
CS-621 Theory Gems September 20, 2012

Lecture 2
Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler

1 How Can We Teach a Computer to Learn?

Traditionally, whenever we want to use a computer to solve a new task, we need to provide it with very
explicit and precise description of what it is exactly that we want it to do. This requirement often is not
too problematic – after all, there is a lot of tasks that even not too experienced programmer (let alone
a team of experienced ones) can make computers perform. However, there still is a lot of scenarios in
which just coming up with a description of the task at hand that is sufficiently explicit and precise for
a computer might be the core of the problem.
A canonical example here is email spam filtering. Namely, if you see an email message in your inbox,

you can immediately tell if it is a spam or not. On the other hand, specifying – in a precise, succinct, and
computer-readable way – what it means for an email message to be a spam might be rather challenging.
Let us take a closer look at this problem. We can view each email message as an object that is

described by a set of features: the From address, Reply-to address, Subject, presence of certain keywords
in its body, etc. Now, the traditional approach to dealing with spam messages would be based on looking
at the pool of the emails we got so far and providing our email system with a set of filtering rules that
would help distinguish the emails in this pool that are spam from the ones that are not. For example,
we could setup rules like:

• if the email contains keyword ’viagra’ −→ SPAM

• if the email contains keyword ’sex’ and From is not ’kinkyfriend@gmail.com’ −→ SPAM

• and so on...

However, as the pool of the emails becomes bigger and the spamers more inventive, coming up with
new, more accurate rules can quickly become quite tedious and difficult. Also, note that some of the
good rules might be rather non-obvious to us (for instance, a good indication of a message being a spam
might be that the From and Reply-to addresses are different). Even more crucially, it is not clear at
all that a set of rules that correctly classifies/labels the emails that we have already seen, will still do
equally good job at classifying/labeling the messages that we will get in the future. (After all, good
performance on yet-unseen messages is what we really care about here.)
All of the above makes us wonder if we could somehow automate this whole process. In other words,

can we make the computer “learn” to recognize the spam – or any other concept – on its own while
getting only minimal guidance from us?
This challenge can be rephrased in two fundamental questions:

1. Can an algorithm efficiently infer correct prediction rules from a collection of labeled examples?

2. How well do these inferred rules generalize (i.e., how well they work on new, unlabeled examples)?

Providing an answer to these two questions is a cornerstone of the field of Machine Learning and
underlies many of the spectacular successes of Computer Science in the last two decades.

2 PAC-Learning Model

Before we go further, we need to make things a bit more precise. In particular, we need to introduce a
formal model of learning. The model we will use is the Probably Approximately Correct (PAC) model.
In this framework, we have a universe X of “objects” and a distribution D over these objects.

Furthermore, there is a set L of possible labels and a function f (sometimes called the concept) that

1

classifies each object in X by assigning a label to it. (So, in our spam detection example, X is the set of
all possible emails that could be written, D is the distribution that captures the pattern of emails that
we might get, L consists only of two labels, say −1 and 1, and f assigns a label of 1 to a message that
is a spam, and yields −1 otherwise.)
Now, the way the learning process proceeds is that we are presented with a set S = {(x1, l1), . . . , (xm, lm)}

of m independent samples from X (according to the distribution D) together with their correct labels
(i.e., lj = f(xj) for each j). Our goal is to use this information to output a hypothesis h that with good
probability approximates the function f on the whole universe X (with respect to the distribution D).
Formally, we want h to be a (ε, δ)-PAC learner for f , which means that for some (small) parameters
ε, δ > 0, we want that with probability at least (1− δ) (over the choice of the set of samples S)

Prx∈D[h(x) ̸= f(x)] < ε,

i.e., h mis-classifies a random sample chosen from D with probability at most ε.
Note that in this model coming up with the hypothesis h corresponds to an answer to the first

fundamental question that we posed earlier. On the other hand, requiring h to be the (ε, δ)-PAC learner
ensures that it also has the generalization property that the second question asks for.
Finally, observe that this model makes an assumption that the samples in the set S were chosen

independently – depending on application, this might or might not be realistic.

