
CS-621 Theory Gems September 26, 2012

Lecture 3

Lecturer: Aleksander Mądry Scribes: Yann Barbotin and Vlad Ureche

1 Introduction

The main topic of this lecture is another classical algorithm for finding linear classifiers – the Winnow
Algorithm. We also briefly discuss Support Vector Machines (SVMs).

2 The Winnow Algorithm

Recall the problem of linear classification we discussed in the last lecture. In this problem, we are given a
collection of m labeled points {(xj , lj)}j with each x

j ∈ R
n. Our goal is to find a vector (linear classifier)

(w, θ) ∈ R
n+1 such that, for all j,

sign(w · xj − θ) = lj.

That is, we want the hyperplane corresponding to (w, θ) to separate the positive examples from the
negative ones. As we already argued previously, wlog we can constrain ourselves to the case when θ = 0
(i.e., the hyperplane passes through the origin) and there are only positive examples (i.e., lj = 1, for all
j).
Last time we presented a simple algorithm for this problem called Perceptron algorithm. Today, we

will see a different (and also simple) algorithm for the same task – the Winnow Algorithm.

2.1 The Algorithm

The Winnow algorithm can be seen as a direct application of the multiplicative weights update paradigm
that we discussed in Lecture 1. To make this connection precise, instead of providing an explicit descrip-
tion of the algorithm, we will cast it as an application of the Multiplicative Weights Update (MWU)
algorithm to an appropriately tailored execution of the (general) learning-from-expert framework – cf.
Section 5 in the notes from Lecture 1. (As we will see later in the course, there are many, quite diverse,
algorithms that can be cast in this manner - this is one reason why the multiplicative weights update
paradigm has such a wide array of applications.)
Similarly to the case of the analysis of the Perceptron algorithm, we will wlog assume that our data

is normalized. However, this time we will normalize it in l∞ norm instead of l2. So, from now on,
‖xj‖∞ = maxi |x

j
i | = 1, for all j.

Winnow algorithm:

Consider the following execution of the learning-from-expert-advice framework that is interacting with
the MWU algorithm (as described in Section 5 in notes from Lecture 1) for ρ = 1 and some 0 < ε ≤ 1

2
.

We have n experts - one for each coordinate (feature). In each round t:

• Let (pt1, . . . , p
t
n) be the convex combination supplied by the MWU algorithm;

• Set wt to be the linear classifier given by ptis, i.e., w
t ← (pt1, . . . , ptn);

• Check if there exists xjt such that wt · xjt ≤ 0 (i.e., xjt is misclassified);

• If no such jt exists then we just stop the algorithm and output the classifier w
t (as it classifies all

the data correctly);

• Otherwise, we set the loss vector to be lti = −x
jt
i , for each i, and proceed to the next round;

1

Clearly, given that our stopping condition ensures correctness of the output classifier, our only task
is to bound the total number of executed rounds (provided an appropriate linear classifier exists).

Theorem 1 Let w∗ be a correct linear classifier such that |w∗|1 = 1, w∗
i ≥ 0 for all i, and let γW =

minj x
j · w∗. If γW

4
≤ ε ≤ γW

2
then the number T of the iterations of the Winnow algorithm is at most

T ≤
8 logn

γ2
W

.

Before we prove this theorem, let us discuss the assumptions that it makes, as well as, provide some
intuition underlying the algorithm.
As we already discussed in the last lecture, we can always assume that a correct linear classifier is

normalized. On the other hand, to make sure that all coordinates of w∗ are non-negative, we can just
apply to each xj a transformation xj → (xj ,−xj). This will double the number of our features, but
now, as it is not hard to see, if there existed a correct linear classifier for the original data then there is
one for the transformed one that has all its coordinates non-negative and achieves the same margin. So,
the assumption made on w∗ are not really constraining the applicability of the theorem.
To understand the idea behind the algorithm and its analysis, note that we setup the loss vectors

in such a way that in each round t the MWU algorithms suffers a loss proportional to the extent it
misclassifies the point xjt . So, in particular, this loss is always non-negative.
On the other hand, the existence of the correct classifier w∗ is a certificate that there exists a convex

combination of experts that never suffers a loss that is larger than −γW (and this quantity is strictly
negative). Therefore, by the “asymptotically optimal” loss guarantee of the MWU algorithm, we know
that such a poor performance of the MWU algorithm cannot last for too long. (In particular, the convex
combination (pt1, . . . , p

t
n) that it maintains will eventually shift its mass towards the features/experts

that are most important for correct classification.)
Finally, note that the theorem requires that the MWU algorithm is used with the value of ε being

within a factor of two of the value of γW

2
. This might be problematic as we usually do not know how

large γW is. There is, however, a simple technique that allows us to circumvent this problem.
In this technique, we start with ε = 1

