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Lecturer: Aleksander Mądry Scribes: Dorina Thanou, Xiaowen Dong

1 Introduction

Over the next couple of lectures, our focus will be on graphs. Graphs are one of the most basic objects
in computer science. They have plethora of applications – essentially, almost any CS problem can be
phrased in graph language (even though, of course, it is not always the best thing to do).

Formally, we view a graph G = (V,E) as consisting of a set V of vertices with a set E of edges that
connect pairs of vertices, i.e., we have E ⊆ V × V . For an edge e = (v, u), we call v and u the endpoints
of the edge e. Sometimes, we consider graphs that are directed, i.e., we assume that each edge e = (v, u)
is directed from its tail v to its head v. (Note that, as a result, in directed graphs the edge (u, v) is
different than the edge (v, u).) To emphasize this difference, we usually call the edges of a directed graph
arcs. In Figure 1, we see an example of an undirected and directed graph. We will usually denote the
size |V | of a vertex set of a graph by n and the size |E| of its edge set by m.

Finally, from time to time, we will be considering weighted graphs G = (V,E,w), in which we
additionally have a weight vector w that assigns an non-negative weight we to each edge e.

(a) (b)

Figure 1: (a) Undirected graph (b) Directed graph

1.1 How To Explore a Graph?

Given a graph G = (V,E), one of the most basic graph primitives is exploration of that graph from a
particular vertex s. There are many different ways to do this – most popular ones are the depth-first
and breath-first search – and depending on applications some of them might be more preferable than
the others.

Today, we want to introduce yet another way of exploring the graph – via so-called random walks –
that is fundamentally different than the most obvious ones, but turns out to provide us with a consid-
erable insight into the structure of the underlying graphs.

2 Random Walks in Graphs

Given an undirected graph G = (V,E) and some starting vertex s, a random walk in G of length t is
defined as a randomized process in which, starting from the vertex s, we repeat t times a step that
consists of choosing at random one of the neighbors v′ of the vertex v we are at and moving to it. (If
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the graph is weighted then we transition to a neighbor v′ with probability that is proportional to the
weight we of the connecting edge e = (v, v′).)

Note that this definition is also valid for a directed graph (we just always pick an arc that is leaving
v, i.e., has v as its tail), but – for reasons that will become clear later – we focus our treatment on
undirected case.

2.1 Random Walk as a Distribution

Clearly, random walks as defined above are naturally viewed as trajectories determined by the outcome
of randomized choices we make at each step. However, today we want to focus on a more global view
on them and thus we will keep track not of these trajectories directly, but instead of the probability
distribution on vertices that random walks induce.

More precisely, for a given vertex v, we define ptv to be the probability that we are at vertex v after
t steps of the random walk. For notational convenience, we will represent all these probabilities as a
single n-dimensional vector pt ∈ RV with the vth coordinate corresponding to ptv. Clearly, if our random
walks starts from some vertex s, the initial distribution p0 of the random walk can be defined as

p0
v =

{
1, if v = s
0, otherwise.

Now, we can express the evolution of the distribution pt as

pt+1
v =

∑
e∈E,e=(u,v)

1

d(u)
ptu for each v ∈ V , (1)

where d(u) is the degree, i.e., number of adjacent edges, of vertex u. (If the graph is weighted, we want
d(u) denote the weighted degree of vertex u, that is, the sum of weights of adjacent edges, and then
pt+1
v =

∑
e∈E,e=(u,v)

we

d(u)p
t
u.)

Intuitively, the evolution of the probability distribution pt as a function of t can be seen as describing
a diffusion processes in the underlying graph.

2.2 Lazy Random Walk

It will be sometime convenient to consider a slight variation of random walk, in which in each step, with
probability 1/2, we stay at the current vertex and only with probability 1/2 we make the usual step
of random walk. This variation is called lazy random walk and it can be viewed as a vanilla version of
random walk in a graph in which we added d(u) self-loops to every vertex u.