3 Finding a “Good” Hypothesis

One crucial aspect of the learning process that the PAC model is not specifying (and that is exactly the
key challenge in every learning scenario) is the choice of the hypothesis h. So, we want to think a bit
about this problem.
A natural requirement for h would be to ensure that it classifies in the first place all the labeled

samples in S. This is definitely a reasonable requirement – after all, if h is not able to do good job on
the samples that we are given then why should it do well on the yet-unseen ones – but there are some
pitfalls here.
To see the problem, note that there is always a hypothesis that would classify all the available

samples: a look-up table. Given the set S = {(x1, l1), . . . , (xm, lm)} we can just take our hypothesis h
to be

h(x) =

l1 if x = x1

l2 if x = x2

...
lm if x = xm

arbitrary label otherwise

.

Clearly, such a hypothesis is easy to come up with and does a great job at classifying all the data in
S. However, we do not really expect it to generalize well. What is a good choice of h then?
It turns out that the best way to go about the choice h is to follow so-called Occam’s razor principle

that roughly tells us that we should always strive to take h to be the “simplest” hypothesis that explains
our labeled data. Of course, there is many notions of simplicity that one might think of and, in case of
PAC learning, there is actually a very precise and elegant answer based on the concept of VC-dimension.
However, just to illustrate why simplicity might be a good guiding principle here, we show that h is

guaranteed to have good generalization properties whenever it is coming from a relatively small set H
of possible classifiers. That is, we show that if there is a set of classifiers H such that: (1) we are always
able to find a hypothesis h in H that explains all our labeled data; (2) |H| is relatively small; then the
resulting h has good generalization properties (as long as, the number of labeled examples that we have
is reasonably large).

2

To this end, let us fix some family H of classifiers, as well as, parameters ε, δ > 0 and let us denote by
HBAD the subset of H that consists of the ones among the classifiers that do not generalize sufficiently
well. That is, let

HBAD ⊂ H s.t. ∀h ∈ HBAD Prx∈D[h(x) ̸= f(x)] ≥ ε.

Let us focus on some h′ ∈ HBAD. What is the probability that it might fool us, i.e., that it will
explain correctly all the examples in S? As each sample is independent and h′, by definition, has at
least ε probability of mis-classifying it, this happens with probability of at most (1 − ϵ)|S|. (Note that
this is the moment when we crucially use the sample independence assumption from the PAC model.)
Therefore, taking a union bound over all elements of HBAD, we get

Pr[any h ∈ HBAD labels all examples correctly]

≤
∑

h∈HBAD

Pr[h answers correctly all examples]

≤ |HBAD| (1− ϵ)|S|.

In the context of (ε, δ)-PAC learning, we want this quantity |HBAD|(1 − ϵ)|S| to be at most δ. So, by
using that |HBAD| ≤ |H|, we get a lower bound on the size of |S|

|S| ≥ 1

ϵ

(
ln |H|+ ln

1

δ

)
.

So, as long as S is at least that large, we are guaranteed to have the (ε, δ)-PAC learning property.
Note that the above bound also hints at why taking a look-up table that we have seen before, as your

hypothesis might not be a good idea. The size of all the possible look-up table that correctly classifies
a set of m labeled examples is 2m. So, the above argument fails to provide any generalization bound
as plugging |H| = 2|S| into the lower-bounding inequality leads to contradiction. (One should keep in
mind, however, that this is not a proof that this type of hypothesis will not generalize well - it is just
an indication of some potential problem.)
Finally, it is worth pointing out again that there is a certain tension in the choice of H here. On one

hand, we want it to be small/simple enough so the arguments along the ones presented above, yield good
generalization bounds. But, on the other hand, H should be rich enough to be able to explain reasonably
well all the sets of labeled examples that we might be presented with. This means that choosing the
right set of classifiers to work with is an integral and delicate part of solving a learning problem.

