
CS-621 Theory Gems October 18, 2012

Lecture 10
Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis

1 Introduction

In this lecture, we will see how one can use random walks to tackle the web search problem, i.e., we will
describe the PageRank, a concept that is one of the key ideas behind Google’s success.
Later, we introduce the fundamental object of spectral graph theory: the Laplacian matrix. We conclude
by proving the Courant-Fisher theorem that provides a general technique for deriving upper bounds on
the eigenvalues of symmetric matrices.

2 PageRank

Consider the web search problem, in which one has an index of a large number of web pages (think:
Google’s web crawling archives) and wants to present to the user web pages that will be most relevant
to the query that he/she entered.

One can view this task as consisting of three steps:

1. The user inputs his/her query;

2. The engine is finding all the pages in its index that contain this query;

3. These pages are sorted according to their “rank” – that should reflect relevance – and the results
are presented to the user in that order.1

Clearly, the first two task are fairly simple (at least conceptually), and the most crucial and non-
trivial step is the last one. After all, the number of pages found in the second step will likely be extremely
large, so the users will be able to look only through a tiny fraction of them and it is important that the
ranking ensures that the most relevant ones are presented first.

In the ancient times of Internet, the existing solutions for the ranking problem were very unsatis-
factory, and only the emergence of Google with its completely new approach to this task dramatically
improved the situation (and led to Google to its success).

In this approach, one models the Web as a gigantic directed graph G = (V,E) – so-called web graph
– with nodes corresponding to individual pages and arcs reflecting the links between these pages, i.e.,
there is an arc (u, v) in the graph G if page u has a link to page v. (Note that this graph will be rather
sparse, i.e., the number of its arcs will be not much larger than the number of nodes, as usually pages
have only limited number of outgoing links.)

Now, we want to come up with a ranking of all the pages. We will view ranking as a vector rank ∈ RV

that associates with each vertex v a real number reflecting its rank. The general – and somewhat
counterintuitive – idea here is to c completely ignore the actual content of the pages when inferring this
ranking. Instead, we will compute the ranking of pages relaying purely on the structure of the web graph
itself.

More precisely, we will treat the links between different pages as a form of “recommendation”, i.e.,
if page u links to page v, we interpret it as page u “recommending” page v. (This way, instead of trying
to make the computer “understand” the content of pages and thus their relevance – which would be an
extremely hard task – we leverage the fact that if a given page is really containing useful information
(as judged by humans) it is more likely to have many links pointing to it.)

1Note that the ranking here is assumed to be static, i.e., independent of the actual query. So, we are trying here to
capture some intrinsic relevance of web pages – we believe that such intrinsically relevant pages that contain the query
that the user supplied are indeed most relevant to that query.

1

As we will see shortly, there exists a very elegant way of aggregating all these recommendations into
a ranking – so-called PageRank – that turns out to be indeed very good in practice and outperforms the
previous approaches to this task that were based on analyzing the web page content. Following [1], we
will develop PageRank as a sequence of natural refinements of a the basic idea we outlined above.

First Idea. As already mentioned, we expect the number of links pointing to a given page to be an
indication of its relevance. So, the first idea – let us denote the resulting ranking as countrank – is to
simply count, for each vertex u, the number of incoming arcs, i.e.,

countranku =
∑
v∈V

Av,u.

where A is the adjacency matrix of the graph that we introduced in Lecture 9, defined as

Au,v =

{
1 if (u, v) ∈ E
0 otherwise.

So, we can write the definition of countrank compactly as

countrank = A1 (1)

where 1 is all-ones vector.
Although very natural, countrank does not perform too well. To understand why, consider the

following situation. There are two pages describing good restaurants in a city. The first one lists 100
restaurants, while the second one only 3. In countrank, recommendations of both pages carry the same
weight while, in reality, the recommendation of the latter page should be worth more than that of the
former one (after all, being in “top 3” carries more weight than being in “top 100”).

Second Idea. To alleviate the above shortcoming, we modify our ranking method to make it weight
recommendation of each page v by the inverse of the total number of recommendations it makes (i.e.,
the number of its outgoing links d(v)). This gives rise to a new ranking that we will call weightrank
defined as

weightranku =
∑
v∈V

Av,u
1

d(v)
.