Formally, the evolution of the probability distribution p̂t of such a lazy random walk is given by

p̂t+1
v =

1

2
p̂t +

1

2

 ∑
e∈E,e=(u,v)

1

d(u)
p̂tu

 for each v ∈ V . (2)

2.3 Matrix Definitions

As we will see soon, linear algebra is the “right” language for analyzing random walks. So, to enable us
to use this language, we want to express the evolution of random walks in purely linear-algebraic terms.
To this end, given a graph G = (V,E), let us define the adjacency matrix A of G as an n-by-n matrix
with rows and columns indexed by vertices and

Au,v =

{
1 if (u, v) ∈ E
0 otherwise.

(3)

2



Now, we define the walk matrix W of G as an n-by-n matrix given by

W := AD−1,

where D is the degree matrix of G, i.e., a diagonal n-by-n matrix whose each diagonal entry Dv,v is equal
to the degree d(v) of vertex v.

It is easy to verify that the walk matrix W can be explicitly written as

Wu,v =

{ 1
d(v) if (u, v) ∈ E
0 otherwise.

(4)

As a result, we can compactly rewrite the evolution of the probability distribution pt (cf. Equation (1))
as

pt+1 = Wpt = W tp0. (5)

Similarly, in case of lazy random walk, if we define lazy walk matrix Ŵ of G to be a matrix

Ŵ :=
1

2
I +

1

2
W, (6)

where I is the identity matrix, we can conveniently express the evolution of the distribution p̂t (cf.
Equation (2)) as

p̂t+1 = Ŵ p̂t = Ŵ tp̂0. (7)

Finally, if the graph G = (V,E,w) is weighted then one just needs to adjust the definitions of the
adjacency matrix A and degree matrix D to make Au,v := we if e = (u, v) is an edge in G, and Dv,v to
be equal to the weighted degree of vertex v.

3 Stationary Distribution

The main goal of today’s lecture is understanding the behavior of the (lazy) random walk distributions pt

and p̂t for large t. At first, given the randomized character of the random walk and its crucial dependence
on graph topology, one might expect this behavior to be very complex and hard to describe.

However, somewhat strikingly, it turns out that the shape of the distributions pt and p̂t for t→∞ is
very easy to describe and depends only mildly on the topology of the graph. (As we will see later, it is
actually the behavior of these distributions for moderate values of t that really carries more substantial
information about the graph structure.)

The key object that will be relevant here is the so-called stationary distribution π of an (undirected)
graph G given by

πv :=
d(v)∑
u∈V d(u)

. (8)

Intuitively, in this distribution, the probability of being at vertex v is proportional to its degree.1

The crucial property of this distribution is that

Wπ = Ŵπ = π, (9)

i.e., once the distribution pt or p̂t is equal to π, for some t, it will remain equal for all t′ ≥ t. We can
thus view the stationary distribution as a “steady state” of a random walk in G.

Now, the surprising fact about random walks is that in every connected non-bipartite graph the
random walk distribution pt on this graph is actually guaranteed to converge to π when t → ∞. No

1A stationary distribution can also be defined for directed graphs, but its form and conditions for existence are slightly
more involved.
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matter what the starting distribution p0 is. (A graph G = (V,E) is bipartite if its set of vertices V can
be partitioned into two disjoint sets P and Q such that all the edges in E have one endpoint in P and
one in Q, i.e., E ⊆ P ×Q.)

The reason why there is no convergence when the graph is not connected is obvious. On the other
hand, to see why there might be no convergence to π when the graph is bipartite, consider p0 to be a
distribution that is supported only on one side of the bipartition, i.e., only on P or only on Q. Then, in
each step of random walk, the support of pt will move entirely to the other side and thus, in particular,
pt will be always different for ts with different parity.

