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Abstract. In secure two-party function evaluation Alice holding ini-
tially a secret input x and Bob having a secret input y communicate
to determine a prescribed function f(x, y) in such a way that after the
computation Bob learns f(x, y) but nothing more about x other than
he could deduce from y and f(x, y) alone, and Alice learns nothing. Un-
conditionally secure function evaluation is known to be essentially im-
possible even in the quantum world. In this paper we introduce a new,
weakened, model for security in two-party quantum computations. In our
model – we call it susceptible function computation – if one party learns
something about the input of the other one with advantage ε then the
probability that the correct value f(x, y) is computed, when the proto-
col completes, is at most 1 − δ(ε), for some function δ of ε. Thus, this
model allows to measure the trade-off between the advantage of a dishon-
est party and the error induced by its attack. Furthermore, we present
a protocol for computing the one-out-of-two oblivious transfer function
that achieves a quadratic trade-off i.e. δ = Ω(ε2).

1 Introduction

In two-party computation, Alice holding initially a private (i.e., secret) input
x ∈ {0, 1}n and Bob having a private input y ∈ {0, 1}m communicate to deter-
mine a given function f(x, y) ∈ {0, 1}p. In the standard one-sided setting the
computation is secure if the, possible malicious, parties with unbounded com-
puting power perform a communication protocol in such a way that (1) at the
end of an honest execution of the protocol Bob learns the value f(x, y) unam-
biguously (2) no matter what Bob does he cannot learn anything more about
x other than what follows from the values of y and f(x, y), and (3) no matter
what Alice does, she learns nothing.

In [6] Beimel, Malkin, and Micali have given a combinatorial characterization
of all securely computable functions in classical setting. It is proved there that
f can be computed securely if and only if there do not exist inputs x0, x1, y0, y1
such that f(x0, y0) = f(x1, y0) and f(x0, y1) �= f(x1, y1). Unfortunately, almost
all useful functions fail to satisfy this criterion.
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An important example of a function that cannot be computed in such way
is the one-out-of-two oblivious transfer function OT defined as follows: let Alice
hold initially two secret bits a0, a1 and let Bob have a secret selection bit i. Then
we define OT((a0, a1), i) = ai. The problem has been proposed in [16,15,12] as a
generalization of Rabin’s notion for oblivious transfer [22]. Oblivious transfer is a
primitive of central importance particularly in secure two-party and multi-party
computations. It is well known ([18,9]) that OT can be used as a basic component
to construct protocols solving more sophisticated tasks of secure computations
such as two-party oblivious circuit evaluation.

The impossibility of (unconditionally) secure function computations in the
classical setting rises a question whether, and if so - in which way, quantum
cryptography can ensure the security. Indeed, much interest has been devoted to
develop quantum two-party protocols [3,4,8,14,13,10,7,23], some of which were
claimed to be unconditionally secure [10,7,23]. However, in his paper [21] Lo
proved that such (unconditionally) secure computations of all non-trivial func-
tions are impossible even in quantum setting. As a corollary, a possibility of a
secure quantum computation of the one-out-of-two oblivious transfer function
OT is ruled out.

Moreover, Lo [21] generalized his impossibility result to non-ideal protocols,
being ones that may violate the security constraints (1)-(3) slightly. In his ‘non-
ideal’ model the requirements are relaxed as follows:

(1′) The density matrix that Bob has at the end of the protocol can be slightly
different from an eigenstate of the measurement operator that he is sup-
posed to use (thus, the correctness with probability 1 is not guaranteed any
more, even if parties follow the protocol honestly).

(2′) There is allowed a small probability of Alice’s distinguishing between dif-
ferent Bob’s inputs.

(3′) There is allowed also a small probability of Bob’s distinguishing between
different Alice’s inputs.

So, intuitively, the result of Lo states that there is no quantum protocol for
computing any non-trivial function such that its correctness is high and the
information leakage is small.

In this paper we consider a slightly different relaxation of ideal case of the
security requirements for the one-sided two-party computation. Our model, we
call it susceptible function computation, requires the constraint (1) (i.e. an honest
execution of the protocol computes f(x, y) correctly) but it allows, even huge
information gain by a cheater. However, it requires that if the leakage is big then
the probability that Bob computes the correct value f(x, y) is proportionally
small. In other words (precise definition will be given in Section 2), for a function
δ(·) we require that for all inputs x and y

(a) If both parties follow the protocol then at the end of the computation Bob
learns the value f(x, y) unambiguously.
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(b) If Alice learns y with advantage ε then the probability that Bob computes
the correct value f(x, y) at the end of the protocol, is at most 1 − δ(ε), for
some function δ of ε.

(c) If Bob with advantage ε learns about x more than what follows from the
values of y and f(x, y) then the probability that Bob is able to compute
correctly the value f(x, y) is at most 1 − δ(ε).

Particularly, if both Alice and Bob honestly perform a δ(ε)-susceptible protocol,
for an appropriate function δ, then Bob learns the value f(x, y) correctly and he
gains no additional information about x and Alice learns nothing about y. Note,
that in our model Bob cannot get full knowledge about x; otherwise he would
be able to compute f(x, y) correctly, what contradicts requirement (c).