Again, in matrix form, we will have

weightrank = AD−11 = W1 (2)

where W is the random walk matrix introduced in the Lecture 9, and D is an out-degree matrix2 defined
as

D−1
u,v =

{
1

d(v) if u = v

0 otherwise.

(To ensure that matrix D−1 is well-defined even when some vertex v does not have any outgoing links
and thus d(v) = 0, we just add a self-loop to it.3)

In the light of (2), after appropriate normalization, one can view weightrank as a ranking that
reflects the probability that we will end up at some particular page u, after choosing first a page v
uniformly at random and then taking one step of (directed) random walk in G.

2Note that in Lecture 9 we also defined a degree matrix D, but the difference is that here we only count the outgoing
links.
3Doing this transformation may distort the ranking, as each such v has now an additional (self-)recommendation that

is very strong (as it comes from a vertex with out-degree 1). However, as we will see shortly, our further refinement of the
ranking method will take care of this problem.

2

Third Idea. Although the weightrank ranking performs better, there is still some room for improve-
ment. In particular, one idea is to weight each recommendation of a page v not only based on the
total number of recommendations made by v, but also on the ranking of the page v itself. That is,
recommendation of a page that itself is well-recommended should have more impact.

Formally, we capture this refinement by defining a recrank ranking of a vertex u to be

recranku =
∑
v∈V

Av,u
1

d(v)
recrankv,

which in matrix form can be expressed as

recrank = Wrecrank. (3)

Observe that if we insist that recrank a probability distribution then (3) would make recrank be a
stationary distribution of the directed random walk in our web graph.

Note, however, that since the web graph is directed, it is not clear how the corresponding stationary
distribution would look like or even whether it at all exists. (The explicit description of the stationary
distribution that we stated in Lecture 9, is valid only for undirected graphs.)

Fortunately, a stationary distribution exists in every directed graph, as long as, each vertex has its
out-degree non-zero (which we ensured is true for our web graph).

Claim 1 For any directed graph G = (V,E) such that the out-degree d(v) of every vertex v ∈ V is
positive, there exists a non-zero solution to the Equation (3).

Proof Observe that, as all vertices have non-zero out-degree, entries of each column of the walk matrix
W sum up to one. Therefore, entries of each column of the matrix I −W sum up to zero.

Now, if we take all the rows of the matrix I −W but the last one, and add them to the last row then
this row becomes an all-zeros row. This means that the matrix I −W is not full-rank.

From basic linear algebra we know that the null-space of a rank-deficient matrix is non-trivial. In
other words, there exists a vector x such that (I −W)x = 0 and x 6= 0. This shows that (3) has indeed
a non-zero solution.

Now, to be able to conclude that a stationary distribution exists, we would need to also show that
there exists a solution to (3) that is not only non-zero, but also has all its entries non-negative. This
can be shown to be indeed the case, but we omit the proof.

Unfortunately, even though we know now that the stationary distribution exists, it does not mean
that the vector recrank is uniquely defined, as in principle a directed graph can have many different
stationary distributions. To see this, note that for any vertex v whose only outgoing arc is a self-loop, a
distribution that assigns 1 to v and 0 to all the other vertices, is a stationary distribution. (One can show
that a necessary and sufficient condition for a directed graph to have a unique stationary distribution
is that the graph is strongly connected,i.e., that for any two vertices v and u there has to be a directed
path from u to v and from v to u.)

To fix the above problem, we just change the definition of our ranking slightly and obtain the desired
PageRank vector.

Definition 2 (Page Rank) For a graph G = (V,E), the PageRank vector pr is defined as solution of
the following equation

pr = (1− α)Wpr +
α

n
1, (4)

where n = |V | and 0 < α < 1 is a parameter of choice.

3

One can view the PageRank vector as corresponding to a stationary distribution of a randomized
process – sometimes called “random surfer” model – in which in every step, with probability (1−α) one
performs a step of random walk and, with probability α, one teleports himself/herself to a random node
of the graph.