It is not hard to see that the above problem with bipartite graphs is no longer present when we
consider the lazy variant of random walks. Indeed, for the lazy random walk distribution p̂t such
convergence happens always – even in bipartite graphs – as long as the underlying graph is connected.
(This is one of the main reasons why it is more convenient to work with lazy random walks instead of
the vanilla ones.)

3.1 Spectral Matrix Theory

Our goal now is to prove the convergence properties stated above. Looking at Equations (5) and (7),
one can see that understanding the distributions pt and p̂t for large t is equivalent to understanding the
product of a power of the walk matrices W t and Ŵ t with the vector p0, for large values of t. It turns
out that there is a very powerful linear-algebraic machinery – called spectral matrix theory – that can be
used for this purpose.

To introduce this tool, let us define a λ ∈ R to be an eigenvalue of a square matrix M iff there exists
some vector v such that

Mv = λv.

The vector v is called the eigenvector of M corresponding to the eigenvalue λ.
Although every real n-by-n matrix M has n eigenvalues (but not necessarily real ones!), when M is

symmetric, i.e., Mi,j = Mj,i, for all i, j, then these eigenvalues are especially nice. Namely, we have then
that

1. M has exactly n eigenvalues λ1, . . . , λn (some of these λis can be equal) that are real.

2. One can find a collection v1, . . . , vn of eigenvectors of M , where vi is the eigenvector corresponding
to eigenvalue λi, such that all vis are orthogonal, i.e., (vi)T vj = 0 if i 6= j.

Now, the fundamental importance of existence of the full set of n eigenvalues (and corresponding
eigenvectors) of the matrix M lies in that we can express any power (in fact, any real function) of M in
a very convenient way via its eigenvalues and eigenvectors. Namely, we have that

M t =
∑
i

λtiv
i(vi)T .

(More generally, for any real function f of M , we have f(M) =
∑
i f(λi)v

i(vi)T .)
So, a product of M t and any vector v is just equal to

M tv =
∑
i

λtiv
i(vi)T v,

which is an expression whose only parts that depend on t are the powers of eigenvalues and, as a result,
understanding the evolution of M tv as a function of t boils down to understanding the eigenvalues of
M .
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3.2 Proof of Convergence

In the light of the above discussion, we would like now to analyze the distribution pt (resp. p̂t) by
treating it as a product of t-th power of the matrix W (resp. Ŵ ) and the vector p0, and applying to it
the spectral approach we introduced. Unfortunately, the problem is that the matrices W and Ŵ might
not necessarily be symmetric and thus they might, in particular, not even have real eigenvalues.

It turns out, however, that there is a way to remedy this problem, provided that the graph is
undirected. (When the graph is directed, it might actually really be the case that the walk matrices do
not have eigenvalues and thus analyzing them becomes more challenging – this is the main reason why
we focus on undirected graph case.) To this end, we consider the following matrix S

S := D−
1
2AD−

1
2 = D−

1
2WD

1
2 .

It is easy to see that S is symmetric, as for undirected graphs the adjacency matrix A is symmetric. So,
S has to have a set of n eigenvalues ω1 ≥ . . . ≥ ωn (for notational convenience, we numbered them in
non-increasing order) and corresponding set of orthogonal eigenvectors v1, . . . , vn.

Now, the crucial observation is that, for any i,

W (D
1
2 vi) = D

1
2SD−

1
2D

1
2 vi = D

1
2Svi = D

1
2ωiv

i = ωi(D
1
2 vi),

i.e., ωi is an eigenvalue of the walk matrix W corresponding to an eigenvector D
1
2 vi.

This proves that W has a full set of n real eigenvalues (even though it is, in general, not symmetric!)
and thus we can write pt as

pt = W tp0 = (D
1
2SD−

1
2 )tp0 = D

1
2 (StD−

1
2 p0) = D

1
2 (

n∑
i=1

ωtiv
i(vi)TD−

1
2 p0), (10)

in which, again, the only terms depending on t are the powers of the eigenvalues ωi.
So, we need now to bound the values of ωi to be able to understand how the limit of pt for t → ∞

looks like. To this end, we prove the following lemma.