Intuitively, our model investigates the security of two-party computations
when, for some external reasons, the correct computation of f(x, y) is desired
by both parties that are, nevertheless, curious to acquire additional knowledge
about the input of the other party. To get this additional information a cheat-
ing party may arbitrarily deviate from the protocol.1 But, the key feature of
our model is that it imposes a trade-off between the addition knowledge that a
cheating party can infer and the correctness of the value f(x, y) computed by
Bob. Particularly, if for given Alice’s input x and Bob’s input y the parties need
to compute the correct value f(x, y) with probability 1 then for any strategy
used by a cheating party he or she is not able to gain any additional infor-
mation. However, if for some external reasons, it is sufficient that the protocol
may compute the correct value with probability (at least) 1 − ε then a cheater
may get some (limited) additional information, and the amount of information
is bounded by δ(ε).

The main result of this paper states that for the OT function there exists
a susceptible protocol with δ(ε) = Ω(ε2). Hence, we show that a non-trivial
function can be computed Ω(ε2)-susceptible. That is, we give an OT protocol
which, speaking informally (precise definitions are presented in Section 3), fulfills
the following properties.

– If both Alice having initially bits a0, a1 and Bob having bit i are honest then
Bob learns the selected bit ai, but he gains no further information about the
other bit and Alice learns nothing.

– If Bob is honest and has a bit i and Alice learns i with advantage ε then for
all input bits a0, a1 ∈ {0, 1} the probability that Bob computes the correct
value ai, when the protocol completes, is at most 1 −Ω(ε2).

– If Alice is honest and has bits a0, a1 then for every input bit i ∈ {0, 1} it
is true that if Bob can predict the value a1−i with advantage ε then the
probability that Bob learns correctly ai is at most 1 −Ω(ε2).

Such a model of function evaluation is new and there exists no classical
counterpart of such susceptible two-party computations. This follows from a

1 This is in contrast to honest-but-curious model, where parties have to follow the
protocol faithfully.
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combinatorial characterization of functions securely computable in the honest-
but-curious model given by Beaver [5] and Kushilevitz [20] as well as from the
characterization theorem of privately computable functions in a weak sense by
Chor and Kushilevitz [11].

Though these papers study the so called two-sided setting, in which both
parties learn the result of the function when the protocol is completed, we can
apply them for the one-sided model for slightly modified functions: we replace
the original function f(x, y) by r ⊕ f(x, y) where r is an additional Bob’s input
and ⊕ denotes the bitwise xor-function. Now, using this modification one can
conclude from [5,20] that if a classical (one-sided) protocol computes OT correctly
with probability 1 then its information leakage is strictly greater than 0.

Moreover, from [11] we get that if a classical protocol computes OT correctly
with probability 1− ε, then one of the parties can learn something about the in-
put of the other one with advantage at least 1

2 −ε. The characterization from [11]
holds for honest-but-curious players, but we can apply it also to the malicious
setting: we just make the malicious party to use the honest-but-curious strategy
to cheat. Thus, the theorem by Chor and Kushilevitz can also be used to analyze
even malicious attacks. Clearly, the above assertions invalidate existence of any
susceptible two-party protocols in classical setting.

Comparison to Previous Work. For secure two-party computations two mod-
els are considered in the literature. In the first one, the honest-but-curious model,
we assume that the players never deviate from the given protocol but try to
acquire knowledge about the input of the other player only by observing the
communication. In the second setting, the malicious model, Alice or Bob may ar-
bitrarily deviate from the protocol to defeat the security constraints. Moreover,
depending on the computational power of the players we distinguish between
computationally security and information theoretically security. In the first case
we assume that any player is computationally bounded and in the second case
we do not restrict the computational power of the players.

Recall, that in the classical malicious model, only few (trivial) functions can be
computed securely in the information theoretic setting ([6]). The similar holds
also for the honest-but-curious model. This follows from the characterization
by Beaver [5] and Kushilevitz [20]. In [19] Klauck shows that in the honest-but-
curious model quantum computations do not help. He proves that every function
that can be computed securely using a quantum protocol can also be computed
securely by a deterministic protocol.2 On the other hand, he shows that allowing
a small leakage, quantum communication allows us to compute Boolean functions
which are not securely computable in the classical honest-but-curious model.

As we already mentioned, [21] proved that for quantum protocols in malicious
setting it is impossible to compute securely any non-trivial function. In the light
of this fact, Hardy and Kent [17] and independently Aharonov et al. [2], have in-
troduced the notion of cheat sensitive protocols which, instead of unconditional

2 In the literature one calls secure computations in the honest-but-curious model also
private computations.
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security, give only a guarantee that if one party cheats then the other has a pro-
portional probability of detecting the mistrustful party. The result of Aharonov
et al. [2] presents a protocol for quantum bit commitment they call it quantum
bit escrow that ensures that whenever one party cheats with advantage ε then,
at the end of the protocol, there exists a test that can be performed by the other
party that detects the cheating with probability Ω(ε2). However, the drawback
of this protocol is that only one party can perform the test i.e. only one party
can check whether the other cheated, and there is no mechanism that would
allow fair resolving of this conflict. The authors state finding a protocol with-
out this drawback as an open problem. Also the protocol presented by Hardy
and Kent [17] is a weak variant of cheat sensitive quantim bit commitment in
the sense that either Alice or Bob can detect a cheating party with non-zero
probability. >From this perspective, our result can be seen as a cheat sensitive
protocol for oblivious transfer (which subsumes bit commitment) with Ω(ε2)
trade-off, provided there is some way of allowing the party to test whether Bob
computed correct value. Unfortunately, since we do not know how to implement
such mechanism, the open problem is still unsettled.

2 Preliminaries

We assume that the reader is already familiar with the basics of quantum cryp-
tography (see [2] for a description of the model and results that will be helpful).
The model of quantum two-party computation we use in this paper is essentially
the same as defined in [2].

