
CS-621 Theory Gems November 20, 2012

Lecture 18
Lecturer: Aleksander Mądry Scribes: Abdallah Elguindy and Milan Korda

1 Introduction

So far, we have seen streaming algorithms for two important variants of Lp-norm estimation problem:
L0-norm estimation (the distinct elements problem) and L2-norm estimation. We also noted that the L1-
norm estimation problem (at least, when we do not allow element deletions) corresponds to just computing
the length of the stream and thus can be trivially solved in O(log n) space. Therefore, the next natural
step would be to try to approach the task of L∞-norm estimation, i.e., estimating the frequency of the
most frequently occurring element.

Unfortunately, as mentioned last time, one can show (and we will see it soon) that L∞-norm estimation
requires Ω(m) space, which is completely prohibitive from the-point of view of streaming algorithms. This
is rather disappointing, as ability to efficiently compute this very fundamental statistic of the data streams
would be very valuable.

Fortunately, despite this negative result, there is still hope for getting something useful here. Namely,
as we will see later, the L∞-norm estimation problem instances that are used in the Ω(m) lowerbound are
all corresponding to a situation in which every element (including the most frequent one) has only very
few (in fact, at most two) occurrences in the stream. However, this kind of instances are not really that
interesting from the-point of view of the intended applications of an L∞-norm estimation algorithm. The
scenarios that we would really like to address are the ones in which the most frequent element appears
with substantial frequency (think, e.g., about a router trying to detect a Denial-of-Service attack).

As it turns out, once we reformulate our problem to allow it to not provide any meaningful answer
when there is no very frequently appearing elements, the Ω(m) lowerbound does not hold anymore and
one can obtain very satisfactory algorithms for such scenarios.

2 `q-point Query Problem

The precise problem that we want to purse today is the `q-point query problem. In this problem, given a
stream y = (y1, . . . , yn), the desired accuracy parameter ε > 0 and failure probability upperbound δ > 0,
we want to devise a streaming algorithm that produces frequency estimates x̂j , for each element j ∈ [m],
such that, with probability at least 1− δ, we have

x̂j = xj ± ε‖x‖q,

for all j. Here, xj is the true frequency of the element j, i.e., the number of occurrences of this element
in the stream y, and ‖x‖q is the `q-norm of the true frequency vector x.

Note that due to the additive nature of the allowed error, the frequency estimate x̂j is only meaningful
whenever j is a relatively frequently occurring element, i.e., whenever xj > ε‖x‖q. So, even though in
principle one can use these estimates to perform L∞-norm estimation, this estimation will be most likely
incorrect when elements appear only few times and thus the Ω(m) lowerbound that we discussed above
does not apply here anymore.

Also, it is worth observing that, as we always have that ‖x‖p ≥ ‖x‖p′ whenever 1 ≤ p ≤ p′, the larger
q the better the quality of the corresponding estimates x̂j is.

3 `1-point Query Problem

It is natural to start our investigation of streaming algorithm for the `q-point query problem by considering
the case of q = 1.

1

3.1 Count Algorithm

First, let us consider the following simple (and deterministic!) algorithm that is parametrized by a
parameter r.

Algorithm Count:

1. Maintain a counter c(j) for each element j. Initially, all c(j)s are equal to zero and we will make
sure that at any-point of time at most r of them is non-zero.

2. In each step t, examine the t-th element yt of the stream.

• If c(yt) > 0 or the number of non-zero counters is less than r, increment c(yt) by one;

• Otherwise, decrement all (r) non-zero counters by one.

3. At the end, return an estimate x̂j = c(j) for each element j ∈ [m].

Clearly, as it is always the case that at most r counters is non-zero, this algorithm can be implemented
using only O(r log n) space.

It is easy to see that at the end we always have that

xj ≥ x̂j ,

for each j ∈ [m]. So, our estimates are always a lowerbound on the true frequencies.
We also claim that we always have that

x̂j ≥ xj −
n

r
.

To see why this is the case, let xtj (resp. c(j)t) be the number of hitherto occurrences of element j
(resp. the value of the counter c(j)) at the end of t-th step. Clearly, we have that x0j − c(j)0 is zero.
Furthermore, this difference never decreases and can increase only in steps in which the decrement of r
non-zero counters was triggered. But, each such decrement decreases the sum of all c(j)s by r and this
sum starts at zero, never becomes negative, and can be increment by at most one in each step. So, as
there is n steps overall, the total number of steps in which decrements of r non-zero counters occurs is at
most n/r. Therefore, we can conclude that

xj − x̂j = xnj − c(j)n ≤
n

r
,

as desired.
Thus, we see that for any parameter r, the Count algorithm provides estimates of element frequencies

up to an additive error of n
r and that it has space complexity of O(r log n). As in the insertions-only

regime, we have that ‖x‖1 = n, setting r = 1
ε provides us with a (deterministic) (ε, 0)-approximation to

the `1-point query problem that works in O(ε−1 log n) space.

