
CS-621 Theory Gems September 27, 2012

Lecture 4
Lecturer: Aleksander Mądry Scribes: Alhussein Fawzi

1 Learning Non-Linear Classifiers

In the previous lectures, we have focused on finding linear classifiers, i.e., ones in which the decision
boundary is a hyperplane. However, in many scenarios the data points cannot be really classified in this
manner, as there simply might be no hyperplane that separates most of the positive examples from the
negative ones - see, e.g., Figure 1 (a).

Clearly, in such situations one needs to resort to more complex (non-linear) classifiers and thus
one would expect that there is no use here for the linear classification algorithms we developed so far.
Fortunately, as we will see in this lecture, this is not really the case as there actually are powerful and
convenient ways of performing a non-linear classification by building on the algorithms for the linear
one. In particular, we will see two very useful and quite broadly-applicable techniques: the Kernel Trick
(or just kernelization) and boosting.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) Original data samples

0

20

40

60

80

−100

−50

0

50

(b) Samples in the high dimensional space

Figure 1: Mapping data samples to a high dimensional space can make them linearly separable.

2 The Kernel Trick

To describe the Kernel Trick, let us consider the example depicted in Figure 1. In this simple case, we
have data points living in R2 and it is easy to see that there is no good linear classifier here.

However, the key observation to make is that if we appropriately map this two-dimensional data into
a higher dimension (namely, R3),then linear separation (in this new host space) becomes possible. More

1

precisely, consider the mapping φ : R2 → R3 given by

φ((x1, x2))→ (z1, z2, z3) = (x21,
√

2x1x2, x
2
2).

The result of applying this mapping to our data from Figure 1 (a) can be seen in Figure 1 (b). Clearly,
it is now possible to separate the samples with a three-dimensional hyperplane described by some vector
w = (w1, w2, w3) and an offset θ. Furthermore, we can map this hyperplane back from R3 to R2. To
do that, note that the points (z1, z2, z3) belonging to this hyperplane in R3 must satisfy w · z = θ. By
inverting our mapping φ, we get that a point x = (x1, x2) belongs to the projection of this hyperplane
back in R2 iff it satisfies the following equation

w1x
2
1 + w2

√
2x1x2 + w3x

2
2 = θ.

It is not hard to see that this equation describes an ellipse in R2. So, in this way, we managed to use
linear classification algorithm to find a (highly) non-linear classifier.

The above example provides a very appealing approach to dealing with a data that is not linearly
separable. However, before this technique can be really useful in general setting, it has some important
shortcoming that we need to address. Namely, even if we know a mapping φ whose application will make
the data linearly separable, applying it to our dataset might be computationally quite expensive. Also,
running the linear classification algorithm on the (very) high-dimensional image of our data might add
considerable running time overhead.

Fortunately, these complications can be easily avoided. Indeed, note that the linear classification
algorithms that we have studied so far (Perceptron, Winnow algorithm, and SVMs) interact with the
data in a very specific way – all they need to do is to be able to compute inner products of the (mapped)
data points. More precisely, the only information that these algorithms require is to be able to compute
an inner product of a given sample xj and the candidate classifier w - based on this information alone
these algorithms can compute the final classifier wf . Furthermore, all these algorithms have a key
property that each candidate classifier they use (as well as, the final one) can be always represented as
a combination of some data points. So, imagine that for each i and j, one was supplied with the value
K(xi, xj) of the inner product of the mappings of vectors xi and xj , i.e., K(xi, xj) = φ(xi) ·H φ(xj)
(where ·H denotes inner product in the high-dimensional space we perform linear separation in). Clearly,
one could compute the inner product needed by the algorithm as:

w ·H φ(xi) = (
∑
j

cjφ(xj)) ·H φ(xi) =
∑
j

cjK(xi, xj),

where cjs are coefficients of the combination of data points that describes w.
To make it more concrete, below is the “kernelized” version of Perceptron algorithm:

1. Start with ct ← (0, · · · , 0)(∈ Rm)

2. In round t:

• Check if ∃jt with
m∑
i=1

ctiK(xi, xjt) ≤ 0.