For a mixed quantum state ρ and a measurement O on ρ, let ρO denote the
classical distribution on the possible results obtained by measuring ρ accord-
ing to O = {Oj}j, i.e. ρO is some distribution p1, . . . , pt where pj denotes the
probability that we get result j and Oj are projections on the orthonormal sub-
spaces corresponding to j. We use L1-norm to measure distance between two
probability distributions p = (p1, . . . , pt) and q = (q1, . . . , qt) over {1, 2, . . . , t}:
|p− q|1 = 1

2

∑t
i=1 |pi − qi|.

In the following we investigate one sided two party quantum protocols F =
(A,B), i.e. let x denote the input of Alice and y denote the input of Bob then at
the end of the protocol Bob knows the result F (x, y) of the protocol. By purifica-
tion we can assume that each protocol consists of two phases. In the first phase,
called quantum phase, both parties perform only unitary transformations on the
quantum states. In the second phase both parties only perform a measurement
and maybe some computations on classical bits.

We say that a quantum protocol F = (A,B) for computing the function f is
δ(ε)-susceptible with respect to Alice, if for every strategy A′ used by Alice the
protocol F ′ = (A′, B) fulfills the following condition: Let ρx,y

A denote a reduced
density matrix in Alice’s hand at the end of the quantum phase of Alice and let
O be the measurement of y by Alice. Then for all x and y it is true: if for some
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y′ with y �= y′ it holds that |(ρx,y
A )O − (ρx,y′

A )O|1 ≥ ε then the probability that
Bob computes the correct value of f(x, y) is at most 1 − δ(ε), i.e. Pr[F ′(x, y) =
f(x, y)] ≤ 1 − δ(ε) .

We say that F = (A,B) is δ(ε)-susceptible with respect to Bob, if for every
strategyB′ used by Bob the protocol F ′ = (A,B′) fulfills the following condition:
Let ρx,y

B denote a reduced density matrix in Bob’s hand at the end of the quantum
phase of Bob and let O be the measurement of x by Bob. Then for all y and
for all x it is true: if for some x′ �= x with f(x, y) = f(x′, y) it holds that
|(ρx,y

B )O− (ρx′,y
B )O|1 ≥ ε then the probability that Bob computes the correct value

of f(x, y) is at most 1 − δ(ε).
Both probabilities are taken over the random inputs of all the parties.

Definition 1. Let δ(ε) be a function in ε. A quantum protocol F for computing
f is δ(ε)-susceptible if the following conditions hold:

1. If both parties follow F then Bob computes f correctly, i.e. Pr[F (x, y) =
f(x, y)] = 1 for all x and y,

2. F is δ(ε)-susceptible with respect to Alice, and
3. F is δ(ε)-susceptible with respect to Bob.

We recall that we are interested in unconditional security, so in particular the
above definition does not restrict the computational power of adversaries.

Let |0〉,|1〉 be an encoding of classical bits in our computational (perpendic-
ular) basis. Let |0×〉 = 1√

2
(|0〉 − |1〉), |1×〉 = 1√

2
(|0〉 + |1〉) be an encoding of

classical bits in diagonal basis. By Rα, α ∈ {0, 1
2 , 1}, we denote the unitary

operation of rotation by an angle of α · π/2. More formally:

Rα :=
(

cos(α · π
2 ) sin(α · π

2 )
− sin(α · π

2 ) cos(α · π
2 )

)

We should note that this operation allows us to exchange between the bit
encoding in perpendicular and in diagonal basis. Moreover, by applying R1 we
can flip the value of the bit encoded in any of those two bases.

Let ||A||t = tr(
√
A†A), where tr(A) denotes trace of matrix A. A fundamental

theorem gives us a bound on L1-norm for the probability distributions on the
measurement results:

Theorem 1 (see [1]). Let ρ0, ρ1 be two density matrices on the same Hilbert
space H. Then for any generalized measurement O |ρO0 − ρO1 |1 ≤ 1

2 ||ρ0 − ρ1||t.
This bound is tight and the orthogonal measurement O that projects a state on
the eigenvectors of ρ0 − ρ1 achieves it.

A well-known result states that if |φ1〉, |φ2〉 are pure states, then || |φ1〉〈φ1| −
|φ2〉〈φ2| ||t = 2

√
1 − |〈φ1|φ2〉|2.
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3 Ω(ε2)-Susceptible Oblivious Transfer

In this section we present a Ω(ε2)-susceptible protocol for OT.

Protocol 1 (Susceptible QOT). Input A : a0, a1 ∈ {0, 1}, B : i ∈ {0, 1};
Output B : ai.

1. A chooses randomly α ∈R {0, 1
2} and h ∈R {0, 1} and sends to B:

Rα|a1 ⊕ h〉 ⊗Rα|a0 ⊕ h〉
2. B receives |Φ1〉 ⊗ |Φ0〉, chooses randomly β ∈R {0, 1} and sends Rβ |Φi〉 back

to A.
3. A receives |Φ〉, computes R−1

α |Φ〉, measures the state in computational basis
obtaining the result n and sends m = n⊕ h to B.

4. B receives m and computes ai = m⊕ β.

Here, as usually, ⊕ denotes xor. To see that this protocol computes OT correctly
if both parties are honest we remind that the operator RαRβ commutes with
R−1

α (this is not true in general, although it is true in two dimensions) and that
Rβ is (up to a phase) a NOT-gate conditioned on β. We will now focus on the
question whether Protocol 1 still retains security if we use it against malicious
parties. The following theorem follows from Lemma 1 and 2 which will be proven
in the remaining part of this section:

Theorem 2. Protocol 1 is a Ω(ε2)-susceptible protocol for OT.

