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1 Introduction

Today, we will briefly discuss an important technique in probability theory – measure concentration.
Roughly speaking, measure concentration corresponds to exploiting a phenomenon that some functions
of random variables are highly concentrated around their expectation/median. The main example that
will be of our interest here is Johnson-Lindenstrauss (JL) lemma. The JL lemma is a very powerful tool
for dimensionality reduction in high-dimensional Euclidean spaces and it is widely used to alleviate the
curse of dimensionality that occurs in applications where one needs to deal with high-dimensional data.

2 Examples of Measure Concentration

Probably the most well-known example of measure concentration result states that the sum of in-
dependent random variables is tightly concentrated around its expectation/median. In particular, if
X1, X2, ..., Xn are independent and identically distributed random variables (i.i.d.) with each Xi tak-
ing a value Xi ∈ {1,−1} with equal probability, the celebrated Chernoff bound states that their sum
X =

∑n
i=1Xi is highly concentrated around its expectation. Specifically, the probability that |X| > t is

exponentially decaying with t, i.e.,

Pr(|X| > t) < 2e−
t2

2n . (1)

(Note that expectation of X is just zero.)
Although this result is the most well-known one and it already has plethora of applications, it can

actually be seen as a special case of a more general measure concentration phenomena.
To this end, let us focus our attention on general real functions on hypercube and say that a function

f : {−1, 1}n → R is L-Lipschitz, for some L > 0, (with respect to `1 metric) iff, for all x, y ∈ {−1, 1}n,

|f(x)− f(y)| ≤ L‖x− y‖1. (2)

(One can view the L-Lipschitz condition as a quantified version of uniform continuity of f .)
Now, one can show that for any 1-Lipschitz function of n random variables X1, X2, . . . , Xn that are

i.i.d. and are +1 and −1 with equal probability, an analogous to (1) concentration around the median
µ of f occurs. Namely, we have

Pr(f(X1, . . . , Xn) > µ+ t) < 2e−
t2

2n . (3)

(One can get a result for arbitrary Lipschitz constant L just by scaling.)
As the sum function is clearly 1-Lipschitz, one can see that Chernoff bound is indeed a consequence

of this more general statement.

3 The Johnson-Lindenstrauss Lemma

The main example of measure concentration phenomenon that we want to focus on today is captured
by Johnson-Lindenstrauss (JL) lemma and corresponds to the behavior of random vectors on a high-
dimensional unit sphere.

Roughly speaking, the Johnson-Lindenstrauss lemma tells us that the `2-distance of high-dimensional
vectors is well preserved under random projection to a (much) lower dimension.
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Lemma 1 (Johnson-Lindenstrauss lemma) Consider a set of n vectors xi ∈ Rd and a random k-
dimensional subspace of Rd. Let yi be the projection of each xi on that subspace. For any ε > 0, if
k = Ω(ε−2 log n) then with probability at least 1− 1

n ,

(1− ε)
√
k

d
‖xi − xj‖2 ≤ ‖yi − yj‖2 ≤ (1 + ε)

√
k

d
‖xi − xj‖2, ∀i, j. (4)

In the light of this lemma, if we have some high-dimensional data whose key characteristic we are
interested in is captured by `2-distance, then we can achieve even an exponential compression of this

data’s dimension at the price of introducing only (1 + ε) error (note that the
√

k
d is just a normalizing

scaling factor).
It turns out that there is a lot of scenarios (especially, in statistics and machine learning) where

this technique is applicable and allows one to lift the “curse of dimensionality”. Namely, in a lot of
applications, (very) high-dimensional data arises naturally and this kind of compression – often called
dimensionality reduction – provides a powerful tool for dealing with the computational cost of processing
such data.

3.1 Random Subspaces

Before proceeding to the proof of this lemma, we first need to make the notion of random subspace
precise.

To this end, let us start by defining what we mean by a random unit vector x ∈ Sd−1, where Sd−1 is
the d-dimensional unit sphere. We will view such a vector as a result of a generation procedure in which,
first, we sample each of its d coordinates independently from a Gaussian distribution N (0, 1) that has
zero mean and standard deviation one; and then normalize it to make its norm equal to 1. (Note that
one of the important and desirable properties of this definition is that the resulting probability measure
on the sphere is rotationally invariant.)