2
(which is an obvious upper bound on the value of γW

2
) and

run the Winnow algorithm for
8 logn

ε2
rounds. If the algorithm terminates by that time, we get a correct

classifier and are done. Otherwise - by Theorem 1 - we know that it must have been the case that our
value of ε was too large (i.e., γW

2
< ε). Thus we half the value of ε and repeat the procedure (cf. Figure

1).
Clearly, this procedure will finish once ε becomes less that γW

2
(or even earlier), and it is not hard

to see that the overall number of iterations performed is at most twice as large as the one promised by
Theorem 1 in case of ε being set correctly.

Run MWU for 8 logn

ε2
iter.

converged ?

Correct classifierw

yes

no

data ε← 1/2

ε← ε/2

Figure 1: Iterative margin estimation using Theorem 1

We now turn to the proof of the theorem.

2

Proof

We have that the total loss lMWU of the MWU algorithm is

lMWU =
∑

t

∑

i

ptil
t
i = −

∑

t

∑

i

wt
ix

jt
i = −

∑

t

wt · xjt ≥ 0,

as each xjt was chosen so as the classifier wt misclassifies it.
Therefore, by the loss guarantee of MWU algorithm (cf. Theorem 6 in the notes from Lecture 1), we

have for any feature/expert i that

0 ≤ lMWU ≤
∑

t

lti + ε
∑

t

|lti |+
lnn

ε
≤ −

∑

t

xjt
i + εT +

lnn

ε
, (1)

as ρ = 1 in our setting (due to normalization of all xjs) and thus |lti| ≤ 1 for all i and t.
Let us multiply both sides of each equation (1) corresponding to some i, by w∗

i and add them all
together. As all w∗

i are non-negative and they sum up to one, we obtain

0 ≤
∑

i

w∗
i

(

−
∑

t

xjt
i + εT +

lnn

ε

)

= −
∑

t

w∗ · xjt + εT +
lnn

ε
.

Now, by definition of γW , we have that w
∗ · xj ≥ γW for each j. Therefore, it must be the case that

0 ≤ −
∑

t

w∗ · xjt + εT +
lnn

ε
≤ −γWT +

γW
2

T + 4
lnn

γW
,

as γW

4
≤ ε ≤ γW

2
.

Rearranging the terms and dividing both sides by γW

2
, we get that

T ≤
8 logn

γ2
W

,

as desired.

Finally, it is worth pointing out that the MWU algorithm is treated here in a purely black-box
fashion. So, it can be replaced by any other algorithm for the learning-from-expert-advice framework,
as long as, this algorithm offers a similar loss guarantee to the one described by Theorem 6 from Lecture
1.

2.2 Comparison of the Perceptron and Winnow Algorithms

At this point, we have seen two different algorithms (Perceptron and Winnow) for exactly the same task.
It is thus natural to wonder which one of them one should use. As it is often the case, there is no clear
answer to that question. The performance guarantees of both these algorithms – although look similar
– are to large extent incomparable.
Recall that if we do not normalize the data then the performance guarantees for these algorithms

that we have established are:

Algorithm Number of iterations

Perceptron
1

γ2
P

with γP = max
w∗

min
j

w∗xj

||w∗||2||xj ||2

Winnow
8 logn

γ2
W

with γW = max
w∗

min
j

w∗xj

||w∗||1||xj ||∞

3

So, if both γP and γW are similar, using Perceptron should be better. However, in general, γP –
often called l2/l2-margin – and γW – often referred to as l∞/l1-margin – can be quite different, as the
corresponding norms have different characteristics - cf. Figure 2.
In particular, one advantage of Winnow algorithm is that the l∞/l1-margin is much less sensitive

to presence of irrelevant features in our data set. More precisely, if one imagines that features take
values from some fixed interval, say [−1, 1], then adding new features that are not really needed for
correct classification (i.e., the optimal classifier does not put any weight on them) does not affect the
l∞/l1-margin, while still might significantly change the l2/l2-margin.
The general consensus is that Winnow algorithm is more preferable when one expects the target

classifier to be rather sparse (i.e., a lot of features is irrelevant). On the other hand, if one suspects that
most of the features are relevant for correct classification (i.e., the optimal classifier is non-zero on most
features) then the Perceptron algorithm should perform better, as the l2 norm of the target should be
much smaller than its l1 norm.