3.1 Malicious Alice

Lemma 1. Let Alice and Bob perform Protocol 1 and assume Bob is honest
and deposits a bit i, with Pr[i = 0] = 1/2. Then for every strategy used by Alice,
every value a′ Bob learns at the end of the computation it holds that for all
a0, a1 ∈ {0, 1} and for any generalized measurement O

if |(ρ0
A)O − (ρ1

A)O|1 ≥ ε then Pri∈R{0,1}[a′ = ai] ≤ 1 − cA · ε2 .

where ρj
A denotes a reduced density matrix in Alice hand at the end of the protocol

if Bob’s input bit is given by i := j and cA > 0 is a constant independent of
Alice’s strategy.

Proof: Any cheating strategy A of Alice corresponding to her input a0, a1 can be
described as preparing some state |Φ〉 =

∑
x∈{0,1}2 |vx, x〉, sending the two right-

most qubits to Bob and performing some measurement O = {H0, H1, H2, H3}
on this what she gets back after Bob’s round, where H0,H1,H2, H3 are four pair-
wise orthogonal subspaces being a division of whole Hilbert space that comes
into play, such that, for l, k = 0, 1, if our measurement indicates the outcome
corresponding to H2k+l then it reflects Alice’s belief that i = l and that the mes-
sage m = k should be sent to Bob. We emphasis that we allow Alice’s strategy
to depend on her input.
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The outline of the proof is the following. We first bond the fact that A achieves
some advantage ε to a certain relation between H and |Φ〉. Then we show that
this relation implies at least cA · ε2 of noise in the value of a′ computed by Bob.

We first consider the case when a0 ⊕ a1 = 0. Clearly, in this case m ⊕ a0 =
m⊕a1 = β. So if Alice manages to compute m that is correct i.e. a′ = m⊕β = ai

then she also knows the value of β. Thus, we can compute the probability of A
computing the correct result, by computing the the probability that she can
indicate the value of β correctly.

Let ρa,b be a density matrix of Alice’s system after Bob’s round, corresponding
to i = a and β = b. After some calculations we get:

ρ0,0 =
∑

x=(x1,x2)∈{0,1}2 |vxx1〉〈vxx1|
+|v000〉〈v101| + |v101〉〈v000| + |v111〉〈v010| + |v010〉〈v111|

ρ0,1 =
∑

x=(x1,x2)∈{0,1}2 |vxx1〉〈vxx1|
−|v001〉〈v100| − |v100〉〈v001| − |v110〉〈v011| − |v011〉〈v110|

ρ1,0 =
∑

x=(x1,x2)∈{0,1}2 |vxx2〉〈vxx2|
+|v000〉〈v011| + |v011〉〈v000| + |v111〉〈v100| + |v100〉〈v111|

ρ1,1 =
∑

x=(x1,x2)∈{0,1}2 |vxx2〉〈vxx2|
−|v001〉〈v010| − |v010〉〈v001| − |v110〉〈v101| − |v101〉〈v110| .

where xt means flipping bit xt, i.e. xt = 1 − xt.
We look first onto Alice’s advantage that she can achieve. In order to cheat,

Alice has to distinguish between two density matrices γl = 1
2ρl,0 + 1

2ρl,1 for
l ∈ {0, 1}, where γl corresponds to i = l. By examination of the difference of
those matrices we get, after some calculations, that:

γ0 − γ1 =
1
2
|VS0〉〈VA1| + 1

2
|VA1〉〈VS0| − 1

2
|VS1〉〈VA0| − 1

2
|VA0〉〈VS1|

where |VS〉 = |v00〉+ |v11〉 and |VA〉 = |v10〉− |v01〉. One can easily show that the
advantage ε := |(ρ0

A)O − (ρ1
A)O|1 of Alice is at most

∑3
l=0 σl where

σl = |tr(Hl(γ0 − γ1)Hl
†)|

≤ ∑
j∈{0,1}

1
2 |tr(Hl(|VS(j − 1)〉〈VAj| + |VAj〉〈VS(j − 1)|)Hl

†)|
≤ ∑

j∈{0,1}(|〈Ol
j |VAj〉| · |〈VS(1 − j)|Ol

j〉|)
≤ ∑

j∈{0,1} |〈Ol
j |VAj〉|

and |Ol
j〉 is an orthogonal, normalized projection of |VAj〉 onto subspace Hl. The

second inequality is true because we have tr(Hl|VAj〉〈ψ|Hl
†) = 〈Ol

j |VAj〉〈ψ|Ol
j〉

for every state |ψ〉.
Let jl be the index for which |〈Ol

jl
|VAjl〉| ≥ |〈Ol

1−jl
|VA(1 − jl)〉|. Clearly,

σl ≤ 2|〈Ol
jl
|VAjl〉|. Moreover, we assume that σ0 + σ1 ≥ σ2 + σ3. If this is not

the case we could satisfy this condition by altering the strategy A of Alice (by
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appropriate rotation of her basis) in such a way that the definitions of Hk and
Hk+2 would swap leaving everything else unchanged.