Once we defined our notion of random unit vector, i.e., we defined our probability measure on the
sphere, we can proceed to defining what we mean by a random subspace of dimension k. Again, we will
do this by specifying the random process that generates it. This process is as follows:

1. Choose a random unit vector and make it the first basis vector v1 of the subspace.

2. For the next k − 1 rounds repeat the following: pick a random unit vector, subtract from it its
projection on the subspace spanned by the previously chosen vectors v1, . . . , vi−1, and normalize
it to form the next basis vector vi.1

Clearly, after this procedure is finished we end up with an orthonormal basis v1, . . . , vk that spans
the desired (random) subspace of dimension k. (Note that the above procedure is nothing else than
Gram-Schmidt orthogonalization applied to a set of random unit vectors {v1, . . . , vk}.)

Also, one can see that under this definition the projection yi of a data point xi onto such a random
subspace can be written in a matrix form as


v11 v12 . . . v1d
v21 v22 . . . v2d
...
vk1 vk2 . . . vkd


︸ ︷︷ ︸

V



xi1
xi2
...
...
xid

 =


yi1
yi2
...
yik

 .

Here, each row of the projection matrix V corresponds to one random basis vector vi.

1It is easy to see that this randomly chosen unit vector is not in the span of the vectors v1, . . . , vi−1 with probability 1.
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3.2 Proof of the JL Lemma

Now that we have defined what a random vector and what a random subspace is, we are ready to prove
the Johnson-Lindenstrauss lemma. As a first step, we show that this lemma follows from a simpler
statement that just focuses on the norm of the projection of a fixed vector x in d dimensions onto a
random k-dimensional subspace.

Lemma 2 Let x be an arbitrary vector in Rd and z ∈ Rk be its projection onto a random k-dimensional
subspace. Then, for any ε > 0, as long as k = Ω(ε−2 log n), we have∣∣∣∣∣ ‖z‖2‖x‖2

−
√
k

d

∣∣∣∣∣ ≤ ε
√
k

d
,

with probability exceeding 1− 1
n3 .

It is not hard to see that once we prove Lemma 2, the Johnson-Lindenstrauss lemma follows easily.
Indeed, by applying the above lemma with x = xi − xj , for any fixed i and j, we get

Pr

[∣∣∣∣∣ ‖zi,j‖2‖xi − xj‖2
−
√
k

d

∣∣∣∣∣ ≤ ε
√
k

d

]
≥ 1− 1

n3
,

where zi,j is the projection of xi − xj on the random subspace. Since the projection is a linear map, we
have zi,j = yi − yj . So, applying a union bound to the previous inequality, over all O(n2) pairs (i, j),
we get that

Pr

[
∀i 6= j,

∣∣∣∣∣ ‖yi − yj‖2‖xi − xj‖2
−
√
k

d

∣∣∣∣∣ ≤ ε
√
k

d

]
≥ 1− n(n− 1)

2n3
≥ 1− 1

n
,

which can be easily seen to be equivalent to the statement of Johnson-Lindenstrauss lemma.
Hence, from now on we focus on proving Lemma 2. (Observe that by scaling, it suffices to prove

this lemma for the case of x being a unit vector.) To make our task easier, we want to first invert our
perspective. Namely, instead of looking at the norm of a projection of an arbitrary vector onto a random
k-dimensional subspace, we prefer to look at the norm of a projection of a random vector on a fixed
k-dimensional subspace that corresponds to the first k coordinates of that vector.

It is not hard to see that these two views are completely equivalent. To this end, note that we can
always rotate the space in such a way that the random k-dimensional subspace we chosen is just the
projection onto the first k coordinates. Formally, let U denote the d × d unitary matrix whose first k
rows are equal to vectors vis (that form the basis of the random subspace we have chosen) and where
the remaining rows are chosen arbitrarily to form an orthonormal basis of the orthogonal complement
of our subspace. Then, we have that

zi = (vi)Tx = (U−1vi)T (U−1x),

for any 1 ≤ i ≤ k, as U−1 = UT is a unitary matrix too and thus satisfies (U−1)TU−1 = I. Since
U−1vi is equal to the i-th standard basis vector ei and U−1x is a random vector (as it corresponds to a
random rotation of a fixed vector), it is indeed valid to see z as the projection of a random vector onto
the subspace spanned by its first k coordinates.

Thanks to the above simplification of the perspective, our goal now is to study how the norm of the
first k coordinates of a random vector (of unit norm) concentrates around a particular value. To this
end, note that if z′ = (z1, . . . , zd) = (z, zk+1, . . . , zd) is a random unit vector then clearly we have

E

(
d∑

i=1

z2i

)
= 1.
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Since each zi’s are identically distributed, we obtain

E

(
k∑

i=1

z2i

)
=
k

d
.

Thus indeed `22-norm of the k first coordinates of a random vector has the desired expectation.
However, to prove Lemma 2, we also need to study how this norm is concentrated around its expectation.