• If not: output ct.

• Otherwise: set ct+1 ← ct + δjt , where δjti = 1 if i = jt and 0 otherwise.

Note that we have made here a slight modification of the “original” Perceptron algorithm (as seen in
Lecture 2). Indeed, as opposed to learning the normal vector of the separating hyperplane w (which might
be of very large dimension), we maintain only its implicit representation via the coefficients associated

with each data point. (That is, we have wt =

m∑
i=1

ctiφ(xi), for each t.)

2

Now, all of the above means that there is no need to ever compute (or explicitly work with) the
high-dimension mapping of our data. All one needs to know is just the kernel of this mapping, i.e.,
K(·, ·)!
Note that in our example this kernel is

K((x1, x2), (y1, y2)) = x21y
2
1 + 2x1x2y1y2 + x22y

2
2 = ((x1, x2) · (y1, y2))2,

so it can be easily computed using the inner product of the original (lower-dimensional) space.
In general, a popular choice of kernels (that we used also in our example here) are so-called polynomial

kernels:

K1(x, y) = (1 + x1y1)(1 + x2y2) · · · (1 + xnyn)

K2(x, y) = (1 + x · y)d

These kernels map the vectors into a space of products of their subsets, i.e.,

φ((x1, . . . , xn)) = (1, x1, . . . , xn, x1x2, x1x3, . . .).

Thus we see that using the Kernel Trick with these kernels not only avoids the explicit computation
of the mapping, but also does not require computing directly the scalar products in the corresponding
(very) high dimensional space. It is worth pointing out here that using the full polynomial kernel (such
as the kernel K1(·, ·) and K2(·, ·) for large value of d) might lead to poor generalization. This is so as
the resulting separators are too powerful and can “overfit” the data. Therefore, one usually tends to use
polynomial kernels with relatively small degree d.

The general rule of thumb for choosing a kernel is to have it aggregate somehow the inherent similarity
of data points in a given problem. For instance, one can see in our example that one reason for the
original data to be not linearly separable was that any two data points xi and xj such that xi = −xj , had
their inner product negative, even though they are in the same class (as their distance from the origin is
the same). On the other hand, after applying our kernel, one would have K(xi, xj) = (xi · xj)2 = ||xi||4
which is positive (as one wants it to be).

In some sense, an “ideal” kernel would be such that (1) K(xi, xj) = 1 if the labels of xi and xj agree,
−1 otherwise; and (2) simultaneously have K(·, ·) correspond to some simple (and thus well-generalizing)
classifier family. (Note that getting a kernel with property (1) alone is very easy - one can just use (1)
as a definition of the kernel - the difficulty would be in ensuring that the property (2) holds too.)

3 Boosting

Boosting is a powerful and very general technique that allows one to combine several simple classifiers
(that have only mildly good performance on our data) to produce a classifier whose performance is
significantly better. To make this precise, we need to introduce two definitions. In what follows, let
{(x1, l1), . . . , (xm, lm)} be our set of samples together with their correct labels.

Definition 1 A classifier h is ν-strong, for some ν ≥ 0, if we have h(xj) = lj for at least (1 − ν)
fraction of samples xj.

Roughly speaking, ν-strong classifier, for some sufficiently small ν, is exactly what we would like to
obtain.

Definition 2 A family of classifiers H is γ-weak, for some γ > 0, if for any given distribution D on
the samples, there exists a classifier such that

Prxj←D(h(xj) = lj) ≥ 1

2
+ γ.

3

Note that for any distribution D, one can always get a classifier with the classification success of
at least 1

2 by just performing random guessing (or always outputting the label that is more probably
under distribution D). Thus, in the definition of the γ-weak classifiers, we want to always be able to get
an advantage of at least γ over such a random guess. Also, note that unlike the definition of ν-strong
classifier where all the points have the same weight (i.e., one can think that D is an uniform distribution
there), we allow D to be any distribution here.

Now, the boosting technique provides us with a way of obtaining a ν-strong classifier – for as small
(but non-zero) ν as we desire – by taking a combination (majority) of just a small number of γ-weak
classifiers.