It can be shown that PageRank vector exists and is uniquely defined for any directed graph with all
out-degrees being non-zero.4 To prove that in the special case of undirected graphs, one just needs to
note that

pr = (I − (1− α)W)
−1 α

n
1.

(As we know that for undirected graphs the eigenvalues of W lie in the interval [−1, 1], the eigenvalues
of I − (1− α)W are strictly positive, for any α > 0, which makes the matrix I − (1− α)W invertible.)

Applying the identity (I−M)−1 =
∑

t≥0M
t to the above equation allows us to express the PageRank

vector as
pr =

∑
t≥0

α(1− α)tW t 1

n
1. (5)

This shows that the parameter α is controlling how quickly the “random surfer gets bored”. To see
that, note that each of the terms in the above series corresponds to an event that the surfer starts from
a random page (1

n1) and then continues the random walk for t steps (W t). The probability of this event
is α(1− α)t, so the smaller the α the less likely such long runs are.

3 The Laplacian Matrix

In this section, we introduce a fundamental object of spectral graph theory: the Laplacian matrix of
a graph. Similarly to the case of walk matrix, we constrain our discussion here to undirected graphs.
Also, it will be convenient for us to work with weighted versions of graphs.

To this end, let us consider a weighted and undirected graph G = (V,E,w), where w is a |E|-
dimensional vectors assigning non-negative weights to edges. As already briefly mentioned in Lecture 9,
we can generalize the definition of adjacency and degree matrices to weighted graphs as follows

Au,v :=

{
we if e = (u, v) ∈ V
0 otherwise.

(6)

Du,v :=

{
0 if u 6= v

dw(u) if u = v
(7)

where dw(u) is the weighted degree of vertex u given by

dw(u) :=
∑

e=(u,v)∈E

we

Now, the Laplacian matrix of the graph G is defined as

L := D −A. (8)

One can verify that

Lu,v =

∑

e=(u,v′) we if u = v

−we if e = (u, v) ∈ E and u 6= v

0 otherwise.

(9)

4To handle vertices without any outgoing arcs, one usually just adds to the graph arcs connecting this vertex to every
other vertex. In this way, in the “random surfer” model, whenever such vertex is reached, one teleports to a uniformly
random vertex with probability 1 (instead of usual α).

4

It will be sometimes convenient to view the Laplacian L of the graph G as a sum of m = |E|
Laplacians that correspond to each of its edges. Formally, for a given edge e = (v1, v2) ∈ E, let us define
Le to be the Laplacian of a graph on vertex set V that has only one edge e. That is,

Le
u,v =

we if u = v = v1 or u = v = v2

−we if (u, v) = (v1, v2) or (u, v) = (v2, v1)

0 otherwise.

(10)

We now have that
L =

∑
e∈E

Le. (11)

We will be often interested in the quadratic form of Laplacian L given by

xTLx.

Using (11) and (10) one can see that

xTLx =
∑

e=(u,v)∈E

we(xu − xv)2. (12)

It turns out that this quadratic form allows us to understand some important properties of the
spectrum of the Laplacian.

To this end, let λ1 ≤ λ2 ≤ . . . ≤ λn with n = |V |, be all the eigenvalues of the Laplacian (indexed in
non-decreasing order) and let v1, . . . , vn be the corresponding eigenvectors. (As we recall from Lecture
9, since Laplacian is a symmetric matrix, it has n real eigenvalues and the corresponding eigenvectors
can be chosen to be normalized and orthogonal to each other.)

Theorem 3 We have 0 = λ1 ≤ . . . ≤ λn and if the graph G is connected then λ2 > 0.

Proof To see that 0 ≤ λ1, we note that by (12)

(v1)TLv1 =
∑

e=(u,v)∈E

we(v
1
u − v1

v)2 ≥ 0,

as each term in that sum is always non-negative. On the other hand, we have that

(v1)TLv1 = λ1(v1)T v1 = λ1.

