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Abstract

In this paper, we set forth a new algorithm for generating approximately uniformly random
spanning trees in undirected graphs. We show how to sample from a distribution that is within
a multiplicative (1 + δ) of uniform in expected time Õ(m

√
n log 1/δ). This improves the sparse

graph case of the best previously known worst-case bound of O(min{mn, n2.376}), which has
stood for twenty years.

To achieve this goal, we exploit the connection between random walks on graphs and electrical
networks, and we use this to introduce a new approach to the problem that integrates discrete
random walk-based techniques with continuous linear algebraic methods. We believe that our
use of electrical networks and sparse linear system solvers in conjunction with random walks and
combinatorial partitioning techniques is a useful paradigm that will find further applications in
algorithmic graph theory.
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1 Introduction

In this paper, we set forth a new algorithm for generating random spanning trees in undirected
graphs. Random spanning trees are among the oldest and most extensively investigated proba-
bilistic objects in graph theory, with their study dating back to Kirchoff’s work in the 1840s [13].
However, it is only in the past several decades that researchers have taken up the question of how
best to generate uniformly random spanning trees algorithmically. This question became an active
area of research in the 1980s and 1990s, during which a long string of papers appeared that provided
successively faster algorithms for this task (e.g.,[11, 14, 7, 8, 5, 1, 12, 20]).

Previous algorithms for this problem broadly fall into two categories: determinant-based algo-
rithms and random walk-based algorithms. The starting point for the determinant-based algorithms
was Kirchoff’s Matrix Tree Theorem, which reduces counting the number of spanning trees in a
graph to the evaluation of a determinant [13] (see, e.g., Ch.2, Thm. 8 in [4]). The first such algo-
rithm produced a random spanning tree in time O(mn3) [11, 14]. After sequence of improvements
([7, 6]), this line of research culminated in the algorithm of Colbourn, Myrvold, and Neufeld [8],
which runs in the amount of time necessary to multiply two n×n matrices, the best known bound
for which is O(n2.376) [9].

The random walk-based algorithms began with the following striking theorem due to Broder
[5] and Aldous [1]:

Theorem 1. Suppose you simulate a random walk in an undirected graph G = (V,E), starting
from an arbitrary vertex s and continuing until every vertex has been visited. For each vertex
v ∈ V \ {s}, let ev be the edge through which v was visited for the first time in this walk. Then,
T = {ev |v ∈ V \ {s}} is a uniformly random spanning tree of G.

This immediately yields an algorithm for generating a random spanning tree whose running
time is proportional to the cover time of G. If G has n vertices and m edges, the cover time can be
Θ(mn) in the worst case, but it is often much smaller. For sufficiently sparse graphs, this yields a
better worst-case running time than the determinant-based algorithms. Since one clearly needs to
see every vertex in G, it would seem unlikely that such methods could run in less than the cover
time of the graph. However, in the last major breakthrough in this line of research, Wilson [20]
showed that, by using a different random process, one could actually generate spanning trees in
expected time proportional to the mean hitting time of the graph, which can be much smaller than
the cover time (but has the same worst-case asymptotics). These algorithms generate an exactly
uniform random spanning tree, but they remain the best known algorithms even if one wants to
generate a spanning tree from a distribution that is within some multiplicative (1 + δ) of uniform.
(We will call this a δ-random spanning tree; we shall define it more precisely in section 1.1.)

The worst-case running time bound of O(mn) has stood for twenty years. In this paper, our
main result is a new algorithm that offers a better worst-case time bound:

Theorem 2. Let G be a graph with n vertices and m edges. For any δ > 0, we can generate a
δ-random spanning tree of G in expected time Õ(m

√
n log 1/δ).

Beyond the classical applications of generating random spanning trees that motivated the orig-
inal work on the problem, there have been some developments that further motivate their study.
In particular, a recent paper of Goyal, Rademacher, and Vempala [10] showed how to use random
spanning trees to generate efficient sparsifiers of a graph, and they then explained how this could
be used to provide a scalable and robust routing scheme.
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We believe that our techniques are of independent interest and may provide a good set of
tools for the solution of other problems. On a broad level, we would like to highlight the use of
electrical flows and linear systems to approach combinatorial questions about graphs. In addition
to our work, they were recently used by Spielman and Srivastava [17], and Batson, Spielman and
Srivastava [3] to provide much stronger sparsifiers than were previously available. These and the
the present work illustrate two distinct ways in which electrical flows on a graph provide much
richer information than that conveyed by just the graph spectrum. The fact that they may be
found in nearly-linear time [18] provides a powerful tool for answering questions about graphs. To
our knowledge, this is the first use of such techniques in combination with combinatorial ones to
provide a faster algorithm for a purely combinatorial question. We believe that this is an exciting
new frontier of algorithmic spectral graph theory that will find many further applications.

In addition, it is interesting to note that our algorithm takes a graph problem for which fast
matrix multiplication provides the best known methods for dense graphs and uses a method based
on a sparse linear system solver to obtain a better running time for sparse graphs. There are a large
number of graph problems for which fast matrix multiplication provides the best known running
time. Our techniques suggest a general template for using the linear algebraic intuition underlying
these algorithms in conjunction with sparse linear algebra routines to obtain faster algorithms on
sparse graphs.

