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Lecture 11
Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler

1 Introduction

In Lecture 10, we introduced a fundamental object of spectral graph theory: the graph Laplacian,
and established some of its basic properties. We then focused on the task of estimating the value of
eigenvalues of Laplacians. In particular, we proved the Courant-Fisher theorem that is instrumental in
obtaining upper-bounding estimates on eigenvalues.

Today, we continue by showing a technique – so-called graph inequalities – that enables us to establish
eigenvalue lower-bounding estimates. Then, we use these upper- and lower-bounding tools to obtain
estimates on second-smallest eigenvalues of some important graphs.

Later, we discuss how the second-smallest eigenvalue of a (normalized) Laplacian of a graph relates
to the mixing time of a random walk in that graph, as well as, its connectivity structure.

2 Brief Recap of Lecture 10

In Lecture 10, we defined the Laplacian matrix L of a weighted and undirected graph G = (V,E,w) to
be

L := D −A,

where A is the adjacency matrix of G given by

Au,v =

{
1 if (u, v) ∈ E
0 otherwise.

and D is its weighted degree matrix defined as

Dv,u =

{
dw(u) if u = v

0 otherwise,

with dw(u) :=
∑
e=(u,v)∈E we.

Alternatively, one can view the Laplacian L of a graph G as a simple sum of the Laplacians corre-
sponding to each of its edges. Formally,

L =
∑
e∈E

Le, (1)

where Le is a Laplacian of graph on vertex set V that has only one edge e and the weight of this edge
is we.

We also introduced a normalized Laplacian matrix L̂ of G defined as

L̂ = D−
1
2LD−

1
2 . (2)

Now, if λ1 ≤ . . . ≤ λn are the eigenvalues of L (in non-decreasing order) and λ̂1 ≤ . . . ≤ λ̂n are the
eigenvalue of L̂, we proved the following theorem.

Theorem 1 We have 0 = λ1 ≤ . . . ≤ λn, 0 = λ̂1 ≤ . . . ≤ λ̂n, and if the graph G is connected then
λ2 > 0 and λ̂2 > 0.

Finally, we established the Courant-Fisher theorem.
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Theorem 2 (Courant-Fisher) Let Sk denote the set of k-dimensional subspaces of Rn, then

λk = min
S∈Sk

max
y∈S

yTLy

yT y
. (3)

As well as, its corollary that is specialized for the case of estimating λ2.

Corollary 3

λ2 = min
x∈Rn:x⊥1

xTLx

xTx
.

As we mentioned last time, the importance of this theorem (and of the corollary) is that it allows us to
obtain upperbounds on the eigenvalues without the need of figuring out their exact values (which might
be quite challenging). In particular, in case of λ2, Corollary 3 tells us that exhibiting any vector x –
sometimes called a test vector – that is orthogonal to all-ones vector, immediately shows that λ2 ≤ xTLx

xT x
.

3 Graphic Inequalities

Last time, we introduced the notion of positive semi-definiteness. Recall that a symmetric matrix M is
positive semi-definite – denoted M � 0 – iff, for any vector x, xTMx ≥ 0.

Now, we would like to extend the positive semi-definite relation � to make it induce a partial
ordering on symmetric matrices. Namely, for two symmetric matrices M and M ′, we say that M �M ′
iff M −M ′ � 0, i.e., the matrix M −M ′ is positive semi-definite.

We intend to use this ordering mainly in the context of graph Laplacians. Therefore we slightly
abuse the notation and for two graph G and H, we write G � H iff LG � LH , where LG and LH are
Laplacians of the respective graphs. We will call such relation between two graphs graphic inequality.

Note that the fact that λ1 ≥ 0 (cf. Theorem 1) implies that LG � 0 for any graph G. This allows us
to show a simple relation between a graph and any of its subgraphs.

Lemma 4 For any graph G = (V,E,w) and any of its subgraphs G′ = (V,E′, w) with E′ ⊆ E, we have

G � G′.

Proof Using (1), we have
LG − LG

′
=

∑
e∈E\E′

weL
e = LG\G

′
,

where G\G′ is the graph obtained from G by removing all edges of G′. Since every Laplacian is positive
semi-definite, the lemma follows.

Now, our main motivation for studying the graphic inequalities is captured by the following lemma.

Lemma 5 Let G and H be two graphs such that G � c ·H, for some c > 0. Then, for any k,

λk(G) ≥ c · λk(H),

where λk(G) and λk(H) are k-th smallest eigenvalues of the Laplacians LG and LH of the respective
graphs.