4 Learning Linear Classifiers

As we discussed above, choosing the right set of classifiers is a crucial decision when tackling a learning
problem. However, even once we have made a good choice of our set H of possible classifiers, there
is still one problem that we need to solve: finding, for a given set of samples S, a classifier in H that
correctly labels them. (Note that at this point this is a purely algorithmic problem. We already know
that there exists some correct classifier in H, we just need to find it efficiently.)
As one might expect, algorithms for this kind of task are usually specialized to the particular set of

classifier one wants to work with. Therefore, from now on, we will focus our attention on a simple, but
very powerful and popular class: linear separators.
In this settings, our objects are points in high-dimensional space, say Rn, where each of n coordinates

encodes (as a real number) one feature of the object. Also, our labels can be either 1 or −1. (Note that,
at this moment, it is not important to us what D or even f is.) Our goal is to find (knowing that it
exists), for a given a set of m labeled points (x1, l1), . . . , (xm, lm), a vector w ∈ Rn and θ ∈ R such that

sign(w · xj − θ) = lj ∀j = 1, . . . ,m.

3

Geometrically, the above condition means that the hyperplane that is orthogonal to w and is at the
offset θ from the origin, separates all the xjs with label 1 from the ones with label −1.
Before we proceed, we notice that without loss of generality we can assume that θ = 0 (so our

hyperplane goes through the origin) and that all labels lj are positive (i.e., equal to 1). To do the
former, note that we can incorporate θ as a part of w if we add one more dimension to our space and
set each xj to have −1 on this dummy coordinate. To do the latter, we just map each xjs with lj = −1
to a vector −xj with a label 1. Clearly, if our solution separates the data after this transformation then
it also was separating the original one.
Also, we can always assume that all the data is normalized, as normalization does not affect separation

condition (recall that our hyperplane goes through the origin now). Thus, in what follows, we will assume
that all xj have an l2-norm of one.
In the light of above, our task simplifies now to:

given x1, . . . , xm ∈ Rn with each ∥xj∥2 = 1,
find w ∈ Rn such that

w · xj > 0 ∀j = 1, . . . ,m.

Note that this kind of task captures a pretty general case of Linear Programming (LP) (we will
discuss LPs later in the course). Thus, in principle, one could use the general LP algorithms to solve
it. However, we want to describe instead a simple (and usually much more efficient) algorithm for this
problem called Perceptron algorithm.1

Perceptron Algorithm:

1. Start with w0 ← (0, . . . , 0)

2. In round t:

(a) check if ∃jt with wt · xjt ≤ 0

(b) if not: output wt

(c) otherwise: set wt+1 ← wt + xjt and repeat;

So, this algorithm in each round checks if there is a sample (xjt) that is not yet classified correctly.
If there is no such sample then clearly we have found the correct classifiers. Otherwise, we add offending
example to our classifier. Note that by doing this we will improve the classification of xjt , because

wt+1 · xjt = wtxjt + xjtxjt = wtxjt + 1 > wt · xjt

We analyze now the number of iterations of this algorithm (assuming that there is a linear separator
for the data).

Theorem 1 (Termination of Perceptron) If w∗ is a linear classifier that classifies all the samples
correctly and γ = minj

w∗·xj

∥w∗∥2
then Perceptron finishes in at most T ≤ 1

γ2 iterations.

Proof The proof uses a potential function argument. For each round t let

Nt = ∥wt∥22 and At = wt · w∗.

Clearly, A0 = N0 = 0. We have

Nt+1 = ∥wt+1∥22 = ∥wt + xjt∥22 = ∥wt∥22 + 2wt · xjt + ∥xjt∥22 ≤ Nt + 1

1Interestingly, it is actually possible to use Perceptron algorithm to solve LP problem in full generality in polynomial
time.

4

since wt · xjt ≤ 0 (as we only add incorrectly classified samples) and ∥xjt∥2 = 1. Furthermore,

At+1 = wt+1 · w∗ = wtw∗ + xjtw∗ ≥ At + γ∥w∗∥2.

Hence, by induction, NT ≤ T and AT ≥ γ∥w∗∥2 T . Using the Cauchy-Schwarz inequality (∥a∥2∥b∥2 ≥
(a · b)2) we have

NT ∥w∗∥22 = ∥wT ∥22 ∥w∗∥22 ≥ (wT · w∗)2 = (AT)
2.

Hence,

T ≥ NT ≥ (AT)
2/∥w∗∥2 ≥ γ2T 2 ⇒ T ≤ 1

γ2
.

5