1.1 δ-random spanning trees and arborescences

Formally, we consider the following problem: given an undirected graph G = (V,E) with n vertices
and m edges, find a randomized algorithm A that, for each spanning tree T of G, outputs T with
probability 1/|T (G)|, where T (G) is the set of all spanning trees of G. We will be interested
in a slightly relaxed version of this problem in which we require A to output each tree T with
a probability p(T ) that is δ-far from the uniform i.e. (1 − δ)/|T (G)| ≤ p(T ) ≤ (1 + δ)/|T (G)|,
for some parameter δ > 0. We call this generating a δ-random spanning tree. We note that our
algorithms’ dependence on δ occurs only because some of our algebraic manipulations are carried
out only to finite precision. As such, we depend only logarithmically on 1/δ, not polynomially.

For technical reasons that will arise later in the paper, it will be useful to consider arborescences
in addition to trees. For a given s ∈ G, an arborescence T rooted at s is a directed spanning tree
of G in which all vertices in G \ {s} have exactly one incoming arc. We use the notation r(T ) to
denote the root of an arborescence, and we use eT (v), for any v ∈ G \ {r(T )}, to denote the unique
arc incoming to v in T .

We say that a procedure A generates a conditionally random arborescence if it outputs a vertex
s and an arborescence T rooted at s such that the probability, conditioned on some s being a root,
of outputting a particular arborescence T rooted at s is 1/|Ts(G)|, where Ts(G) is the set of all
arborescences in G rooted at s.1 Note that in this definition we do not make any restrictions on the
probabilities pA(s) that the generated arborescence output by A is rooted at s. Now, it is easy to see
that, once we fix some s ∈ G, there is one-to-one correspondence between spanning trees of G and
arborescences rooted at s. Indeed, given any spanning tree, there is a unique way of directing its
edges to make it a valid arborescence rooted at s; conversely, given any arborescence rooted at s, we
can obtain a spanning tree by just disregarding the direction of the edges. As a result, if we have a

1For brevity, we will hereafter omit the word “conditionally” when we refer to such an object. We stress that this
is an object that we are introducing for technical reasons, and it should not be confused with the different problem
of generating a uniformly random arborescence on a directed graph.
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procedure A that generates a random arborescence then, for a given spanning tree T , the probability
that it will be generated is exactly

∑
s∈G pA(s)/|Ts(G)| =

∑
s∈G pA(s)/|T (G)| = 1/|T (G)|. This

means that if we interpret the arborescence returned by A as a spanning tree then we get in this
way a random spanning tree. By completely analogous reasoning, we get that a procedure A that
generates δ-random arborescences gives us a procedure that generates δ-random spanning trees.

1.2 An outline of our approach

To describe our approach, let us consider a random walk X in G whose starting vertex is chosen
according to the stationary distribution of G. If we just simulate X step-by-step until it covers the
whole graph G, Theorem 1 asserts that from a transcript X(ω) of this simulation we can recover a
random arborescence that is rooted at the starting vertex s(ω) of X(ω). However, while the whole
transcript can have an expected length of Ω(mn), we utilize only a tiny fraction of entries—the O(n)
entries that allow us to recover arcs ev for v ∈ V \ {s(ω)}. It is thus natural to wonder whether the
generation of the whole transcript is necessary. The random walk may spend long periods of time
walking around regions of the graph that have already been covered, which seems quite wasteful.
One may ask whether it is possible to identify and avoid such situations by somehow skipping such
unnecessary steps. That is, one may ask whether there is a way of shortcutting the walk X such
that the corresponding transcripts are much shorter, can be generated efficiently, and still retain
the information that we need to recover the desired arborescence. We note that this intuition is
quite reasonable for many of the standard examples of graphs that have large cover time, which
consist of regions that are covered very quickly but in which the walk spends much of its time.

A tempting way to obtain such a shortcutting would be to try to just cut out from X all of its
parts that correspond to visiting already explored parts of G. This shortcutting yields transcripts
of length O(n) and contains all of the information that we need. Unfortunately, it is not clear
whether an efficient way of generating such transcripts exists—it is quite possible that the fastest
way to find the next edge to an unvisited vertex traversed by the walk is to generate the whole
trajectory of X inside the previously visited parts of G step-by-step.

The core of our approach is showing that there indeed exists an efficient way of shortcutting X.
On a high level, the way we obtain it is as follows. We start by identifying a number of induced
subgraphs D1, . . . , Dk of G such that the cover time of each Di is relatively small, and the set C of
edges of G that are not inside any of the Dis constitutes a small fraction of the edges of G. Now,
we shortcut the walk X in G by removing, for each i, the trajectories of X inside Di that occur
after X has already explored the whole Di.2 Such shortcutted transcripts clearly retain all of the
information that we need. Moreover, we show that the fact that Dis have small cover time and C has
very small size imply that the expected length is also small. Finally, by exploiting the connection
between random walks and electrical flows together with the linear system solver of Spielman and
Teng [18], we provide an efficient procedure to approximately generate such shortcutted transcripts
of X. All together, this yields the desired procedure for generating δ-random arborescences.

1.3 Outline of the paper

The outline of the paper is as follows. In section 2, we formally define the decompositions of G in
which we are interested. We then relate the structure of the random walkX to these decompositions.
Next, in section 3, we show how these ideas can be used to develop an algorithm that generates

2Later we modify this procedure slightly to get better running time for dense graphs.
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(conditionally) δ-random arborescence in expected time Õ(m2/
√
n log 1/δ). Finally, in section 4, we

prove Theorem 2 by refining the previous algorithm to make it run in expected time Õ(m
√
n log 1/δ).

2 The structure of the walk X

In this section, we shall formally define the decomposition of G that will be the basis of our
algorithm and prove several important facts about the structure of the walk X with respect to this
decomposition.