Proof Using the Courant-Fischer theorem (cf. Theorem 2) and the above definitions we have

λk(G) = min
S∈Sk

max
y∈S

yTLGy

yT y
≥ min
S∈Sk

max
y∈S

c · yTLHy
yT y

= c · λk(H).
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In the light of the above lemma, we can view graphic inequalities as a technique for proving eigenvalue
lowerbounds.1 Namely, if for a given graph G we are able to find another graph H such that G � c ·H,
for some c > 0, and we know accurate lowerbounds on some of the eigenvalues of H, then we immediately
get lowerbounds on the corresponding eigenvalues of G.

Of course, the crux here is to be able to come up with appropriate lower-bounding graph H that
should be – on one hand – sufficiently simple so we can understand its eigenvalues, but – on the other
hand – flexible enough to allow us to relate it to a diverse set of graphs. Somewhat surprisingly, just
taking H to be a complete graph and employing a simple graphic inequality that we introduce below,
turns out to be a quite powerful tool for eigenvalue estimation.

Lemma 6 Let Pn be a graph corresponding to a length-n path with u and v being its endpoints, then

(n− 1)Pn � G(u,v),

where G(u,v) is a graph on the same vertex set as Pn, but containing only edge (u, v) (that joins the two
endpoints of Pn).

Proof Following the definition of graphic inequalities, we have to show that (n− 1)Pn −G(u,v) � 0.
To this end, let us fix an arbitrary x ∈ Rn. We will show that (n− 1)xTPnx− xTG(u,v)x ≥ 0.

Let us use a naming convention in which the vertex set of both graphs is {1, . . . , n} and the endpoints
u and v correspond to 1 and n respectively. In this case, we need to show that

(n− 1)

n−1∑
i=1

[
(xi+1 − xi)2

]
− (xn − x1)2 ≥ 0.

Substituting δi := xi+1 − xi allows us to rewrite this inequality as

(n− 1)

n−1∑
i=1

δ2i ≥

(
n−1∑
i=1

δi

)2

.

But it is easy to see that by the quadratic-arithmetic-mean inequality (which is a special case of Cauchy-
Schwarz inequality) we get √√√√ 1

(n− 1)

n−1∑
i=1

δ2i ≥
1

n− 1

∣∣∣∣∣
n−1∑
i=1

δi

∣∣∣∣∣ ,
which is equivalent to the condition we wanted to establish.

Side Remark: As pointed out in the class by Javad Ebrahimi, there is a simple argument that shows
that the converse of Lemma 5 does not hold, i.e., that λk(G) ≥ c · λk(H), for all k, does not necessarily
imply that G � H. (In other words, the relation G � H is stronger than just the corresponding
inequalities for eigenvalues.)

To see this, note that if e = (u′, v′) is one of the edges of the path graph Pn, then the graph Ge is a
subgraph of Pn and thus, by Lemma 4, Pn � Ge. This, by Lemma 5, implies that λk(Pn) ≥ λk(Ge), for
all k.

Now, if we consider the graph G(u,v), for u and v being the endpoints of Pn, then we also have that
λk(Pn) ≥ λk(G(u,v)), for all k, as the graphs G(u,v) and Ge are isomorphic and thus their eigenvalues
(but not eigenvectors!) have to be the same.

However, looking at the proof of Lemma 6, one can see that the inequality from its statement is tight
and thus, in particular, Pn 6� G(u,v).

1Of course, in principle, one can also use these inequalities for proving eigenvalue upperbounds, but we will be interested
only in the lower-bounding aspect.
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4 Estimation of λ2 of Certain Graphs

We will now show how one can use Courant-Fisher theorem (or, more precisely, Corollary 3) and graphic
inequalities to obtain quite precise estimates on the second-smallest eigenvalues of some important
graphs.

As we mentioned, when applying graphic inequalities, we will be comparing our graphs to the com-
plete graph Kn on n vertices. One can easily check that

λ1(Kn) = 0 λk(Kn) = n for k ≥ 2.

4.1 Path Graph

Let Pn be a graph describing a path (1, 2, . . . , n) on n vertices. We first provide an upperbound on
λ2(Pn). To this end, let us consider a test vector x defined as

xi = n+ 1− 2i,

for each 1 ≤ i ≤ n. We can verify that

xT · 1 =

n∑
i=1

n+ 1− 2i = n(n+ 1)− 2

n∑
i=1

i = 0,

hence x ⊥ 1. So, by Corollary 3, we can conclude that

λ2(Pn) ≤ xTLPnx

xTx
=

∑n−1
i=1 (xi+1 − xi)2

xTx
=

4(n− 1)∑n
i=1(n+ 1− 2i)2

= O(
1

n2
),

as
∑n
i=1(n+ 1− 2i)2 = Θ(n3).