We will not do this today. Instead, just to give a flavor of involved techniques, we prove here a
simpler result that bounds the concentration of the corresponding norm for k = 1. Specifically, we show
that the probability that |z1| is larger than t√

d
is exponentially decaying with t.

Lemma 3 Let z′ = (z1, . . . , zd) be a random vector in Sd−1. We have

Pr

(
|z1| >

t√
d

)
≤ 2 exp

(
− t

2

2

)
,

for any 0 < t ≤
√

d
2 .

Proof The proof of this lemma is based on a simple geometric argument. Let us fix some t > 0. As z′

(a) (b)

Figure 1: Illustration of the proof in two dimensions. (a) The caps corresponding to |z1| > t√
d

are
marked with red color. (b) Pictorial argument justifying upperbounding the area of these two caps by
the area of corresponding sphere of the same radius.

is a random vector from a d-dimensional unit sphere Sd−1, we can see that the probability of choosing

z′ with |z1| > t√
d

is exactly the ratio of the area of two d-dimensional caps of radius Rcup =
√

1− t2

d

to the total area of a unit d-dimensional sphere. (See Figure 1 (a) that represents the situation in two
dimensions, i.e., the case of d = 2.)

We can upperbound the area of these two caps by the area of a whole sphere of the same radius (see
Figure 1 (b)). As the area of a d-dimensional sphere S(R) of radius R has to be a function of the form
Cd ·Rd−1, where Cd is some coefficient depending on d but not on R, we have

Pr

(
|z1| >

t√
d

)
≤ area(S(Rcup))

area(Sd−1)
=
Cd ·Rd−1

cup

Cd · 1d−1
=

(
1− t2

d

) d−1
2

.

Using the fact that (1− x/n)n ≤ exp(−x), we conclude that

Pr

(
|z1| >

t√
d

)
≤ 2 exp(−t2/2),
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whenever 0 < t ≤
√

d
2 , as desired.

It is interesting to note that by applying Lemma 3 with t = Ω(
√

log n), we get that the probability

that |z1| exceeds
√

logn
d is bounded by 1

nO(1) . This tells us that in high dimensions almost all the vectors
on the unit sphere are close to being orthogonal. Indeed, thanks to the rotation invariance of the scalar
product, we can always take one of the vectors to have its first coordinate be equal to 1 and have all
the remaining coordinates equal to zero. Then, the scalar product of a random unit vector z′ with this
vector is equal to z1. In high dimensions, the quantity logn

d is very small, which gives a very small scalar
product with high probability.

Unfortunately, as we already mentioned, the bounds provided by the Lemma 3 are too weak to yield
the desired concentration of the norm of the projection of z′ on the first k coordinates. Therefore, we
state (without proof) a stronger version of Lemma 3 that allows one take advantage of larger values of
k.

Lemma 4 Let z′ = (z1, . . . , zd) = (z, zk+1, . . . , zd) be a random vector in Sd−1. We have

Pr

(∣∣∣∣∣‖z‖2 −
√
k

d

∣∣∣∣∣ > t

)
≤ 2e−

t2d
2 .

Once we have this lemma, the proof of Lemma 2 is straightforward. We just take t = ε
√

k
d and

k = 10ε−2 lnn. We then have

Pr

(∣∣∣∣∣‖z‖2 −
√
k

d

∣∣∣∣∣ > ε

√
k

d

)
≤ 1

n3
,

which proves Lemma 2, and thus the Johnson-Lindenstrauss lemma.

3.3 Further Discussion

As we presented it here, the JL lemma is not very practical. This is so as our generation of the projection
matrix V requires performing Gram-Schmidt orthnormalization that is computationally quite expensive
when n is large (which is often the case). To circumvent this issue and make JL lemma more practical,
there was a lot of (successful) work on developing much more efficient constructions of the projection
matrix V . In these latest constructions, this matrix is generated via a very simple and easy to implement
procedure that makes V have only few entries of each column being non-zero. As a result, not only the
whole construction is very efficient, but also the resulting matrix V is sparse (i.e., it has only small
fraction of entries non-zero), which leads to computations of the projections of the input vectors being
very efficient too. All of these advancements made JL lemma a truly practical tool.

Given the usefulness of JL lemma in applications that operate based on `2-distance, it is natural to
wonder if similar results could be achieved for other `p-distances. Unfortunately, it seems that it is not
the case and in fact for some of the distances (e.g., `1-distance) there are strong lowerbounds on the
possible dimension reduction. (Also, it is known that for `2-distance, the dimension reduction offered
by JL lemma is essentially optimal.)
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