Theorem 1 For any ν > 0, and H being γ-weak, for some γ > 0, there exists hf that is ν-strong and
hf is a combination (majority) of at most 4

γ2 ln
(
1
ν

)
classifiers from H.

Note that the statement of the theorem does not say anything about efficiently finding such a ν-strong
classifier. However, as we will see, the proof of this theorem actually gives us an efficient algorithm for
this task, as long as, finding a good-enough classifier in H, for a given distribution D, can be done
efficiently.

The proof of the theorem will be based on the Multiplicative Weights Update algorithm and, in the
course of it, we will need certain refinement of the performance guarantee of MWU algorithm (cf. the
original performance bound given by Theorem 6 in notes from Lecture 1).

Theorem 2 For any non-empty subset S of n experts, the Multiplicative Weights Update algorithm
suffers a total loss lMWU of at most

lMWU ≤ max
i∈S

(
∑
t

lti + ε
∑
t

|lti |) +
ρ ln n

|S|

ε
,

where 0 ≤ ε ≤ 1
2 and each lti ∈ [−ρ, ρ].

Intuitively, the above theorem shows that if a significant fraction of the experts (instead of just the
best one) has good performance, the loss of MWU algorithm converges to these performance much faster.
Proving this theorem is a part of the problem set.
Proof (of Theorem 1)

As already mentioned, to prove this theorem, we will use the Multiplicative Weights Update algo-
rithm. The setup of the learning-from-expert-advice framework is as follows: we have m “experts” (one
expert per sample), and we set ε = γ and ρ = 1. In each round t, we do the following:

1. Let (pt1, . . . , p
t
m) be the convex combination provided by the MWU algorithm.

2. Find ht ∈ H such that Prxj←pt(ht(xj) = lj) ≥ 1
2 +γ (note that such a ht exists since H is assumed

to be γ-weak).

3. Set the loss of each expert j to be: ltj = 1 if ht(xj) = lj (correct classification) and 0 otherwise
(misclassified sample).

We stop the above procedure after T = 4
γ2 ln

(
1
ν

)
iterations and take hf = maj(h1, . . . , hT), where maj(·)

is the majority vote, i.e., hf (x) = 1 if at least half of the classifications h1(x), . . . , hT (x) is 1, and −1
otherwise.

Note that in the above procedure we penalize the experts (samples) that were predicted correctly.
This is to ensure that the distribution (pt1, · · · , ptm) shifts its focus towards experts (samples) that our
classifiers have done pretty poor job on so far. This way we ensure that the subsequent classifiers will
focus on these troublesome samples.

Now, to prove that hf is ν-strong, assume that it is not the case. This means that there exists a
subset S̄ of cardinality larger than νm such that all samples in this subset are misclassified by hf .

4

Since hf is obtained by a majority vote on the hts, any sample in S̄ is misclassified by at least T
2

hts, which in turn means that it is correctly classified by at most T
2 of them. Therefore, by construction

of our loss functions, the experts corresponding to these samples have relatively small loss. Namely, we
have for any j ∈ S̄, ∑

t

ltj ≤
T

2
.

On the other hand, the total loss of the MWU is given by:

lMWU =
∑
t

ltMWU =
∑
t

∑
j

ptj l
t
j =

∑
t

∑
j

ptj I[ht(xj) = lj] =
∑
t

Prxj←pt(h
t(xj) = lj)

≥
∑
t

(1/2 + γ)

= T (1/2 + γ),

where we used the fact that H is γ-weak and the expression I[ht(xj) = lj] is 1 if ht(xj) = lj and 0
otherwise.

Now, by making use of Theorem 2 (with S := S̄), we finally get:

T (1/2 + γ) ≤ (1 + γ)
T

2
+

ln
(
1
ν

)
γ

,

where we use the fact that if each expert in S̄ has a loss of at most T/2 then so has the maximum-loss
one.
Simplifying the previous expression, we get T ≤ 2 ln 1

ν

γ2 which contradicts our choice of T =
4 ln 1

ν

γ2 . The
theorem follows.

5