Lemma 1 For any connected graph G = (V,E), we have that |ωi| ≤ 1, for each i, ω1 is equal to 1, and
π is an eigenvector of W corresponding to this eigenvalue. Furthermore, ωi < 1 for i > 1.

Proof The fact that ω1 = 1 and π is the corresponding eigenvector follows directly from the property
of the stationary distribution – cf. (9). Now, to see that |ωi| ≤ 1, for all i, let yi = D

1
2 vi be an

eigenvector of W corresponding to the eigenvalue ωi. Let u be the vertex that maximizes

|yiu|
d(u)

,

among all the vertices of G.
By definition of ωi, we have that

ωiy
i
u =

∑
(w,u)∈E

yiw
d(w)

, (11)

and thus

|ωi||yiu| ≤
∑

(w,u)∈E

|yiw|
d(w)

≤
∑

(w,u)∈E

|yiu|
d(u)

= |yiu|,

where in the second inequality we used the maximality of u.
So, indeed |ωi| ≤ 1.
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To show that ωi < 1 when i > 1, let u be the vertex that maximizes

yiu
d(u)

,

among all the vertices of G. Note that if ωi = 1 then the only way the Equality (11) can hold is if

yiu
d(u)

=
yiw
d(w)

,

for all the neighbors of u in G. But, by repeating this argument iteratively and using the fact that G
is connected, we can conclude that the above equality holds for any two vertices of the graph. This, in
turn, means that

yi = Cπ,

for some C, i.e., yi has to be a scalar multiple of the stationary distribution vector π. In this way, we
have shown that any eigenvector of W corresponding to the eigenvalue of 1 has to be co-linear with π,
which implies that there can be only one eigenvalue equal to 1.

In one of the problem sets, you will be asked to prove that W has an eigenvalue equal to −1 only if
the graph G is bipartite. So, in the case of G being connected and non-bipartite, we have that |ωi| < 1
for i > 2 and thus in the limit of t → ∞ the powers of these eigenvalues will vanish. That is, (10)
becomes

pt = W tp0 = D
1
2 (

n∑
i=1

ωtiv
i(vi)TD−

1
2 p0)

t→∞
= D

1
2 v1(v1)TD−

1
2 p0 = Cπ = π,

where the last two equalities follow as any eigenvector of W corresponding to ω1 = 1 has to be of the
form Cπ, for some C, (cf. Lemma 1) and W tp0 has to be a valid probability distribution, which means
that C = 1.

This concludes the proof of convergence for the vanilla version of the random walks. To see how the
convergence for the lazy variant follows, note that by definition of the lazy walk matrix Ŵ (6), we have
that

ω̂i =
1

2
+

1

2
ωi,

for any i, where ω̂1 ≥ . . . ≥ ω̂n are the eigenvalues of the matrix Ŵ . Also, it must be the case that the
eigenvectors of Ŵ and W coincide.

So, by Lemma 1, we have that 0 ≤ ω̂i ≤ 1 and, if G is connected, ω̂1 = 1 is the only eigenvalue of
value 1 (with π being it corresponding eigenvector). Thus, by repeating the reasoning we applied to W
above, we can conclude that again

p̂t = Ŵ tp0 = D
1
2 (

n∑
i=1

ω̂tiv
i(vi)TD−

1
2 p0)

t→∞
= D

1
2 v1(v1)TD−

1
2 p0 = π,

as desired. (Note that we do not need to assume here that G is non-bipartite.)

4 The Convergence Rate

Once we established the convergence result, it is natural to ask what is the rate at which this convergence
happens. By analyzing Equation (10), one can establish the following lemma. (For convenience, we focus
here on lazy random walk case.)
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Lemma 2 For any graph G = (V,E) and any starting distribution p̂0, we have

‖p̂t − π‖ ≤

√
max
v,u∈V

d(v)

d(u)
ω̂t2,

for any t ≥ 0.