3.2 Count-Min Sketch

Even though the Count algorithm presented above provides already a very satisfactory solution to `1-point
query problem, we want to design now a different algorithm for that problem.

This algorithm will not be deterministic anymore (so, it will be incorrect with some non-zero prob-
ability) and it will have a slightly worse space complexity. However, its main advantage will be that it
will work also in the turnstile model, i.e., also when elements can be deleted from the stream, not only
inserted. This distinction is especially important in the context of `1-point query problem, as in turnstile
model ‖x‖1 can be much smaller than n (and thus the resulting additive error can be appropriately smaller
too).

2

Now, let ε > 0 by our desired accuracy parameter and δ > 0 be the desired error probability bound.
Consider the following algorithm:

Algorithm Count-Min:

1. Maintain d = log m
δ arrays Al of size r and d 2-wise independent hash functions hl : [m] → [r],

where r = 2/ε. Initially, all the entries of these arrays are zero.

2. In each step t, examine the t-th element yt of the stream and for all l ∈ [d]

(a) Increment Al[hl(yt)] by one, if yt was inserted;

(b) Decrement Al[hl(yt)] by one, if yt was deleted.

3. At the end, output x̂j = minlAl[hl(j)], for all j ∈ [m].

Before we proceed with the analyze, we want to note that although this algorithm works in turnstile
model, it requires the stream to be well-formed, i.e., that all the cumulative frequencies xj are always
non-negative. To get rid of this restriction, one just needs to increase d and r slightly (by a certain
constant) and make all x̂js correspond to the median of Al[hl(j)]s and not their minimum. (We will not
cover the analysis of this modification here, but it is a quite straightforward extension of the ideas we will
need to make the current version work. Also, cf. the analysis of the Count-Sketch algorithm below.)

It is not hard to see that the Count-Min algorithm can be implemented inO(rd log n) = O(ε−1 log n log m
δ)

space. (Recall from the last lecture that a 2-wise independent hash function that takes values from a set
of size T can be stored in O(log T) space.)

Now, to establish that indeed this algorithm delivers an (ε, δ)-approximation to the `1-point query
problem, we prove the following lemma.

Lemma 1 With probability at least (1− δ), all x̂js returned by Count-Min algorithm satisfy

xj ≤ x̂j ≤ xj + ε‖x‖1.

Proof Note that for any element j ∈ [m] and l ∈ [d], we have

Al[hl(j)] =
∑

j′:hl(j′)=hl(j)

xj′ ,

i.e., Al[hl(j)] is the sum of frequencies of all the elements that have the same hash value as j with respect
to the hash function hl.

So, we have that, for each j,

x̂j = min
l
Al[hl(j)] = min

l

∑
j′:hl(j′)=hl(j)

xj′ ≥ min
l
xj = xj ,

where we use the fact that all xj′ ≥ 0, as the stream is well-formed.
Now, we claim that, for each j ∈ [m] and l ∈ [d], we also have that with probability at least 1

2 ,

Al[hl(j)] ≤ xj + ε‖x‖1.

Note that once we establish this claim, we our proof will be concluded. This is so, as we would have
then that – due to the fact that all hash functions hl are independent of each other – for any j ∈ [m],
with probability at least 1− (1

2)d = 1− δ
m , there is at least one l∗ ∈ [d] such that Al∗ [hl∗(j)] ≤ xj + ε‖x‖1

and therefore
x̂j = min

l
Al[hl(j)] ≤ Al∗ [hl∗(j)] ≤ xj + ε‖x‖1.

So, by taking union bound over all m possible values of j, we get the desired approximation guarantee
with probability at least (1− δ).

3

To establish that remaining claim, let us fix some j ∈ [m] and l ∈ [d] and note that

Al[hl(j)] =
∑

j′:hl(j′)=hl(j)

xj′ = xj +
∑
j′ 6=j

xj′Yj′ ,

where Yj′ is a random variable that is 1 if hl(j′) = hl(j) and 0 otherwise.
By observing that, due to hl being 2-wise independent hash function, we have that Pr[Yj′ = 1] = 1/r

for j′ 6= j, we get

E[Al[hl(j)]] = xj +
1

r

∑
j′ 6=j

xj′ ≤ xj +
||x||1
r

= xj +
ε

2
||x||1.

Now, by Markov’s inequality we can conclude that

Pr(Al[hl(j)]− xj ≥ ε||x||1) ≤ 1/2,

as desired.

4 `2-point Query Problem – Count-Sketch Algorithm

So far, we have seen two solutions to the `1-point query problem. How about `2-point query problem?
It turns out that a relatively simple extension of the idea behind the Count-Min algorithm can give

us a solution for this problem (and thus better quality frequency estimates) too. Unfortunately, this will
be at the expense of increased space complexity.