‖x‖1 = |x1|+ |x2| = 1

x1

x2

‖x‖2 =
√

x
2

1
+ x

2

2
= 1

x1

x2

b

b

‖x‖∞ = max(|x1|, |x2|) = 1

x1

x2

b

Figure 2: Unit balls in, respectively, ℓ1, ℓ2 and ℓ∞ norm. The intersection with the red line corresponds
to the point in these balls that maximizes linear objective 2x1 + x2. The ℓ1 solution has only one of its
component non-zero (sparse solution), while the ℓ2 norm solution is full and minimizes the energy. The
ℓ∞ solution favors homogeneity.

3 Support Vector Machines (SVMs)

Our general strategy so far was to relate the running time of our algorithms to the quality of the margin
achieved by some optimal classifier. In this way we were able to prove that if the data can be separated
with large margin then our algorithms return a correct classifier. However, while doing so, we provided
no guarantee on the quality of the margin of this returned classifier. This is rather unfortunate, as one
would expect (and, in fact, it can be shown) that classifiers with larger margins have better generalization
properties. Therefore, ability to return a classifier with good margin (if such exists) would be a very
useful property.
To some extent, both Perceptron and Winnow algorithm can be adjusted to provide this kind of

guarantees (e.g., by treating all classifications that are correct but have small margin as misclassifica-
tions). However, it is sometimes better to take a more principled approach here and just state the search
for maximum margin classifier as optimization problem. Such optimization problems are called Support
Vector Machines (SVM).
Formally, in the case of l2/l2-margin, we have our data normalized in l2 norm and we want to solve

the following problem

min ||w||22

s.t. w · xj ≥ 1 ∀j (2)

(Note that the constraint is ≥ 1 instead of ≥ 0 here.)

4

As the above program is convex, we can solve it efficiently. (In fact, there are very efficient methods
specialized in solving such SVMs.) One can show – see below – that indeed the optimum solution to
this program gives a maximum l2/l2-margin classifier. Also, one can use duality arguments to show that
- similarly to the case of Perceptron and Winnow algorithm - this optimal classifier is a combination
of some of the data points xj . These points are often called support vector (as they “support” the
separating hyperplane), which explains the name of SVMs.

Lemma 2 Let w∗ be the optimum solution to the SVM (2). The l2/l2-margin achieved by w
∗ is equal

to γP and ‖w
∗‖22 = 1/γ2

P .

Proof

First, we show that w∗ is a correct classifiers with l2/l2-margin being at least
1

‖w∗‖2

. This follows

easily by noting that, for any j,
w∗ · xj

‖w∗‖2‖xj‖2
≥

1

‖w∗‖2|
,

where we used the feasibility of w∗ and the fact that all xjs are normalized.
On the other hand, if w is a correct classifier with l2/l2-margin γ then

w
γ‖w‖2

is a feasible solution to

the SVM (2). To see this, note that for any j

w · xj

γ‖w‖2
=

w · xj‖w‖2
minj′ w · xj′‖w‖2

≥ 1.

Also, the objective value corresponding to w
γ‖w‖2

is 1/γ2. The lemma now follows by combining the two

above facts.

Although at first glance very appealing, in practice, looking for the maximum margin classifier that
correctly classifies all the data might not be the best idea. This is so as the real-world data is usually
noisy and just a few outliers might either render the data not linearly separable, or at least significantly
reduce the margin of the best linear classifier. Therefore, instead of treating the correct classification
of all data points as a hard constraint, one might prefer to be able to allow oneself to misclassify some
samples if this enables separation of the remaining data with large margin.
This type of soft trade-off between the correctness and quality of the margin can be very conveniently

expressed in SVMs framework, by introducing so-called slack variables εj for each data point. Formally,
one consider the following augmented optimization problem:

min ||w||22 + C
∑

j

εj

s.t. w · xj ≥ 1− εj ∀j

εj ≥ 0 ∀j

Here, the parameter C is used to weigh the size of the margin of the obtained classifier against its
classification error measured by the total hinge loss. Clearly, if we set C to be very large, we essentially
recover the setting of SVM in (2).

5

	Introduction
	The Winnow Algorithm
	The Algorithm
	Comparison of the Perceptron and Winnow Algorithms

	Support Vector Machines (SVMs)