To establish a lowerbound, we will show that cPn � Kn for some (still to be determined) c > 0.
Clearly, the complete graph is a union of all the possible edges, i.e.,

LKn =
∑
i,j,i<j

L(i,j).

Looking at the proof of Lemma 6, one can easily see that, for any i and j, i < j, we have

(j − i) · Pn � G(i,j).

Summing over all pairs (i, j) we obtain∑
i,j,i<j

(j − i) · Pn �
∑
i,j,i<j

G(i,j) = Kn.

This means that we can set c =
∑
i,j,i<j(i− j) = Θ(n3) and obtain that c · Pn � Kn. So, using Lemma

5, we get that cλ2(Pn) ≥ λ2(Kn) = n, which implies that λ2(Pn) = Ω
(

1
n2

)
.

Putting the upperbound and lowerbound together, we obtain that λ2(Pn) = Θ
(

1
n2

)
, which is an

estimate that is tight up to a constant.

4.2 Binary Tree

We consider now a binary tree Tn as depicted on Figure 1. As before, we exhibit first a test vector x
that will provide an upperbound on the value of λ2(Tn). Let x be defined as

xi =


0 if i is the root node,
1 if i is left of the root node,
−1 if i is right of the root node.
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Figure 1: An example of a binary tree Tn with the choice of the value of x next to the nodes.

Pi,j

G(i,j)

i j

Figure 2: The path graph on the binary graph used to find the upper bound on λ2(Tn).

It is easy to see that x ⊥ 1. Therefore, Corollary 3 implies

λ2(Tn) ≤ xTLTnx

xTx
=

2

n− 1
= O

(
1

n

)
.

Now, we proceed to establishing a lowerbound on λ2(Tn). Again, we use the complete graph Kn

here. Note that Kn � Tn since Tn is a subgraph of Kn (cf. Lemma 4). But, similarly as before, we
would like to find some c > 0 such that c · Tn � Kn.

To this end, we first note that for any i and j, i < j,

2 log2 n Tn � 2 log2 n Pi,j � G(i,j),

where Pi,j is the subgraph of Tn corresponding to the (unique) path in Tn that connects i and j. (Note
that this path has length of at most 2 log2 n – cf. Figure 2.)

Summing over all pairs (i, j) we get∑
i,j,i<j

2 log2 n Tn �
∑
i,j,i<j

G(i,j) = Kn.

Therefore, Lemma 5 and the fact that λ2(Kn) = n implies that

λ2(Tn) = Ω

(
1

n log2 n

)
.

As we see, when we put together our lower- and upper-bound, there is a gap of Θ(log n) between
them. On the problem set, you will be asked to tighten this gap and show that λ2(Tn) = Θ( 1

n ).
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All −1

n/2 Kn/2

All +1

K

Figure 3: The dumbell graph Dn is composed of two complete graphs Kn/2 connected by a single
bridge edge. We choose a test vector x such that all the nodes in the left (resp. right) copy of Kn/2 are
assigned value of +1 (resp. −1).

4.3 Dumbell Graph

Our last example is the Dumbell graph Dn which is a graph composed of two complete graphs Kn/2 on
n/2 vertices that are connected by a single bridge edge – cf. Figure 3.

We can easily get an upperbound on the value of λ2(Dn) by employing Corollary 3 with a test vector
x such that all nodes in one copy of Kn/2 are assigned a value of +1, and all the nodes in the other copy
are assigned a value of −1. Clearly, x ⊥ 1 and thus we have that

λ2(Dn) ≤ xTLDnx

xTx
=

4

n
, (4)

as the only contribution in the enumerator is coming from the bridge edge.
Now, to derive a lowerbound on λ2(Dn), we again compare our graph to the complete graph Kn.

First, we observe that for any two given vertices i and j, there is a path of length at most 3 connecting
them in Dn. Hence, following our usual approach, we can write for any i, j that

3 Dn � G(i,j).

Summing for all i, j, with i > j we obtain

3

2
n(n− 1) Dn �

∑
i>j

G(i,j) = Kn,

and thus by Lemma 5 we get that

λ2(Dn) ≥ 2

3(n− 1)
,

which – together with our upperbound (4) – shows that λ2(Dn) = Θ
(
1
n

)
.

5 Eigenvalues and Obstructions to Mixing of Random Walks

Once we developed tools for estimating the values of Laplacian eigenvalues and established good es-
timated for λ2 for a variety of basic graphs, it is natural to ask why knowing λ2 of a graph is even
useful.