Consider the following algorithm (it works in turnstile model and even when the stream is not well-
formed):

Algorithm Count-Sketch :
1. Maintain d = Θ(log m

δ) arrays Al of size r = 4/ε2. Also, associate with each array two 2-wise
independent hash functions hl : [m] → [r] and gl : [m] → {−1, 1}. Initially, all entries of these
arrays are zero.

2. In each step t, examine the t-th element yt of the stream and for all l ∈ [d]

(a) Add gl(yt) to Al[hl(yt)] if yt was inserted

(b) Subtract gl(yt) from Al[hl(yt)] if yt was deleted

3. At the end, for each element j ∈ [m], output x̂j = medianl∈[d] {gl(j)Al[hl(j)]}.

It is easy to see that this algorithm can be implemented in O(rd log n) = O(ε−2 log n log m
δ) space.

Now, to prove that it indeed provides us with an (ε, δ)-approximation to the `2-point query problem, we
establish the following lemma.

Lemma 2 With probability at least (1 − δ), all the estimates x̂j output by the Count-Sketch algorithm
satisfy

xj − ε||x||2 ≤ x̂j ≤ xj + ε||x||2.

Proof We claim that for any fixed j ∈ [m] and l ∈ [d], the estimator gl(j)Al[hl(j)] is withing an
additive ε||x||2 error of xj with probability at least 3/4.

Once this claim is established, the lemma will follow by first applying Chernoff bounds to show that,
for a given j ∈ [m], the probability that at least half of the estimates gl(j)Al[hl(j)]s is by more than
ε||x||2 away from xj , is at most δ

m ; and then using union bound over all m possible values of j.

4

To prove the needed claim, let us fix some j ∈ [m] and l ∈ [d] and note that

gl(j)Al[hl(j)] = gl(j)
∑

j′:hl(j′)=hl(j)

gl(j
′)xj′ = (gl(j))

2xj +
∑
j′ 6=j

gl(j)gl(j
′)xj′Yj′ ,

where Yj′ is, again, a random variable that is equal to 1 if hl(j) = hl(j
′) and 0 otherwise.

Now, if we examine the expected value of our estimator, we obtain

E[gl(j)Al[hl(j)]] = [gl(j)]
2xj +

∑
j′ 6=j

E[gl(j)gl(j
′)Yj′]xj′ = xj +

∑
j′ 6=j

E[gl(j)gl(j
′)]E[Yj′]xj′ = xj ,

where we used the fact that the random variables gl(j)gl(j′) and Yj′ are independent and that E[gl(j)gl(j
′)] =

0 when j 6= j′ (we are using here the 2-wise independence of gl and the fact that E[gl(j
′)] = 0).

So, the expectation of our estimator is a correct one. To establish its concentration around this
expected value (and thus bound its probability of failure), we will compute its variance and then appeal
to the Chebyshev’s inequality. To this end, note that

Var[gl(j)Al[hl(j)]] = Var[gl(j)Al[hl(j)]− xj],

as subtracting a constant term form a random variable does not change its variance.
Now, since the expectation of gl(j)Al[hl(j)]− xj is zero, its variance is equal to the expectation of its

square. Therefore, we have

Var[gl(j)Al[hl(j)]] = Var[gl(j)Al[hl(j)]− xj] = Var

∑
j′ 6=j

gl(j)gl(j
′)xj′Yj′

= E[(

∑
j′ 6=j

gl(j)gl(j
′)xj′Yj′)

2]

=
∑

j′,j′′ 6=j

E[gl(j
′)gl(j

′′)Yj′Yj′′]xj′xj′′ .

Note that, again, the random variables gl(j′)gl(j′′) and Yj′Yj′′ are independent and E[gl(j
′)gl(j

′′)] = 0
when j′ 6= j′′. So, we have that E[gl(j

′)gl(j
′′)Yj′Yj′′] = 0 whenever j′ 6= j′′ and thus

Var[gl(j)Al[hl(j)]] =
∑

j′,j′′ 6=j

E[gl(j
′)gl(j

′′)Yj′Yj′′]xj′xj′′

=
∑
j′ 6=j

E[Y 2
j′]x

2
j′ ≤

‖x‖22
r

,

as j 6= j′ and E[Y 2
j′] = E[Yj′] = 1

r by 2-wise independence of hl.
Now, applying Chebychev’s inequality (see Theorem 2 in Lecture 17) to gl(j)Al[hl(j)] with γ = ε‖x‖2,

we get that

Pr[|gl(j)Al[hl(j)]− xj | ≥ ε||x||2] ≤ Var[gl(j)Al[hl(j)]]

ε2||x||22
≤ 1

4
.

This completes the proof.

5