2.1 (φ, γ)-decompositions

While the algorithm sketched in the previous section could be made to use only edge cuts, our
faster algorithm in section 4 will require both vertex and edge cuts. To facilitate this, we shall use
a decomposition that permits us to keep track of a both a set of edges C and a set of vertices S in
the cut.

To this end, let (D1, . . . , Dk, S, C) denote a partition of G such that S ⊆ V (G),
⋃
i V (Di) =

V (G) \S, the Di are disjoint induced subgraphs of G, and C = E(G) \
⋃
iE(Di) is the set of edges

not entirely contained inside one of the Di. For a given Di, let U(Di) be the set of vertices of Di

incident to an edge from C, and let C(Di) be the subset of C incident to Di.

Definition 3. A partition (D1, . . . , Dk, S, C) of G is a (φ, γ)-decomposition of G if:

1. |C| ≤ φ|E(G)|,

2. for each i, the diameter γ(Di) of Di is less than or equal to γ, and

3. for each i, |C(Di)| ≤ |E(Di)|.

Note that this definition does not constrain the size of S explicitly, but |S| is implicitly bounded
by the fact that all edges incident to vertices of S are included in C.

Intuitively, the above decomposition corresponds to identifying inG induced subgraphsD1, . . . , Dk

that have diameter at most γ and contain all but a φ fraction of edges of G. We bound the diam-
eters of the Dis and ensure (by the third condition) that they are not too “spread out” in G, since
these properties will allow us to prove that X covers each of them relatively quickly. We will do
this using the approach of Aleliunas et al. [2] that proved that the cover time of an unweighted
graph G′ with diameter γ(G′) is at most O(|E(G′)|γ(G′)).

For now, let us assume that we have been given some fixed (φ, γ)-decomposition (D1, . . . , Dk, S, C)
of G (for some γ and φ that we will determine later). In Lemma 11, we will show that such decom-
positions with good parameters exist and can be constructed efficiently.

2.2 The walk X

Let X = (Xi) be a random walk in G that is started at a vertex chosen according to the stationary
distribution of G, where Xi is the vertex visited in the i-th step. Let τ be the time corresponding
to the first moment when our walk X has visited all of the vertices of G. Clearly, E(τ) is just the
expected cover time of G, and by the fact that G has m edges and diameter at most n, the result
of Aleliunas et al. [2] yields
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Fact 4. E[τ ] = O(mn).

Let Z be the random variable corresponding to the number of times that some edge from C
was traversed by our random walk X, i.e., Z is the number of i < τ such that Xi = v, Xi+1 = v′,
and (v, v′) ∈ C. Since, by Fact 4, the expected length of X is O(mn), and we choose the starting
vertex of X according to stationary distribution of G, the expected number of traversals of edges
from C by X is just proportional to its size, so, on average, every m/|C|-th step of X corresponds
to an edge from C. Therefore, the fact that in our decomposition |C| ≤ φ|E(G)| implies:

Fact 5. E[Z] = O(φmn).

Let Zi be the random variable corresponding to the number of times that some edge inside Di

is traversed by our walk. By definition, we have that τ =
∑

i Zi+Z. Now, for each Di, let τi be the
time corresponding to the first moment when we reach some vertex in U(Di) after all the vertices
from Di have been visited by our walk X.

Finally, let Z∗i be the random variable corresponding to the number of times that some edge
from E(Di) is traversed by our walk X until time τi occurs, i.e., until X explores the whole subgraph
Di. The following lemma holds:

Lemma 6. For any i, E[Z∗i ] = Õ(|E(Di)|γ(Di)).

Before we proceed to the proof, it is worth noting that the above lemma does not directly follow
from result of Aleliunas et al.[2]. The reason is that [2] applies only to a natural random walk in
Di, and the walk induced by X in Di is different. Fortunately, the fact that |C(Di)| ≤ |E(Di)|
allows us to adjust the techniques of [2] to our situation and prove that a bound similar to the one
of Aleliunas et al. still holds.
Proof: Let us fix D = Di. For a vertex v ∈ V (D), let dG(v) be the degree v in G, and let dD(v) be
the degree of v in D. Clearly, dG(v) ≥ dD(v), and dC(v) ≡ dG(v) − dD(v) is the number of edges
from C incident to v. For u, v ∈ U(D), let pDu,v be the probability that a random walk in G that
starts at u will reach v through a path that does not pass through any edge inside D.

Consider a (weighted) graph D′, which we obtain from D by adding, for each u, v ∈ U(D), an
edge (u, v) with weight dG(u) · pDu,v. (All edges from D have weight 1 in D′. Note that we do not
exclude the case u = v, so we may add self-loops.) By the fact that the Markov chain corresponding
to the random walk X in G is reversible, dG(u) · pDu,v = dG(v) · pDv,u, so our weights are consistent.

Now, the crucial thing to notice is that if we take our walk X and filter out of the vertices that
are not from D, then the resulting “filtered” walk YD will just be a natural random walk in D′ (with
an appropriate choice of the starting vertex). In other words, the Markov chain corresponding to
the random walk in D′ is exactly the Markov chain induced on V (D) by the Markov chain described
by our walk X. As a result, since Z∗i depends solely on the information that the induced random
walk YD retains from X, it is sufficient to bound Z∗i with respect to YD. However, it is easy to see
that, in this case, E[Z∗i ] can be upper-bounded by the expected time needed by a random walk
in D′, started at arbitrary vertex, to visit all of the vertices in D′ and then reach some vertex in
U(D). We thus can conclude that E[Z∗i ] is at most twice the cover time of D′. (More precisely, it
is the cover time plus the maximum hitting time.)