We look now on the probability of obtaining the correct result by Alice. The
probability p0 of Alice getting outcome that convinces her that β = 0 in case
when actually β = 1 is at least

p0 ≥ 1
2 〈O0

j0
|ρ0,1|O0

j0
〉 + 1

2 〈O0
j0
|ρ1,1|O0

j0
〉 =

1
2 |〈O0

j0 |v001〉 − 〈O0
j0 |v010〉|2 + 1

2 |〈O0
j0 |v001〉 − 〈O0

j0 |v100〉|2
+ 1

2 |〈O0
j0
|v110〉 − 〈O0

j0
|v011〉|2 + 1

2 |〈O0
j0
|v110〉 − 〈O0

j0
|v101〉|2 .

So, by inequality |a− b|2 + |a− c|2 ≥ 1
2 |b− c|2 we get that

p0 ≥ 1
4 |〈O0

j0
|v010〉 − 〈O0

j0
|v100〉|2 + 1

4 |〈O0
j0
|v011〉 − 〈O0

j0
|v101〉|2

= 1
4 |〈O0

j0 |VA0〉|2 + 1
4 |〈O0

j0 |VA1〉|2 ≥ 1
16σ

2
0 .

Similar calculation of the probability p1 of getting outcome convincing Alice that
β = 1 when actually β = 0 yields that the probability of computing wrong result
is at least

Pr[a′ �= ai] = Pr[β ⊕m �= ai] ≥ 1
16

(σ2
0 + σ2

1) ≥ 1
256

(
∑3

l=0σl)2.

Hence, the lemma holds for the case a0 ⊕ a1 = 0.
Since in case of a0⊕a1 = 1 the reasoning is completely analogous - we exchange

only the roles of |VS〉 and |VA〉 and Alice has to know the value of β⊕ i, instead
of β in order to give the correct answer to Bob, the proof is concluded.

In fact, the above lemma is asymptotically tight since we can design a strategy
of Alice which allows her to meet the quadratical bound imposed by the above
lemma. To see this, consider |Φ〉 =

√
1 −Δ|000〉+√

Δ|110〉. Intuitively, we label
the symmetric and anti-symmetric part of |Φ〉 with 0 and 1. Let H2 = |01〉〈01|,
H3 = 0. One can easily calculate that

ρ0,0 = (1 −Δ)|00〉〈00|+
√
Δ(1 −Δ)(|00〉〈11| + |11〉〈00|) +Δ|11〉〈11|

ρ1,0 = (1 −Δ)|00〉〈00| +Δ|10〉〈10|

and therefore ||ρ0,0 − ρ1,0||t ≥
√
Δ(1 −Δ) − 2Δ. So, by Theorem 1 there exists

a measurement {H0, H1} allowing us to distinguish between those two density
matrices with

√
Δ(1 −Δ) − 2Δ accuracy and moreover H2, H3⊥H0, H1 since

tr(H2ρ0,0H
†
2) = tr(H2ρ1,0H

†
2) = 0. Now, let M = {H0, H1, H2, H3} be Alice’s

measurement. To cheat, we use the following strategy A corresponding to her
input a0 = a1 = 0. Alice sends the last two qubits of |Φ〉 to Bob, after receiving
the qubit back she applies the measurement M . If the outcome is H2 then she
answers m = a0 ⊕ β = 1 to Bob and sets i′ = 0 with probability 1

2 , in the other
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case she sends m = a0 ⊕ β = 0 to Bob and according to the outcome being 0 or
1 she sets i′ = 0 (i′ = 1).

To see that this strategy gives correct result with probability greater than
1 − Δ

2 we should note that probability of outcome H2 in case of β = 0 is 0 and
in case of β = 1 is 1 − Δ. On the other hand, since β = 0 with probability 1

2 ,
Alice’s advantage in determining the input of Bob is greater than 1

2

√
Δ − 3

2Δ.
So, by setting ε = 1

2

√
Δ − 3

2Δ, we get that the presented strategy proves that
the Protocol 1 cannot be δ(ε) susceptible for δ(ε) ≥ 2ε2.

3.2 Malicious Bob

Now, we analyze Bob’s possibility of cheating. Our goal is to show:

Lemma 2. Let Alice and Bob perform Protocol 1. Assume Alice is honest and
deposits bits a0, a1, with Pr[a0 = 0] = Pr[a1 = 0] = 1/2. Let i denote Bob’s input
bit. Then for every strategy B used by Bob and any value a′i computed by Bob it
holds that for i = 0

if |(ρa0a1,0
B )O − (ρa0a1,0

B )O|1 ≥ ε then Pra0,a1∈R{0,1}[a′0 = a0] ≤ 1 − cBε
2

and for i = 1

if |(ρa0a1,1
B )O − (ρa0a1,1

B )O|1 ≤ ε then Pra0,a1∈R{0,1}[a′1 = a1] ≥ 1 − cBε
2.

where ρa0a1,i
B denotes a reduced density matrix in Bob’s hand at the end of the

protocol and cB > 0 is a constant independent of Bob’s strategy.

Proof: Consider some malicious strategy B of Bob. Wlog we may assume that
i = 0 - the case of i = 1 is completely symmetric. In the following we skip the
superscript i, i.e. let ρa0a1

B denote ρa0a1,i
B , for short. Our aim is to show that

if |(ρa0a1
B )O − (ρa0a1

B )O|1 ≤ ε then Pra0,a1∈R{0,1}[a′ �= a0] ≤ cBε
2.

