
CS-621 Theory Gems November 15, 2012

Lecture 17
Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis

1 Introduction

We continue our treatment of streaming algorithms. Last time, we developed streaming algorithm for
distinct elements problem. Today, we discuss in more detail one of the pieces that we needed in that
construction – k-wise independent hash functions. Then, we introduce the Lp-norm estimation problem
and design an algorithm for the L2-norm estimation.

2 k-wise Independent Hash Functions

As we mentioned in the last lecture, one of the core components of our algorithm for distinct elements
problem is a space-efficient construction of 2-wise independent functions. Formally, a k-wise independent
hash function f : [m]→ [T] is a randomized function that provides the guarantee that, for any k distinct
elements j1, . . . , jk ∈ [m] and any k possible values t1, . . . , tk ∈ [T], the probability (over the randomness
in the construction of the function f) that f(ji) = ti, for all i, is exactly 1

Tk .
It is easy to see that every fully random function is k-wise independent hash function, for any k.

But it turns out that there are constructions of k-wise independent hash functions that can be stored
using relatively small space (and thus are not fully random). So, if our algorithm is ok with using a hash
function that provides only a k-wise independence guarantee for some (small) k – as was, for example,
the case in our algorithm for distinct elements problem – we can exploit it to get an improved space
complexity.

We proceed now to presenting a particularly simple construction of 2-wise independent hash function.
To this end, let us assume that T is prime and consider a function h : [m]→ [T] given by

h(j) = a · j + b mod T (1)

where a and b are chosen independently and uniformly from [T].
It is not hard to see that this hash function is indeed a 2-wise independent function.

Lemma 1 If T is prime, the hash function h (as defined by Equation (1)) is 2-wise independent.

Proof Consider some j, j′ ∈ [m] with j 6= j′. We would like to compute the probability (over the
choice of a and b in definition of h) that h(j) = s and h(j′) = s′ for some fixed s, s′ ∈ [T]. By definition
of h, this corresponds to the event that

a · j + b = s mod T and a · j′ + b = s′ mod T.

We can view the above equations as a linear system over ZT with a and b being the variables, j, j′ being
the coefficients, and s and s′ giving the constraints

Note that if T is prime then ZT is a field. Furthermore, the determinant of this linear system is
non-zero (as j 6= j′). So, this implies that there is a unique solution a∗ and b∗ that makes both of these
equations satisfied. As a result, by the fact that a and b are chosen independently and uniformly from
[T],

Pr [h(j) = s, h(j′) = s′] = Pr [a = a∗, b = b∗] =

(
1

T 2

)
,

as desired.

1

Clearly, such a function requires only O(log T) space to store as we just need to memorize a and b.1

Also, one can easily extend this construction to obtain a k-wise independent hash function for arbitrary
k, with O(k log T) space complexity, by just making h to be given by a polynomial of degree k with
coefficient chosen uniformly and independently from [T].

Finally, to deal with the case when T is not prime, one can just choose some prime number T ′ that
is larger than T and then define h to be

h(j) = (a · j + b mod T ′) mod T.

If T ′ is large enough, one can see that the resulting hash function is close to being 2-wise independent.

3 Lp-norm Estimation

One of the most fundamental problem (or, rather, a family of problems) in streaming algorithms is the
estimation of some Lp-norm of the element frequencies. Formally, by an (ε, δ)-approximation to the
Lp-norm estimation problem is a streaming algorithm that, with probability at least 1 − δ, returns an
estimate that is within (1 + ε) multiplicative error of the Lp-norm2 ‖x‖p of the vector x, where

‖x‖p :=

∑
j∈[m]

|xj |p
1/p

and we recall that xj is the number of occurrences of the element j in the stream y = (y1, . . . , yn).
One reason why Lp-norm estimation is important stems from the fact that – depending on the value

of p – it captures many natural problems. For example:

• ‖x‖0 measures the number of non-zero coordinates of x. Hence, L0-norm estimation is the distinct
elements problem we just studied.

• ‖x‖1 is simply the length of the stream. It can trivially be computed exactly using O(log n) space.3

• ‖x‖∞ measures the frequency of the most frequent element. So, L∞-norm estimation captures
computing of the most frequently occurring element.

Now, given the fundamental nature of this problem, there was a lot of research on this front. It
resulted in quite good understanding of its complexity. In particular, it turns out that for p ∈ [0, 2] the

problem can be solved in O
(

(1
ε)O(1) logO(1) n

)
space. However, for p ∈ (2,∞] it is now known that the

space complexity of Lp-norm estimation is Θ
(
m2− 2

p logO(1) n
)

. As a result, somewhat disappointingly,

the L∞-norm estimation problem (even when we allow approximation) requires Ω(m) space.

4 L2-norm Estimation

In the coming lectures, we will see a variety of results on Lp-norm estimation. Here, we start with the
case of p = 2.4 To simplify the presentation, we will focus here on estimating the `22-norm instead of

1Note that in our algorithm for distinct elements problem from last lecture, we had T ≤ n and thus this function can
indeed be stored in O(logn) space as claimed there.
2Given that the vector x is always finite-dimensional, the mathematically precise term should be the `p-norm instead

of Lp-norm. But, for historic reasons, the latter name is used.
3Note that this true only for the basic streaming model, in which we only allow insertions of elements. L1-norm

estimation in the turnstile model, i.e., when also element deletions are allowed, is not that trivial.
4Although L2-norm estimation might not seem to be a very natural problem, it actually has some compelling applications

(e.g., in query answering in relational databases) and, even more importantly, it is often used as a building block in solutions
for other streaming problems.