Now, it is well-known (e.g., see [16]) that the cover time of any undirected graph G′ is at
most 2 log |V (G′)|Hmax, where Hmax(G′) is the maximal hitting time in G′. Our aim is therefore
to show that Hmax(D′) = O(|E(D)|γ(D)), where γ(D) is the diameter of D. We will do this
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by applying the approach of Aleliunas et al., who proved in [2] that for an unweighted graph G′,
Hmax(G′) ≤ |E(G′)|γ(G′).

To achieve this goal, let K be some number such that all weights in D′ after multiplication by
K become integral (which we can do since all of the weights in D′ have to be rational). Let K ·D′
be the unweighted multigraph that we obtain from D′ by multiplying all of its weights by K and
then interpreting the new weights as multiplicites of edges. Note that the natural random walk in
K ·D′ (treated as a sequence of visited vertices) is exactly the same as in D′.

Now, we prove that for two vertices v and w of D′ such that an edge (v, w) exists in D, the
expected time Hv,w(K · D) = Hv,w(D′) until a random walk in K · D′ that starts at v will reach
w is at most 4|E(D)|. To see this, note that the long-run frequency with which an copy of an
edge is taken in a particular direction is 1/(2M), where M is total number of edges of K ·D′ (and
we count each copy separately). Thus one of the K copies of edge (v, w) is taken in the direction
from v to w every K/(2M)-th step on average. This in turn means that Hv,w(D′) ≤ 2M/K. Now,
to bound M , we note first that M ≤ K(|E(D)| +

∑
u,v∈U(D) dG(u)pDu,v). Thus, since for a given

u ∈ U(D) the probability
∑

v p
D
u,v of going outside D directly from u is equal to dC(u)/dG(u), we

obtain that M ≤ K(|E(D)| +
∑

u dC(u)) ≤ 2K|E(D)| by the property of a (φ, γ)-decomposition
that requires that |C(D)| ≤ |E(D)|. We can thus conclude that Hv,w(D′) ≤ 2M/K ≤ 4|E(D)|,
as desired. Having obtained this result, we can use a simple induction to show that Hv,w(D′) ≤
4|E(D)|∆(v, w), where ∆(v, w) is the distance between v and w in D. From this, we can conclude
that Hmax(D′) = 4|E(D)|γ(D) and E[Z∗i ] ≤ 16 log n|E(Di)|γ(Di), as desired.

3 Our algorithm

Let us now focus our attention on some particular Di from our (φ, γ)-decomposition of G. The idea
of our algorithm is based upon the following observation. Suppose we look at our random walk X
just after time τi occurred. Note that this means that we already know for all v ∈ V (Di) which
arc ev we should add to the final arborescence. Therefore, from the point of view of building our
arborescence, we gain no more information by knowing what trajectory X takes inside Di after
time τi. More precisely, if, at some step j, X enters Di through some vertex v ∈ V (Di) and, after k
steps, leaves through some edge (u, u′) ∈ C, where u ∈ V (Di) and u′ /∈ V (Di), the actual trajectory
Xj , . . . , Xj+k does not matter to us. The only point of simulating X inside Di after time τi is to
learn, upon entering Di through v, through which edge (u, u′) ∈ C we should leave.

Let Pv(e) be the probability of X leaving Di through e after entering through vertex v. If we
knew Pv(e) for all v ∈ V (Di) and all e ∈ C(Di), then we could just, upon entering v, immediately
choose the edge e through which we will exit according to distribution Pv(e) without computing
the explicit trajectory of X in Di. That is, if we consider a shortcutting X̃ of X that cuts out from
X all trajectories inside Di after it was explored, then Pv(e) would be all that we need to simulate
X̃ in time proportional to the length of X̃ (as opposed to the length of X).

Now, the point is that we can efficiently compute an ε-approximation of Pv(e), as we will show in
section 3.1, which will enable us to compute this shortcutting to fairly high precision. Furthermore,
as we will see shortly, the analysis of structure of X that we performed in the previous section shows
that the computation of these ’unnecessary’ trajectories constitutes the bulk of the work involved
in a faithful simulation of X, and therefore X̃ has much smaller length while yielding the same
distribution on random arborescences.
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To formalize the above intuitions, let X̃ = (X̃i) be a random walk obtained in the follow-
ing way. Let X(ω) = X0(ω), . . . Xτ(ω)(ω) be some concrete trajectory of X, and let X(ω) =
X1(ω), . . . , Xk(ω)(ω) be decomposition of X(ω) into contiguous blocks Xj(ω) that are contained
inside Dij for some sequence ij ∈ {0, . . . , k}, where we adopt the convention that D0 = S. We
define X̃(ω) as follows. We process X(ω) block-by-block and we copy a block Xj(ω) to X̃(ω) as
long as τij has not occurred yet or ij = 0, otherwise we copy to X̃(ω) only the first and last entries
of the block. (We shall refer to the latter event as a shortcutting of the block.) We proceed now to
the formal proofs of the properties of X̃ stated above.

We start by showing that X̃ can indeed be simulated efficiently given probabilities Pv(e) and
some preprocessing time that will later be amortized into the overall running time of the algorithm:

Lemma 7. Knowing Pv(e) for all e ∈ C(Di), v ∈ V (Di) and i, we can preprocess these values in
Õ(φmn) time in such a way that it allows simulation of l steps of X̃ in time Õ(l).