Strategy B can be think of as a two step process. First a unitary transforma-
tion U is acting on |Φa0,a1,h〉 = |v〉 ⊗ Rα|a1 ⊕ h〉 ⊗ Rα|a0 ⊕ h〉, where v is an
ancillary state3. Next the last qubit of U(|Φa0,a1,h〉) is sent to Alice4, she performs
step 3 of Protocol 1 on these qubit and sends the classical bit m back to Bob.
Upon receiving m, Bob executes the second part of his attack: he performs some
arbitrary measurement O = {H0, H1, H2, H3}, where outcome corresponding to
subspace H2l+k implies Bob’s believe that a′0 = l and a′1 = k.

The unitary transformation U can be described by a set of vectors {V l,j
k } such

that U(|v〉⊗|l, j〉) = |V l,j
0 〉⊗|0〉+|V l,j

1 〉⊗|1〉. Or alternatively in diagonal basis, by
a set of vectors {W l,j

k } such that U(|v〉⊗|l×, j×〉) = |W l,j
0 〉⊗|0×〉+ |W l,j

1 〉⊗|1×〉.
3 Note that this does not restrict Bob’s power. Particularly, when Bob tries to make

a measurement in the first step then using standard techniques we can move this
measurement to the second step.

4 We can assume wlog that the last qubit is sent since U is arbitrary.
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We present now, an intuitive, brief summary of the proof. Informally, we can
think of U as about some kind of disturbance of the qubit Rα|a0 ⊕ h〉 being
sent back to Alice. First, we will show that in order to cheat Bob’s U has to
accumulate after Step 2, till the end of the protocol, some information about the
value of a0⊕h hidden in this qubit. On the other hand, to get the proper result i.e.
the value of a0, this qubit (which is sent back to Alice) has to still contain actual
information about encoded value being disturbed at the smallest possible degree.
That implies for Bob a necessity of some sort of partial cloning of that qubit,
which turns out to impose the desired bounds on possible cheating. We show this
by first reducing the task of cloning to one where no additional hint in the form
of Rα|a1 ⊕ h〉 is provided and then we analyze this simplified process. In this
way, this proof gives us a sort of quantitative non-cloning theorem. Although, it
seems to concern only our particular implementation of the protocol, we believe
that this scenario is useful enough to be of independent interests.

We analyze first Bob’s advantage i.e. his information gain about a1. Wlog we
may assume that Bob can distinguish better between two values of a1 if a0 = 0.
That is

|(ρ00
B )O − (ρ01

B )O|1 ≥ |(ρ10
B )O − (ρ11

B )O|1 .
Let now ρj,k,l be a density matrix of the system before Bob’s final measure-

ment, corresponding to α = j · 1
2 , h = k, a1 = l and a0 = 0. The advantage

ε = |(ρ00
B )O − (ρ01

B )O|1 of Bob in this case can be estimated by Bob’s ability to
distinguish between the following density matrices:

1
4 (ρ0,0,0 + ρ1,0,0 + ρ0,1,0 + ρ1,1,0) (case a1 = 0), and
1
4 (ρ0,0,1 + ρ1,0,1 + ρ0,1,1 + ρ1,1,1) (case a1 = 1).

Using the triangle inequality we get that for the measurement O performed by
Bob

ε ≤ 1
8
(|ρO0,0,0−ρO0,1,1|1 + |ρO1,1,0−ρO1,0,1|1 + |ρO0,1,0−ρO0,0,1|1 + |ρO1,0,0−ρO1,1,1|1). (1)

Each component corresponds to different values of α and h⊕a1. And each compo-
nent is symmetric to the other in such a way that there exists a straight-forward
local transformation for Bob (i.e. appropriate rotation of the computational basis
on one or both qubits) which transform any of above components onto another.
So, we can assume wlog that the advantage in distinguishing between ρ0,0,0 and
ρ0,1,1, ε0 = |ρO0,0,0 − ρO0,1,1|1 is the maximum component in the right-hand side
of the inequality (1) and therefore we have ε ≤ 1

2ε0. Let, for short, γ0 = ρ0,0,0

and γ1 = ρ0,1,1. One can easily calculate that

γ0 = |0〉〈0| ⊗ |V 00
0 〉〈V 00

0 | + |1〉〈1| ⊗ |V 00
1 〉〈V 00

1 | (2)
γ1 = |0〉〈0| ⊗ |V 01

1 〉〈V 01
1 | + |1〉〈1| ⊗ |V 01

0 〉〈V 01
0 |. (3)

As we can see to each value of m in above density matrices corresponds a pair of
vectors which are critical for Bob’s cheating. I.e. the better they can be distin-
guishable by his measurement the greater is his advantage. But, as we will see
later, this fact introduces perturbation of the indication of the value of a0.
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First, we take a look on the measurements H0, H1 performed by Bob. Let us
define σ2m+p for p,m ∈ {0, 1} as follows

σ2m+p =

{
|tr(Hp|0V 0p

p 〉〈0V 0p
p |H†

p) − tr(Hp|0V 0(1−p)
1−p 〉〈0V 0(1−p)

1−p |H†
p)| if m = 0,

|tr(Hp|1V 0p
1−p〉〈1V 0p

1−p|H†
p) − tr(Hp|1V 0(1−p)

p 〉〈1V 0(1−p)
p |H†

p)| if m = 1.

Let for m = 0, p0 ∈ {0, 1} be such that σp0 ≥ σ1−p0 and similarly, for m = 1 let
p1 ∈ {0, 1} be such that σ2+p1 ≥ σ2+(1−p1). Then we get

|γO0 − γO1 |1 =
∑3

t=0 |tr(Htγ0H
†
t ) − tr(Htγ1H

†
t )|

≤ 2(σp0 + σ2+p1) +
∑3

t=2 |tr(Htγ0H
†
t ) − tr(Htγ1H

†
t )|.