So, indeed λ1 ≥ 0.
To see that λ1 = 0, consider an all-ones vector 1, we see that (12) implies

1TL1 =
∑

e=(u,v)∈E

we(1− 1)2 = 0,

so indeed 0 is always one of the eigenvalues of the Laplacian.
Finally, to prove that λ2 > 0 when G is connected, note that by (12) if a vector z is an eigenvector

corresponding to eigenvalue 0 then

0 = zTLz =
∑

e=(u,v)∈E

we(z
2
u − z2

v)2.

However, this expression can be zero only if z is constant everywhere (that’s were we use the connected-
ness of G). This in turn implies that z has to be co-linear with all-ones vector 1 and thus the dimension
of the eigenspace corresponding to eigenvalue 0 has to be one. So, λ2 > 0, as desired.

Note that one of the consequences of the above theorem is that

L < 0.

That is, the Laplacian matrix is always positive semi-definite. (Recall that a symmetric matrix A is
positive semi-definite, denoted as A < 0, if for any vector x, xTAx ≥ 0.)

5

3.1 Normalized Laplacian

Another important matrix that is closely related to the Laplacian is the normalized Laplacian matrix
defined as

L̂ := D−
1
2LD−

1
2 . (13)

By Theorem 3, we can immediately conclude that if λ̂j is the j-th smallest eigenvalue of L̂ and G is
connected then

0 = λ̂1 < λ̂2 ≤ · · · ≤ λ̂n.

It turns out that there is a direct connection between the eigenvalues of L̂ and the eigenvalues of the
walk matrix W .

Claim 4 For any i, if ωi is the i-th largest eigenvalue of the walk matrix W then

λ̂i = 1− ωi. (14)

Proof
Note that by definition of L̂ and definition of the Laplacian L (cf. (8))

L̂ = D−
1
2 (D −A)D−

1
2

= I −D− 1
2AD−

1
2

= I −D− 1
2WD

1
2

In Lecture 9, we showed that the eigenvalues of the matrix S = D−
1
2WD

1
2 are the same as those of W .

This proves the claim.

4 Courant-Fisher Theorem

The goal of spectral graph theory is to connect various properties of a graph to the eigenvalues (spectrum)
of its Laplacian. So, it is important that we are be able to estimate the values of eigenvalues of graphs to
exploit these connections. Unfrotunately, due to the delicate nature of eigenvalues, it is rather unusual
that we are able to exactly determine their value for a given graph Laplacian. Therefore, we tend to
settle on getting just their loose estimates.

Today, we present one technique that can aid us in obtaining such estimates. The key idea here is
realizing that we can view the eigenvalues as a result of certain optimization process. To see this, let us
focus first on the smallest eigenvalue of a given symmetric matrix. One can show the following result.

Observation 5 For an n× n symmetric matrix M , with α1 ≤ . . . ≤ αn being its eigenvalues

α1 = min
x∈Rn

xTMx

xTx
(15)

Proof Consider vi to be the eigenvector of M that corresponds to eigenvalue αi. We know that we
can choose vis to make them orthogonal to each other and normalized. Furthermore, as there is n of
them, it must be the case that they form a basis in Rn.

Therefore, any x ∈ Rn can be expressed as

x =

n∑
i=1

civ
i

6

where ci = (vi)Tx. Furthermore, we must have that xTx = ‖x‖22 = ‖c̄‖22, where c̄ = (c1, ..., cn) is the
expression of x in basis formed by the vectors vi.

Now, we have that the value of our objective function on vector x can be written as

xTMx

xTx
=

n∑
i=1

αic
2
i

n∑
i=1

c2i

As our objective is scaling-invariant, without loss of generality, we can assume that ‖c̄‖22 = 1. Then,
the above expression can be simplified as follows

n∑
i=1

αic
2
i

n∑
i=1

c2i

=

n∑
i=1

αic
2
i

which means that the task of minimizing our objective function boils down to solving the following
minimization problem

min
c:‖c‖22=1

n∑
i=1

αic
2
i .

However, since α1 is the smallest eigenvalue, it is not hard to see that the minimizer for this problem is
a c∗ such that c∗1=1 and c∗i = 0 for all i > 1. The claim follows.

Now, we just generalize this approach to make it capture in similar fashion any eigenvalue, not
only the smallest one. (Although we state this theorem in the context of Laplacians, it holds for any
symmetric matrix.)