Proof: Simulating X̃ before any τi has occurred is straightforward. The only thing to show is that
we can implement the shortcutting of the blocks, for which it would suffice to show that, using the
Pv(e), we can sample an edge e from this distribution in polylogarithmic time. To see how this
can be done, let us fix some i and some ordering e1, . . . , e|C(Di)| of the edges from C(Di). For each

v ∈ U(Di), we can create in Õ(|C(Di)|) time an array Av(i) where Av(i) =
∑

1≤j≤i Pv(ej), so we

can do it for all v ∈ U(Di) in total time at most Õ(|V (Di)| · |C(Di)|).
Now, if we want to choose e according to Pv(e), we choose a random number from r ∈ [0, 1],

use binary search to find an entry j in Av(i) such that Av(j) ≥ r > Av(j − 1), and output e = ej .
Summing up the total preprocessing time for all Di yields the desired bound.

We are ready to prove the following lemma:

Lemma 8. Given an (φ, γ)-decomposition of G and the probabilities Pv(e), we can find a random
arborescence of G in expected time Õ(m(γ + φn)).

Proof: By the discussion above, it suffices to simulate the algorithm described in Theorem 1 using
the walk X̃, so we just need to bound the expected number of steps it takes for X̃ to cover the
whole graph G. To do this, we upper-bound the expected length of the covering walk X after
shortcutting it. However, this quantity is just

∑
iE[Z∗i ]+3E[Z], since the two vertices that remain

in X̃ after shortcutting some block from X can be amortized into the number of traversals by X of
edges from C. By Fact 5 and Lemma 6, we get that

∑
iE[Z∗i ] + 3E[Z] = Õ(

∑
i |E(Di)|γ+φmn) =

Õ(m(γ+φn)). By Lemma 7, we can simulate a walk of this length in expected time Õ(m(γ+φn)).

In order to complete our algorithm, we thus need to show three things: we can quickly compute
the Pv(e), a (φ, γ)-decomposition exists with good parameters, and we can find such a decomposition
efficiently.

3.1 Computing Pv(e)

In the following lemma we address the first issue.

Lemma 9. Given a (φ, γ)-decomposition of G, we can compute multiplicative (1+ε)-approximations
of all of the Pv(e) in time Õ(φm2 log 1/ε).
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Proof: Let us fix some D = Di and an edge e = (u, u′) ∈ C(D) with u ∈ U(D). Consider now a
graph D′ that we obtain from D as follows. First, we add vertex u′, and some dummy vertex u∗ to
D, and then, for each (w,w′) ∈ C(D) \ {e} with w ∈ U(D), we add an edge (w, u∗). (Note that w′

can be equal to u′.) Finally, we add the edge e = (u, u′). The crucial thing to notice now is that
for any given vertex v ∈ D, Pv(e) is exactly the probability that a random walk in D′ started at v
will hit u′ before it hits u∗. We can compute such probabilities quickly using electrical flows.

More precisely, (see, e.g., [16]) if we treat D′ as an electrical circuit in which we impose voltage
of 1 at u′ and 0 at u∗, then the voltage achieved at v in such an electrical flow is equal to Pv(e).
We can compute a (1 + ε)-approximation of such a flow in time Õ(|E(D′)| log 1/ε) using the linear
system solver of Spielman and Teng [18]. To do so, let L be the Laplacian of D′, where we let
the first two rows correspond to u′ and u∗, respectively. Furthermore, let iext ∈ R|V (D′)| be the
vector that is 1 in its first coordinate, −1 in its second coordinate, and zero everywhere else. Let
v′ ∈ R|V (D′)| be the solution to the linear system Lv′ = iext, which we can approximately find in
nearly-linear time using the solver from [18]. We obtain our desired vector of voltages v∗ from v′

by subtracting v′2 from all of its coordinates and dividing them by v′1 − v′2. It is worth noting that
this approach to computing electrical flow was also used in Spielman and Srivastava [17].

Our algorithm computes such voltages for each edge e. (Note that we might have to compute
two such voltages per edge—one for each endpoint of e—if they each lie in different Di.) From each
flow, we store the probabilities Pv(e) for all vertices v that we are interested in. The running time
of such procedure is bounded by Õ(|C|

∑
i |E(Di)| log 1/ε) = Õ(φm2 log 1/ε), where we use the fact

that for each D, |E(D′)| = |E(D)|+ |C(D)| ≤ 2|E(D)| by the definition of a (φ, γ)-decomposition.

Since the linear system solver only gives us approximate values for the Pv(e), we need to show
that we can control the overall error while still maintaining a good running time. We do this with
the following lemma:

Lemma 10. Given a (φ, γ)-decomposition of G and multiplicative (1 + ε)-approximations of all of
the probabilities Pv(e), we can generate a δ-random arborescence of G in expected time Õ(m(γ +
φn)), as long as ε ≤ δ/mn.

Proof:
We define a new random walk X̃

′
that approximates X̃ as follows. The walk X̃

′
simulates X̃

for the first mn steps, except it uses the approximate values of the Pv(e) when it shortcuts a block.
After the mnth step, it shortcuts blocks using the exact values of the Pv(e).

We start by noting that, for any t ≥ 0 and trajectory X̃(ω),

Pr[X̃0 = X̃(ω)0, . . . , X̃t = X̃(ω)t]/(1 + δ)

≤ Pr[X̃
′
0 = X̃(ω)0, . . . , X̃

′
t = X̃(ω)t] (1)

≤ (1 + δ) Pr[X̃0 = X̃(ω)0, . . . , X̃t = X̃(ω)t].