We should see first that the second term in the above sum corresponds to
advantage in distinguishing between two values of a1 by measurement H2, H3 in
case of a0 = 0. But those subspaces reflect Bob’s belief that a0 = 1. Therefore,
we have that

∑3
t=2|tr(Htγ0H

†
t ) − tr(Htγ1H

†
t )| ≤ Pra0,a1∈R{0,1}[a′0 �= a0|a0 = 0].

So, we can neglect this term because it is of the order of the square of the
advantage (if not then our lemma would be proved). We get: ε0

2 ≤ σp0 + σ2+p1 .
Now, we define projection Om as follows. For m = 0 let O0 be the normalized

orthogonal projection of |0V 0p0
p0

〉 onto the subspace Hp0 if

tr(Hp0 |0V 0p0
p0

〉〈0V 0p0
p0

|H†
p0

) ≥ tr(Hp0 |0V 0(1−p0)
1−p0

〉〈0V 0(1−p0)
1−p0

|H†
p0

).

Otherwise, let O0 be the normalized orthogonal projection of |0V 0(1−p0)
1−p0

〉 onto
Hp0 . Analogously, we define O1 as a normalized orthogonal projection of |1V 0p1

1−p1
〉

onto the subspace Hp1 if

tr(Hp1 |1V 0p1
1−p1

〉〈1V 0p
1−p1

|H†
p1

) ≥ tr(Hp1 |1V 0(1−p1)
p1

〉〈1V 0(1−p1)
p1

|H†
p1

)

else O1 is a normalized orthogonal projection of |1V 0(1−p1)
p1 〉 onto Hp1 . Hence we

get

σp0 ≤ ||〈0V 0p0
p0

|O0〉|2 − |〈0V 0(1−p0)
1−p0

|O0〉|2|,
σ2+p1 ≤ ||〈1V 0p1

1−p1
|O1〉|2 − |〈1V 0(1−p1)

p1
|O1〉|2|.

We proceed now, to investigation of the probability of obtaining the correct
result i.e. the correct value of a0. Recall that Pr[a1 = 0] = 1

2 so the density
matrices corresponding to initial configuration of the second qubit - Rα|a1 ⊕ h〉
is now exactly 1

2 |0〉〈0| + 1
2 |1〉〈1| even if we know h and α. So, from the point

of view of the protocol, as perceived by Bob, those two density matrices are
indistinguishable. Therefore, we can substitute the second qubit from the ini-
tial configuration with a density matrix 1

2 |0〉〈0| + 1
2 |1〉〈1| of a random bit r
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encoded in perpendicular basis and the probability of obtaining proper result is
unchanged.

We analyze now the probability of computing the correct result in case of
r = 0. Note, that the vectors {V 0,j

k }k,j still describe U , but vectors {W 0j
k }k,j are

different, they are defined by U acting now on initial configuration |v〉 ⊗ |0〉 ⊗
Rα|j〉, with α = 1

2 . We investigate the correspondence between {V 0j
k }k,j and the

new vectors. For j = 0 we have:

U(|v00×〉) = 1√
2
U(|v00〉 − |v01〉) = 1√

2
(V 00

0 |0〉 + V 00
1 |1〉 − V 01

0 |0〉 − V 01
1 |1〉)

= 1
2 ((V 00

0 − V 00
1 − V 01

0 + V 01
1 )|0×〉 + (V 00

0 + V 00
1 − V 01

0 − V 01
1 )|1×〉)).

Similarly, for j = 1 we have:

U(|v01×〉) = 1√
2
U(|v00〉 + |v01〉) = 1√

2
(V 00

0 |0〉 + V 00
1 |1〉 + V 01

0 |0〉 + V 01
1 |1〉)

= 1
2 ((V 00

0 − V 00
1 + V 01

0 − V 01
1 )|0×〉 + (V 00

0 + V 00
1 + V 01

0 + V 01
1 )|1×〉)).

Thus, let us denote these vectors by

W̃ 00
0 =

1
2
((V 00

0 + V 01
1 ) − (V 01

0 + V 00
1 )), W̃ 00

1 =
1
2
((V 00

0 − V 01
1 ) − (V 01

0 − V 00
1 )),

W̃ 01
0 =

1
2
((V 00

0 − V 01
1 ) + (V 01

0 − V 00
1 )), W̃ 01

1 =
1
2
((V 00

0 + V 01
1 ) + (V 01

0 + V 00
1 )).

In order to obtain the correct result Bob has to distinguish between the den-
sity matrices corresponding to two values of a0. In particular, he has to distin-
guish between density matrices γ′0, γ′1 corresponding to two possible values of a0

knowing that m = 0. These density matrices are:

γ′0 =
1
4
|0〉〈0| ⊗ (|V 00

0 〉〈V 00
0 | + |V 01

1 〉〈V 01
1 | + |W̃ 00

0 〉〈W̃ 00
0 | + |W̃ 01

1 〉〈W̃ 01
1 |), (4)

γ′1 =
1
4
|0〉〈0| ⊗ (|V 01

0 〉〈V 01
0 | + |V 00

1 〉〈V 00
1 | + |W̃ 01

0 〉〈W̃ 01
0 | + |W̃ 00

1 〉〈W̃ 00
1 |). (5)

Now, the probability of failure i.e. the probability that in case of m = 0 Bob’s
measurement indicates that a0 = 0 if in fact it is a0 = 1, is at least

tr(Hp0γ
′
1H

†
p0

) ≥ tr(|O0〉〈O0|γ′1)
= 1

4 (|〈0V 01
0 |O0〉|2 + |〈0V 00

1 |O0〉|2 + |〈0W̃ 01
0 |O0〉|2 + |〈0W̃ 00

1 |O0〉|2).