2

the `2-norm. It is easy to see that from the point of view of (1 + ε)-approximation, estimating `2- and
`22-norm is equivalent - after all, one quantity is just a square of the other.

Similarly to the case of distinct elements problem. We will start by presenting a simple algorithm –
let’s call it, again, Algorithm A – that encapsulates the core of our approach, but has large probability
of failure. Then, we develop a way of using this simple algorithm as a black-box to obtain the desired
correctness guarantee.
Our Algorithm A works as follows:

• For every element j ∈ [m], choose rj to be either 1 or −1 independently and equiprobably.

• Make a pass over the stream and compute the following estimator

Z =
∑
j∈[m]

rjxj .

• At the end, output Z2 as the answer.

It is not hard to see that the estimator Z can be easily maintained as we pass over the stream
(provided we know all rjs).

Now, to analyze the quality of the returned estimate, let us take a look at its expected value E[Z2].
We have that

E[Z2] = E[(
∑
j∈[m]

rjxj)
2] =

∑
j1,j2∈[m]

E[rj1xj1rj2xj2].

Observe that

E[rj1rj2] =

{
1 j1 = j2

0 otherwise,

as when j1 6= j2, rj1 and rj2 are independent and thus E[rj1rj2] = E[rj1]E[rj2] = 0.
This gives us that

E[Z2] =
∑
j∈[m]

x2j = ‖x‖22,

so our estimator has the correct value in expectation.
Of course, the fact that expectation is correct does not yet yield anything about the correctness of

the algorithm, as this does not provide any bound on the error probability. So, to get a handle on the
concentration of the estimator Z2 around its expected value, we will analyze its variance.

Recall that the variance Var[X] of a random variable X is defined as Var[X] = E[X2]− (E[X])2. We
have that

Var[Z2] ≤ E[Z4] =
∑

j1,j2,j3,j4∈[m]

E[rj1rj2rj3rj4]xj1xj2xj3xj4 .

Observe that, as all rjls are independent and their expectations are 0, we have

E[rj1rj2rj3rj4] =

{
0, if some j appears exactly one or three times
1, otherwise.

This, in turn, means that
Var[Z2] ≤ 6

∑
j1,j2∈[m]

x2j1x
2
j2 = 6‖x‖42.

Now, a natural way of bounding the concentration of a variable based on its variance is using Cheby-
shev’s inequality.

Theorem 2 (Chebyshev’s inequality) For any γ > 0, Pr [|X − E[X]| ≥ γ] ≤ Var[X]
γ2

3

As we are interested in obtaining an (1 + ε)-approximation, we need to set γ = ε‖x‖22. This gives us
that the probability of failure of Algorithm A is at most

Pr
[
|Z2 − E[Z2]| ≥ ε‖x‖22

]
≤ Var[Z2]

ε2‖x‖42
≤ 6‖x‖42
ε2‖x‖42

=
6

ε2
.

Unfortunately, as 6
ε2 can be bigger than 1 (let alone δ) even for moderate values of ε, this bound is

not strong enough to provide any meaningful guarantee. Therefore, similarly to the case of our algorithm
for distinct elements problem, we need to develop a way of boosting the probability of success. To this
end, consider the following algorithm (let’s call it Algorithm B):

• Run k = 6
ε2δ (independent) instances of the Algorithm A in parallel.

• At the end, let Z2
1 , . . . , Z

2
k be the estimators returned by these k instances of Algorithm A, output

the average Z∗ = 1
k

∑
j Z

2
j of these estimators as the answer.

Clearly, the expectation of Z∗ is exactly the same as the expectation of Z2, i.e.,

E[Z∗] =
1

k

∑
j

E[Z2
j] = ‖x‖22 = E[Z2].

Now, the crucial difference is that the variance of Z∗ is smaller than the one of Z2. Namely, as all Z2
j s

are independent, an elementary calculation shows that

Var[Z∗] =
Var[Z2]

k
≤ 6‖x‖42

k
.

So, applying the Chebyshev’s inequality to Z∗ (instead of Z2) with γ = ε‖x‖22, we get

Pr
[
|Z∗ − E[Z∗]| ≥ ε‖x‖22

]
≤ Var[Z∗]

ε2‖x‖42
≤ 6‖x‖42
kε2‖x‖42

=
6

kε2
= δ,

which gives us the desired failure probability bound.
Now, we proceed to analyzing the space complexity of our algorithm. Notice that if we ignore the

space needed to store our selection of all the rj , Algorithm A needs to maintain only one number and
thus its space complexity is O(log n). Therefore, the space required by Algorithm B is just

O(k log n) = O

(
log n

ε2δ

)
.

So, it remains to discuss the space required to store the rjs in Algorithm A. To this end, we will again
model our choice of rjs as choosing a hash function h : [m]→ {−1, 1} and then setting rj = h(j). Now,
the crucial thing to notice is that our analysis of correctness of Algorithm A depends only on 4-order
moments E[rj1rj2rj3rj4] of rjs behaving properly for all (rj1rj2rj3rj4) ∈ [m]4. Therefore, it suffices that
our hash function h is just 4-wise independent to make the whole analysis go through.

As we discussed earlier, such a 4-wise independent hash function can be stored in only O(1) space (as
T = 2 here), thus the overall space complexity of Algorithm A is still O(log n). As a result, the Algorithm
B indeed provides an (ε, δ)-approximation to the L2-norm estimation problem in space O(logn

ε2δ). (Note
that, in contrast to our algorithm for distinct elements problem, the space complexity dependence on 1

δ
is only polynomial and not logarithmic.)

4