That is, for any trajectory X̃(ω), the probability that its first t entries appear as a prefix of
the walk X̃

′
is within a (1 + δ) multiplicative factor of the probability that this prefix appears as

a prefix of the walk X̃.
Indeed, each of the first mn steps of the walk X̃

′
distorts the likelihood of appearance of a

particular sequence of vertices by a multiplicative factor of (1 + ε). Thus, since (1 + ε)mn ≤
1 + εmn ≤ 1 + δ, the assertion follows.
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It is easy to see that (1), together with Theorem 1 and the fact that the walk X̃ is a shortcutting
of the walk X, implies that simulating the walk X̃

′
until it covers the graph G is sufficient to obtain

a δ-random arborescence. Therefore, what is left to prove is that the simulation of the walk X̃
′

until it covers the graph G can be done in expected time Õ(m(γ + φn)).
We do this as follows. For the simulation of the first mn steps, we use the method from Lemma

7 with the (1 + ε)-approximations of the probabilities Pv(e). If the walk hasn’t covered the graph
by step mn, we continue the simulation of X̃

′
by simply generating the entire transcript of the walk

X until it covers the graph and then shortcutting it accordingly.
To bound the running time of this procedure, we note that (1) implies that the expected number

of steps necessary for X̃
′

to cover G is at most (1 + δ) times the expected number of steps required
by X̃, which, by Fact 5 and Lemma 6, is

∑
iE[Z∗i ]+3E[Z] = Õ(m(γ+φn)). Therefore, by Lemma

7, we get that the part of the simulation that deals with the first mn steps runs in expected time
Õ((1 + δ)

∑
iE[Z∗i ] + 3E[Z]) = Õ(m(γ + φn)), since we can always assume that δ ≤ 1.

By the Markov inequality, we know that the probability that X̃
′
ever takes more than mn steps

is at most Õ(m(γ + φn))/mn. We can bound the expected running time of the second part of
the simulation by this probability multiplied by the the expected cover time of the whole graph,
which is O(mn). This gives the total expected running time of the simulation to be Õ(m(γ+φn)+
m2n(γ + φn)/mn) = Õ(m(γ + φn)), as desired.

We now proceed to the final ingredient of our algorithm—finding good (φ, γ)-decompositions
quickly.

3.2 Obtaining good (φ, γ)-decompositions quickly

By using the ball-growing technique of Leighton and Rao [15], we obtain the following:

Lemma 11. For any G and any φ = o(1), there exists a (φ, Õ(1/φ))-decomposition of G. Moreover,
such a decomposition can be computed in time Õ(m).

We omit the proof, as we shall prove a stronger statement in Lemma 13.

3.3 Generating δ-random arborescence in expected time Õ(m2/
√
n log 1/δ)

We can now put these results together to generate δ-random arborescences in expected time
Õ(m2/

√
n log 1/δ). Note that this bound is worse than the one stated in Theorem 2—we shall

improve it to obtain the better time bound in section 4.
Let φ = 1/n1/2, and let ε = δ/mn, as in Lemma 10. By Lemma 11, we can get a (1/n1/2, Õ(n1/2))-

decomposition of G in Õ(m) time. By Lemma 9, we can compute the estimates of Pv(e) for all rele-
vant v and e in time Õ(m2/

√
n log 1/ε) = Õ(m2/

√
n log 1/δ). Having done this, we can use Lemma

8 (together with Lemma 10) to generate a δ-random arborescence in time Õ(m2/
√
n log 1/δ).

4 Obtaining an Õ(m
√
n log 1/δ) running time

The bottleneck in the procedure presented above is the computation of probabilities Pv(e)—
everything else can be done in time Õ(m

√
n log 1/δ). Unfortunately, it is not clear how we could

improve the running time of these computations. To circumvent this problem, we will alter our
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procedure to use slightly different probabilities and a slightly different random walk that will end
up yielding a faster simulation time.

To introduce these probabilities, let us assume that there are no edges in G between different
Dis (which we will ensure to be the case), and let Ci(u) for a vertex u ∈ S be the set of edges
incident both to u and the component Di. Now, for a given i, some v ∈ V (Di), and u ∈ S with
|Ci(u)| > 0, we define Qv(u) to be the probability that u is the first vertex not in V (Di) that
is reached by a random walk that starts at v. We will use these probabilities to simulate a new
random walk X̂ that we now define. For given trajectory X(ω) of walk X, X̂(ω) is equal to X̃(ω)
(as defined before), except that whenever X̃(ω) shortcuts some block visited by X, X̂(ω) contains
only the first vertex visited in this block, as opposed to both first and last vertices retained in
X̃(ω). X̂ is a shortcutting of X̃ and is thus a shortcutting of X as well.

It is not hard to see that by using Qv(u) in a way completely analogous to the way we used Pv(e)
before, we can simulate the walk X̂ efficiently, and the expected length of this walk is bounded
by the expected length of the walk X̃. However, unlike X̃, X̂ does not necessarily posess all of
the information needed to reconstruct the final arborescence. This shortcoming manifests itself
whenever some u is visited for the first time in X̂ directly after X̂ entered some Di after τi has
already occurred. In this case, we know that the corresponding trajectory of the walk X visited u
for the first time through some edge whose other end was in Di (and thus we should add it to our
arborescence as eu), but we don’t know which one it was.

To deal with this problem, we will define a stronger decomposition of G whose properties will
imply that the above failure to learn eu will occur only for a small number of vertices u. Then, at
the end of our simulation of the walk X̂, we will employ a procedure that will compute the missing
arcs in a manner that will not distort the desired distribution over output arborescences.

We proceed now to formalizing the above outline.