The reason for our interest in this value is that it is related to a variety of important graph properties
such as the graph connectivity structure, its diameter, and behavior of random walks in it. We will be
unveiling some of these connections in the coming lectures.

In particular, today we describe one of the most fundamental among them: the relationship between
the Laplacian eigenvalues and mixing properties of random walks. As we will see, this relationship
extends even further and, in particular, there is a link – captured by so-called Cheeger’s Inequality –
between the eigenvectors and the connectivity/cut structure of the graph.
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5.1 L vs. L̂

Before we proceed further, there is a confession to be made. So far, in our treatment of Laplacians,
we were mainly focused on the Laplacian matrix L of a graph and its eigenvalues λ1, . . . , λn, while
treating the normalized Laplacian L̂ (cf. (2)) and its eigenvalues λ̂1, . . . , λ̂n as objects of only secondary
importance.

However, the truth is that from the point of view of applications of spectral graph theory, it is the
normalized Laplacian and its eigenvalues – especially, λ̂2 – that are the more natural objects that play
the more prominent role.

The reason why we kept this misleading focus on the Laplacian L was twofold. Firstly, the matrix
L and its eigenvalues are slightly easier to work with and thus are better when introducing all the main
concepts. Secondly, and more importantly, actually all the machinery we developed for the Laplacian L
transfers over – essentially unchanged – to the normalized Laplacian case. In particular, one can verify
that

1

dmin
L � L̂ � 1

dmax
L,

where dmin := minu∈V d(u) and dmax := maxu∈V d(u). So, by applying reasoning that is completely
analogous to the one used in the proof of Courant-Fisher Theorem and Lemma 5, one can conclude that

1

dmin
λk ≥ λ̂k ≥

1

dmax
λk,

for any 1 ≤ k ≤ n. That is, in case of a graph G being almost-regular – i.e., having degree ratio
d̄(G) := dmax

dmin
small, say O(1) – the value of λk

dmax
is a O(1)-approximation to the value of λ̂k. As for all

the examples of graphs we considered above, d̄(G) was indeed O(1), we can conclude that

λ̂2(Kn) = 1

λ̂2(Pn) = Θ

(
1

n2

)
λ̂2(Tn) = Θ

(
1

n

)
λ̂2(Dn) = Θ

(
1

n2

)
.

From now on, we will focus our attention on the normalized Laplacian L̂ and its eigenvalues λ̂1, . . . , λ̂n.

5.2 Mixing Time and λ̂2

We proceed to exploring the connections between the mixing properties of random walks in a graph and
the second-smallest eigenvalue of its normalized Laplacian. To avoid the need for dealing with possibility
of the graph being bipartite (or close to it), we will focus our treatment on the lazy variant of the random
walks – see Lecture 9 for its definition.

To this end, recall from Lecture 9 that the vector p̂t denotes the vertex probability distribution
induced by t steps of lazy random walk that started from some starting distribution p̂0. That is, p̂tv, for
a given vertex v, is the probability that after taking t steps of lazy random walk, we end up at vertex v.

In Lecture 9, we showed that, as long as, the underlying graph is connected, the distribution p̂t

always converges to a stationary distribution π given by

πu :=
d(u)∑
v d(v)

,

for each vertex u.
The rate of this convergence can be estimated using the following lemma (that we stated in Lecture

9 without proof)
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Lemma 7 For any graph G = (V,E), any starting distribution p̂0, and any t ≥ 0,

‖p̂t − π‖ ≤
√
d̄(G)ω̂t2,

where d̄(G) := dmax

dmin
is the degree ratio of G and ω̂2 is the second-largest eigenvalue of lazy walk matrix

Ŵ .

Note that the bound in the above lemma is mainly dependent on how much smaller than one is the
value of ω̂2. To make this precise, in Lecture 9 we defined the spectral gap λ̂(G) of a graph G to be

λ̂(G) := 1− ω2 = 2(1− ω̂2),

where ω2 is the second-largest eigenvalue of the walk matrix W .
Now, if for given ε > 0, tε denotes the number of steps needed for the lazy random walk distribution

p̂t to be within ε of the stationary distribution π, then by Lemma 7 we have

tε = t1/2 log2

1

ε
= O

(
1

λ̂(G)
log

d̄(G)

ε

)
, (5)

where t1/2 is called the mixing time of G and can be viewed as a parameter that describes the convergence
rate of random walks in G.

To see why (5) holds, note that√
d̄(G)ω̂t2 =

√
d̄(G)(1− (1− ω̂2))t ≤

√
d̄(G)e(1−ω̂2)t =

√
d̄(G)eλ̂(G)t/2,

as (1− x)
1
x ≤ e−1.