Theorem 6 (Courant-Fisher) Let L be a Laplacian matrix with λi being its i-th smallest eigenvalue,
and let Sk denote the set of k-dimensional subspaces of Rn, then

λk = min
S∈Sk

max
y∈S

yTLy

yT y
. (16)

Proof First, we prove that λk ≥ min
S∈Sk

max
y∈S

yTLy
yT y

. In order to do that, choose S̄ = span(v1, . . . , vk),

where vi is the eigenvector corresponding to eigenvalue λi. Clearly, S̄ ∈ Sk.
As λi ≤ λk, for all i ≤ k, by decomposing any y ∈ S̄ into a linear combination of the k eigenvectors

(i.e. by following the approach from the proof of Observation 5), we can see that

max
y∈S̄

yTLy

yT y
= λk,

as desired.
Next, we show that λk ≤ min

S∈Sk
max
y∈S

yTLy
yT y

. To this end, let us define Tk = span(vk, ...vn), i.e., Tk is

the subspace spanned by all but first k− 1 eigenvectors of L. Obviously, the dimension of Tk is equal to
n− k + 1.

Now, let S∗ be the minimizer of min
S∈Sk

max
y∈S

yTLy
yT y

. Since S∗ has dimension k, a simple dimension

argument implies that the intersection of S∗ and Tk is non-empty. Therefore, we need to have

max
y∈S∗

yTLy

yT y
≥ max

y∈S∗∩Tk

yTLy

yT y
,

7

as S∗ ∩ Tk ⊆ S∗.
Let y∗ be the maximizer of yTLy

yT y
among all y ∈ S∗ ∩ Tk. If we represent y∗ in the basis spanned by

the eigenvectors of L, we will have that y∗ = (0, 0..., ck, ...cn), where ci = (vi)T y∗. Therefore

y∗TLy∗

y∗T y∗
=

n∑
i≥k

λic
2
i

n∑
i≥k

c2i

≥
λk

n∑
i≥k

c2i

n∑
i≥k

c2i

= λk

which proves that

λk ≤ max
y∈S∗∩Tk

yTLy

yT y
≤ max

y∈S∗
yTLy

yT y
= min

S∈Sk
max
y∈S

yTLy

yT y

and thus completes the proof of the theorem.

Note that for k = 1 the above theorem reduces to Observation 5. Also, as we will be mostly interested
in λ2, i.e., the second-smallest eigenvalues of Laplacian, we provide below a more explicit version of the
Courant-Fisher theorem for the case of k = 2.

Corollary 7

λ2 = min
x∈Rn:x⊥1

xTLx

xTx

Proof By Theorem 6, we have

λ2 = min
S∈S2

max
y∈S

yTLy

yT y
.

Note that from the proof of that theorem we know that without loss of generality we can assume that
S has to contain the eigenvector v1 of L that corresponds to λ1. So, since S has dimension two, it must
be spanned by the vector v1 and some other vector x that has to be orthogonal to v1. Furthermore, we
know that v1 is just a scaled version of all-ones vector 1. Thus, x ⊥ 1.

So, our optimization problem simplifies to

λ2 = min
x∈Rn:x⊥1

max
y∈span(v1,x)

yTLy

yT y
.

However, by reasoning similar to the one from the proof of Observation 5, we know that y has to be
orthogonal to v1 (as v1 corresponds to the smallest eigenvalue of L) and thus (due to scale-invariance of
our objective) we can assume it to be equal to x. The corollary follows.

A crucial aspect of this corollary (as well as, of the Courant-Fisher theorem) is that to prove an
upper bound on the value of λ2, we do not need to really solve the corresponding optimization problem.
As this is a minimization problem, just exhibiting any vector x that is orthogonal to all-ones vector,
immediately proves that λ2 ≤ xTLx

xT x
. As we will see later, exhibiting such vectors x that provide very

good (but not optimal!) upper bounds on λ2, will be much easier than figuring out the exact value of
this eigenvalue.

References

[1] Brian White, How Google Ranks Web Pages, http://math.stanford.edu/~brumfiel/math_51-06/PageRank.pdf.

8