4.1 Strong (φ, γ)-decompositions

The number of probabilities Qv(u) that we need to compute now depends on the number of vertices
that are connected to the Dis through some edge from C, rather than just the number of edges of
C. To control this, we introduce the following stronger graph decomposition:

Definition 12. A partition (D1, . . . , Dk, S, C) of G is a strong (φ, γ)-decomposition of G if:

1. (D1, . . . , Dk, S, C) is a (φ,γ)-decomposition,

2. there are no edges between different Dis (i.e. S is a vertex multiway cut), and

3. |C(S)| ≤ φ|V (G)|, where C(S) is the set of vertices from S that are connected by an edge to
some Di.

We prove the following:

Lemma 13. For any G and any φ = o(1), there exists a strong (φ, Õ(1/φ))-decomposition of G.
Moreover, such a decomposition can be computed in time Õ(m).

Proof: We will use the ball-growing technique of Leighton and Rao [15] as presented by Trevisan
[19]. For a graph H, let BH(v, j) be the ball of radius j around the vertex v in H, i.e., let BH(v, j)
consist of the subgraph of H induced by all vertices in H that are reachable by a path of length at
most j from v. Furthermore, let RH(v, j) be the set of vertices that are at distance exactly j from
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Table 1: A procedure finding a strong (φ, Õ(1/φ))-decomposition of G
• Set H = G, S = ∅, C = ∅, D = {}, i = 1 and t = φ/(1− φ)

• While H 6= ∅

• (* Ball-growing *)

– Choose an arbitrary v ∈ H, set j = 0

– (∗) As long as |RH(v, j + 1)| > t|V (BH(v, j))|, |R+
H(v, j + 1)| > t|E(BH(v, j))| or

|R−H(v, j + 1)| > t|E(BH(v, j))|:
– j = j + 1

– Let ji be the j at which the above loop stops. Add RH(v, ji + 1) to S, add all the
edges incident to RH(v, ji + 1) (i.e. R+

H(v, ji + 1) ∪ R−H(v, ji + 1)) to C, and add
BH(v, ji) as component Di to D.

• output the resulting partition (D1, . . . , Dk, S, C) of G

v in H. Finally, let R+
H(v, j) (R−H(v, j) respectively) be the set E(BH(v, j + 1)) \E(BH(v, j)) (the

set E(BH(v, j)) \ E(BH(v, j − 1)) respectively).
Consider now the procedure presented in Table 1. First, we note that this procedure can be

implemented in nearly-linear time, since each edge is examined at most twice before it is removed
from H. Moreover, an elementary charging argument shows that, in the resulting partition, |C| ≤
(1/(1 + 1/t))|E(G)| = φ|E(G)|, and similarly |C(S)| = |S| ≤ φ|V (G)|. By construction, there are
no edges between distinct Dis. We want to argue now that for all i, ji ≤ 3(1+log |E(G)|/ log(1+t)),
which in turn would imply that all of the Dis have diameter at most 6(1 + log |E(G)|)/ log(1 + t) =
6(1 + log |E(G)|)/ log(1/(1− φ))) = O(logm/(− log(1− φ))) = O(logm/φ), where we used Taylor
expansion of log(1−x) around x = 0 to get this estimate. To see why the above bound on ji holds,
assume that it was not the case for some i and v. Then, during the corresponding ball-growing
procedure, a particular one of the three conditions from (∗) must have been triggered more than
ji/3 = 1 + log |E(G)|/ log(1 + t) times. If this condition was |RH(v, j + 1)| > t|V (BH(v, j))|,
then, since we never remove vertices from our ball that is being grown and BH(v, 0) has one
vertex, the final ball BH(v, ji) has to have at least (1 + t)ji/3 > |E(G)| ≥ |V (G)| vertices, which
is a contradiction. Similarly, if |R+

H(v, j + 1)| > t|E(BH(v, j))| (|R−H(v, j + 1)| > t|E(BH(v, j))|
respectively) was the condition in question, then |E(BH(ji, v))| > (1 + t)ji/3 ≥ |E(G)|, which is a
contradiction as well. Thus we may conclude that the above bound on ji holds, and all Dis have
diameter Õ(1/φ), as desired.

At this point, we know that the partition of G that we obtained satisfies all of the properties of
a strong (φ, Õ(1/φ))-decomposition except possibly the one that asserts that there is no Di such
that |E(Di)| is smaller than the number |C(Di)| of edges from C incident to Di. However, if such
Di exist, then we can just add them to our cut, i.e., we add V (Di) to S, and E(Di) to C. Note that
the size of C can at most triple as a result of this operation, since an edge that is initially in C can
be incident to at most two of the Di, and edges E(Di) are by definition not incident to any other
Dj . Similarly, C(S) does not increase as a result of adding V (Di) to S. We may therefore conclude
that the decomposition returned by this algorithm is indeed a strong (φ, Õ(1/φ))-decomposition of
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G.

From now on we fix some strong (φ, γ)-decomposition of G.

4.2 Computing Qv(u)

By using an approach similar to the one that we used when computing the Pv(e) values, we get the
following lemma.

Lemma 14. Given a strong (φ, γ)-decomposition of G, we can compute multiplicative (1 + ε)-
approximations of all Qv(u) in time Õ(φmn log 1/ε).

Proof: Let us fix some D = Di, let S′ be the set of vertices in w ∈ S with |Ci(w)| > 0, and let
us fix some u ∈ S′. Consider now a graph D′ that we obtain from D ∪ S′ by merging all vertices
in S′ \ {u} into one vertex called u∗. For any given vertex v ∈ D, Qv(u) is exactly the probability
that a random walk in D′ started at v will hit u before it hits u∗. We can quickly compute such
probabilities using electrical flows.