But since the fact that W̃ 01
0 = 1

2 ((V 00
0 − V 01

1 ) + (V 01
0 − V 00

1 )), W̃ 00
1 = 1

2 ((V 00
0 −

V 01
1 )−(V 01

0 −V 00
1 )), and the parallelogram law (|a+b|2+ |a−b|2 = 2|a|2+2|b|2),

we have that this probability is at least

1
4 (|〈0W̃ 01

0 |O0〉|2 + |〈0W̃ 00
1 |O0〉|2) ≥ 1

8 |〈0V 00
0 |O0〉 − 〈0V 01

1 |O0〉|2
≥ 1

32 (|〈0V 00
0 |O0〉| − |〈0V 01

1 |O0〉|)2(|〈0V 00
0 |O0〉| + |〈0V 01

1 |O0〉|)2

≥ 1
32 (|〈0V 00

0 |O0〉|2 − |〈0V 01
1 |O0〉|2)2 ≥ σ2

p0
32 .
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Similarly we analyze density matrices γ′′0 , γ′′1 corresponding to two possible
values of a0 knowing that m = 1. These density matrices are equal to resp. γ′1
and γ′0 after changing |0〉〈0| to |1〉〈1|. Now, by repeating completely analogous
estimation of failure’s probability with usage of vectors |V 01

0 〉, |V 00
1 〉, |W̃ 00

0 〉,
and |W̃ 01

1 〉, we get that this probability is at least
σ2
2+p1
32 . Therefore, since the

vectors involved in imposing failure in both cases are distinct, we conclude that

Pra1∈R{0,1}[a′0 �= a0|r = 0] ≥ σ2
p0

+σ2
2+p1

32 . Hence we have

Pra1∈R{0,1}[a′0 �= a0]

= 1
2Pra1∈R{0,1}[a′0 �= a0|r = 0] + 1

2Pra1∈R{0,1}[a′0 �= a0|r = 1]

≥ σ2
p0

+σ2
2+p1

64 ≥ ε2

128

and the lemma is proved.
Finally, it is worth mentioning that the value of m doesn’t need to be corre-

lated in any way with value of ai. That is, Bob by using entanglement (for in-
stance, straightforward use of Bell states) can make the value of m independent
of ai and still acquire perfect knowledge about ai. He uses simple error-correction
to know whether m = ai or m = 1− ai. His problems with determining whether
flip has occurred, start only when he wants additionally to accumulate some
information about the value of ai ⊕ h.

Once again, it turns out that the quadratic susceptibility is asymptotically op-
timal. To see that this quadratical bound imposed by the above lemma can be
achieved consider the following cheating strategy. Let U∗ be such that U∗(|v〉 ⊗
|l, j〉) = |vj〉 ⊗ |l, j〉. So, |V l,j

j 〉 = |vj〉 ⊗ |l〉 and |V l,j
1−j〉 = 0. Moreover, let

〈v0|v1〉 =
√

1 −Δ. As we can see, usage of U∗ accumulates some information
about value of j = a0⊕h by marking it with two non-parallel (therefore possible
to distinguish) vectors in Bob’s system. We do now the following. We use U∗

on |v〉 ⊗Rα|a1 ⊕ h〉 ⊕Rα|a0 ⊕ h〉 and send the last qubit to Alice. When we get
the message m which is exactly a0 with probability5 of order 1 − Δ, we make
an optimal measurement to distinguish between v0 and v1. By Theorem 1 this
optimal measurement has advantage of order

√
Δ. So, after getting the outcome

j′, we know that Pr[j′ = a0 ⊕ h] ≥ 1
2 + Ω(

√
Δ) and we can simply compute

the value of h′ = m ⊕ j′. Having such knowledge about the value of h′ we can
distinguish between values of a1 encoded in the second qubit Rα|a1 ⊕ h〉 with
the advantage proportional to Ω(

√
Δ). So, our claim follows.

4 Concluding Remark

In this paper we have presented a Ω(ε2)-susceptible protocol for OT. An inter-
esting question is whether we can find δ(ε)-susceptible protocols for other non-
trivial functions and a reasonable δ and whether there exists a combinatorial
characterization for such functions.
5 This can be easily computed - the perturbation arises when α = 1

2
.
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The next natural question to ask is whether there exists a δ(ε)-susceptible
protocol for OT such that δ(ε) is asymptotically greater than Ω(ε2). In fact,
looking at the quadratic trade-off of the expression || |φ1〉〈φ1| − |φ2〉〈φ2| ||t in
the case of 〈φ1|φ2〉 = 1 − ε and the case of 〈φ1|φ2〉 = ε might suggest that the
quadratic trade-off (which similarly arises in [2]) is inherent for all non-trivial
susceptible computable functions.

It is also interesting to know, whether our protocol could be transformed
into one that does not need external reasons to make the correct computation of
OT((a1, a2), i) desirable for both parties i.e. a protocol in which failure to compute
OT((a1, a2), i) correctly would immediately lead to detection of cheating.

Finally, even if our protocol is very simple - thus may be relatively easy
to implement - the constants hidden in Ω(ε2) are rather impractical. Thus,
trying to come up with a different protocol with better constants or some way
of amplifying the trade-off of our protocol can be worthwhile.
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