes

S A u5 → u2; u6 → u4; u4 → (u1 :
1−a′
1−a , u2 :

a′−a
1−a) a′ ≥ a

B u6 → u5; u4 → u2; u5 → (u3 :
1−b′
1−b , u2 :

b′−b
1−b) b′ ≥ b

C u4 → u2; u5 → u2; u6 → (u5 :
a′

a+b−1 , u2 :
b′

a+b−1) a
′ + b′ = a+ b− 1

S’ A’ u4 → u1; u7 → u4; u6 → (u3 :
b′
b , u4 :

b−b′
b) b′ ≤ b

B’ u4 → u2; u6 → u4; u7 → (u5 :
a′
a , u4 :

a−a′
a) a′ ≤ a

C’ u6 → u4; u7 → u4; u4 → (u1 :
1−a′
1−a−b , u2 :

1−b′
1−a−b) a

′ + b′ = a+ b+ 1

To illustrate the concept, we consider the case x PBF(σt−1) ∈ S and x PBF(σt) ∈ A more
thoroughly. First, we note that a′ ≥ a, and therefore the probabilities occurring in the PB rule
are legal. Additionally, a+ b = a′+ b′. Second, we compute PB distribution at the end of step t.

Pr[x PB(σt) = u1] =
1− a′
1− a ·Pr[x PB(σt−1) = u4] = 1− a′ ,

Pr[x PB(σt) = u4] = Pr[x PB(σt−1) = u6] = a+ b− 1 = a′ + b′ − 1 ,

which implies that

Pr[x PB(σt) = u2] = 1− (1− a′)− (a′ + b′ − 1) = 1− b′ .

The proof for the remaining five cases is analogous. ut

A.5 Why naive randomization does not work?

Let us take a look at a naive approach. When PBF transmits a fraction δ from the first buffer
and 1 − δ from the other, then the naive randomized algorithm PBN chooses a transmitting

22

buffer randomly with probabilities δ and 1 − δ. Such approach does not guarantee that the
expected numbers of packets in PBN buffers are equal to the fractional amounts of packets in
the corresponding buffers of PB.

For example, consider a sequence Add(0),Add(1), Idle, Idle for B = 1. PBF ends with
empty buffers, whereas after the prefix Add(0),Add(1), Idle, state x PBN is equal to (0, 1) or
(1, 0), both with probability 1/2. For the last Idle request, PBN tries to transmit a packet from
an empty buffer with probability 1/2, which results in expected non-zero number of packets in
the buffers.

Similar situation occurs for Add requests: consider a sequence Add(0)2,Add(1)2, Idle2,
Add(0) for B = 2. Obviously, PBF serves this sequence without losing any packets. On the
other hand, after processing everything but the last Add(0), PBN has non-zero probability of
having two packets in the first buffer, which leads to non-zero expected loss due to the last
Add(0) request.

23