Now, to see how the mixing time of G is connected to the second-smallest eigenvalue of its normalized
Laplacian, we note that in Lecture 10 (cf. Claim 4 there) we showed that

λ̂2 = 1− ω2,

which implies that the spectral gap λ̂(G) of G is equal to λ̂2. (In fact, one usually defines it in this way.)
In the light of the above, we see that in a graph that has large spectral gap λ̂(G) = λ̂2 (for example,

the complete graph), we can expect the random walk to convergence fast – roughly, with mixing time
being inverse-proportional to λ̂(G). Furthermore, in some sense, this connection is tight. Namely,
from our proof of convergence in Lecture 9, one can see that if a graph has a small spectral gap and
the starting distribution p̂0 of the lazy random walk has a large intersection with the eigenspace of
Ŵ that corresponds to ω̂2, then the rate of convergence will necessarily be slow (and proportional to

1
(1−ω̂2)

= 2
λ̂(G)

).

5.3 Spectral Gap, Cuts, and Obstructions to Rapid Mixing

Although the connection between the spectral gap and mixing time we developed above is already pretty
satisfying, we still would like to pursue it further. In particular, we would like to understand how graphs
with large/small mixing time (and thus respectively small/large spectral gap) look like from the point
of view of their connectivity/cut structure.

To make this precise, we need first to introduce some graph-theoretic definitions. To this end, for
a given weighted and undirected graph G = (V,E,w) and any non-empty and proper subset S of the
vertex set V – we will call such S a cut of G – define

∂S := {(i, j) ∈ E | i ∈ S, j 6∈ S} ,
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i.e., ∂S is the set of all the edges of G that have exactly one endpoint in the cut S.
Next, let us define the conductance Φ(S) of the cut S as

Φ(S) :=
w(∂S)d(V )

d(S)d(V \ S)
,

where, for any F ⊆ E, w(F ) :=
∑
e∈F we, and, for any U ⊆ V , d(U) is the volume of U equal to∑

v∈U d(v).
Intuitively, the conductance Φ(S) of the cut S measures how much connectivity there is between S

and V \ S. That is, Φ(S) is smallest when there is only few (low-weight) edges between S and V \ S,
and volumes of these two sets are roughly balanced (so they both are large).2

Finally, we define the conductance ΦG of the graph G as

ΦG := min
S

Φ(S),

i.e., ΦG is equal to the conductance of the minimal-conductance cut of G. We can view ΦG, as a measure
of the connectivity of G, the smaller it is the larger connectivity bottleneck G has.

Now, we will be interested in tying the conductance of a graph to its mixing time (and thus its
spectral gap). To get a hint of what this connection could be, note that the conductance Φ(S) of a cut
S can be seen as a measure of how much probability mass can escape from S in one step of a (lazy)
random walk. To make this more precise, consider a starting distribution p̂0 of the random walk to be

p̂0u = πS(u) =

{
d(u)
d(S) if u ∈ S,

0 o.w.
,

i.e., p̂0 = πS is given by conditioning the stationary distribution π on being in the cut S. It is not hard
to see that in such random walk the total amount of probability mass that can cross in one step from
the cut S to S \ V is at most Φ(S).

Given the above intuition, one would expect that if the conductance ΦG of G is small then the mixing
time will be large (and thus the spectral gap will be small) as – at least for some starting distribution –
it will take the random walk a long time to move probability mass through the bottlenecking cuts.

As it turns out, this intuition can be confirmed – one can show that λ̂(G) is always upperbounded
by ΦG. What is, however, even more striking is that this relationship between λ̂(G) and ΦG goes also
the other way, as stated in the following theorem.

Theorem 8 (Cheeger’s inequality) For any graph G,

Φ2
G

4
≤ λ̂(G) ≤ ΦG.

We will discuss this very important theorem in more detail (as well as, prove one of these inequalities)
in the next lecture, but for now we just want to note that both of these inequalities are tight (up to a
constant). To see that the left inequality is tight, consider G to be a path graph Pn. As we already
computed, λ̂(Pn) = Θ(1/n2), while one can easily see that ΦPn

= Θ(1/n). To see that the right inequality
is also tight, consider G to be a binary tree graph Tn. We have λ̂(Tn) = Θ(1/n) and ΦTn

= Θ(1/n).

2The conductance Φ(S) is sometimes also defined as |∂S|
min{d(S),d(V \S)} . Note that both these definitions are equivalent

up to a multiplicative factor of two.
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