More precisely, (see e.g. [16]) if we treat D′ as electrical circuit in which we impose voltage of
1 at u and 0 at u∗, then the voltage achieved at v in such electrical flow is equal to Qv(e). We can
compute a (1 + ε)-approximation of such a flow in time Õ(|E(D′)| log 1/ε) using the linear system
solver of Spielman and Teng [18]. To do so, let L be the Laplacian of D′, where we let the first
two rows correspond to u and u∗, respectively. Furthermore, let iext ∈ R|V (D′)| be the vector that
is 1 in its first coordinate, −1 in its second coordinate, and zero everywhere else. Let v′ be the
solution to the linear system Lv′ = iext, which we can approximately find in nearly-linear time
using the solver from [18]. We obtain our desired vector of voltages by subtracting v′2 from all if
its coordinates and dividing them by v′1 − v′2.

Our algorithm computes such voltages for each u ∈ S and all Di with |Ci(u)| > 0, and from
each such computation it stores the probabilities Qv(u) for all vertices v ∈ V (Di) that we are
interested in. The running time of such procedure is bounded by Õ(|C(S)|

∑
i |E(Di)| log 1/ε) =

Õ(φmn log 1/ε), as desired.

4.3 Coping with shortcomings of X̂

As mentioned above, the walk X̂ can be simulated more efficiently than the walk X̃, but it does
not have all the information needed to construct the arborescence that would be generated by the
walk X that X̂ is meant to shortcut. This lack of information occurs only when some vertex u
is visited for the first time by X̂ immediately after X̂ visited a component Di after time τi has
already occurred. Note that, by the properties of the strong (φ, γ)-decomposition that we are using,
it must be the case that u ∈ C(S) and |C(S)| ≤ φn. This shows that X̂ fails to estimate the arcs
eu for a small fraction of vertices of G. We prove now that, in this case, these missing arcs can be
reconstructed efficently and in a way that preserves the desired distribution over arborescences.

Lemma 15. For a trajectory X̂(ω) that starts at vertex s, let F (X̂(ω)) be the set of arcs ev, for
v /∈ C(S) ∪ {s}, corresponding to this trajectory. Let F (X̂(ω))∗ be the set of all arborescences H
rooted at s such that eH(v) = ev for v /∈ C(S) ∪ {s}. Then, given F (X̂(ω)), we can generate a
random arborescence from F (X̂(ω))∗ in time O(m+ (φn)2.376).
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Proof: For brevity, let us define F := F (X̂(ω)). Now, let H1, . . . ,Hr, with s ∈ H1, be the
decomposition of F into weakly connected components. We construct a directed graph G(F, s) as
follows. G(F, s) has a vertex hj for each Hj . E(G(F, s)) is the set of all arcs (hj , hl) such that there
exists v, u ∈ G with v ∈ Hj , u ∈ Hl and u ∈ C(S) \ {s}. By definition, if H ′ is an arborescence in
G(F, s) rooted at h1, then H ′ ∪F is an arborescence in G rooted at s and H ′ ∪F ∈ F ∗. Moreover,
for any arborescence H ∈ F ∗, H ′ = {eH(v) | v ∈ C(S)\{s}} is an arborescence in G(F, s) rooted at
h1. So, if we use the algorithm of Colbourn et al. [8] to generate random arborescence H ′ in G(F, s)
rooted at h1, then H ′ ∪ F is a random arborescence from F ∗. Since |V (G(F, s))| = |C(S)| ≤ φn
and the algorithm from [8] works in time O(|V (G(F, s))|2.376), the lemma follows.

4.4 Proof of Theorem 2

By the connection explained in section 1.1, it is sufficient to devise a procedure that generates
δ-random arborescences. We do this as follows. We fix φ = 1/

√
n, and, using Lemma 13, we get

a strong (1/
√
n, Õ(

√
n))-decomposition of G in Õ(m) time. Now, using Lemma 14, we compute ε-

approximations of all of the probabilities Qv(u) in time Õ(m
√
n log 1/ε) = Õ(m

√
n log 1/δ), where

we set ε = O(δ/n5). At this point, we can use completely analogous reasoning to that used in
Lemmas 8 and Lemma 10 to prove that we can simulate (δ-approximately) the walk X̂ in expected
time Õ(m

√
n) (where we use in particular the fact that X̂ is a shortcutting of X̃). Having done

this, we look at the directed forest F consisting of arcs ev for v /∈ C(S) ∪ {s} as defined by our
simulation of X̂. We then use the procedure from Lemma 15 to get an arborescence T of G in time
O(m+n2.376/2) = O(m

√
n). The whole algorithm therefore runs in expected time Õ(m

√
n log 1/δ).

To see that the above algorithm generates a (conditionally) δ-random arborescence, let us
consider some arborescence T of G rooted at some vertex s and condition what will follow on the
event that the algorithm outputs an arborescence rooted at s . Let F (T ) = {eT (v) | v /∈ C(S)∪{s}}.
By the fact that X̂ is a (δ-approximate) shortcutting of the walk X and by Theorem 1, we know
that F (X̂(ω)) = F (T ) for at least a (1 − δ)|F (T )∗|/|Ts(G)| and at most a (1 + δ)|F (T )∗|/|Ts(G)|
fraction of trajectories, where F (T )∗ is the set of all arborescences compatible with F (T ) in the
sense of Lemma 15. Since the procedure from Lemma 15 generates a random arborescence from
F (T )∗, T is generated with probability at least (1− δ)/|Ts(G)| and at most (1 + δ)/|Ts(G)|. This
concludes the proof of Theorem 2.
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