For a connected graph G, the bound on convergence rate of a (lazy) random walk given by the above
lemma is mainly dependent on how much smaller than 1 is the value of ω̂2. In particular, if we define
the spectral gap λ̂(G) of the graph G to be

λ̂(G) := 1− ω2 = 2(1− ω̂2)

then we will have that, for any ε > 0, the number of steps tε needed for the lazy random walk distribution
p̂t to be within ε of the stationary distribution π is O( 1

λ̂(G)
log d̄(G)

ε ), where d̄(G) := maxv,u∈V
d(v)
d(u) is

the degree ratio of G. (The time t 1
2

is sometimes called the mixing time of the graph G.)
As we will see in coming lectures, the spectral gap of the graph is a very important characteristic

of the graph and captures a lot of its structural properties. So, the connection between λ̂(G) and the
mixing time of random walks implies that observing the behavior of the random walks for moderate
values of t, i.e., how fast it converges to stationary distribution, provides us with a lot of information
about the graph. Indeed, a lot of powerful graph algorithms is based on this random walk paradigm.

5 Examples of Mixing Times

To get a feel for how different can the convergence rate (i.e., the mixing time) be in different graphs, we
provide a heuristic analysis of random walk convergence on a few important examples.

1. Consider a path graph Pn on n vertices – cf. Figure 2(a), and assume that our starting vertex is
in the middle. To understand the behavior of random walk in this graph, think about the random
variable Xt that describes the offset (from the middle) of the vertex random walk is at at step t.

Clearly, Xt ∈ [−n/2, n/2] and, ignoring the boundary cases, we can view Xt as a sum of t inde-
pendent random variables that are equally probable to be −1 and 1. Now, it is easy to see that
the standard deviation of the variable Xt is

√
t. So, heuristically, to have a reasonable chance of

reaching one of the path endpoints (which is a a necessary condition for good mixing), we need
this standard deviation to be Ω(n). This implies that the mixing time should be Θ(n2) and thus
the spectral gap λ̂(Pn) has to be O(1/n2) (note that even a tight bound on mixing time provides
only an upperbound on the spectral gap). As we will see later, even though our argument wasn’t
fully formal, the bounds we get are actually tight. In particular, λ̂(Pn) is Θ(1/n2).

2. Consider now a full binary tree graph Tn on n vertices, as depicted at Figure 2(b). Let us consider
a random walk in this graph that starts from one of the leaves. Clearly, in order to mix, we need
to be able to reach the root of the tree with good probability. (In fact, once we reach the root,
it will take only little time to mix.) The root is at distance of only log2(n) away from the leaf,
however, every time we “climb” towards the root we are twice as likely to go down rather than go
further up. One can see that such a process requires Θ(2d) steps, in expectation, to reach a point
that is d levels from the leaf. Therefore, we expect the mixing time to be Θ(2log2 n) = Θ(n) and
thus spectral gap to be O(1/n). It turns out that the spectral gap λ̂(Tn) is indeed Θ(1/n).

3. Let us analyze now the dumbbell graph Dn shown in Figure 2(c). It consists of two complete graphs
Kn/2 on n/2 vertices that are connected by only one bridge edge. (Complete graph Kn is a graph
in which every vertex is connected to every other vertex.) Consider a random walk starting at one
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of the vertices that are not endpoints of the bridge edge. For this walk to mix, we need to be able
to, in particular, pass through the bridge edge to reach the other complete graph. However, in
each step, we have only Θ(1/n) chance of moving to the endpoint of the bridge edge, and then we
have only Θ(1/n) chance to move to its other endpoint and thus cross the bridge. So, crossing to
other side in any two consecutive steps happens with probability of Θ(1/n2) and thus the mixing
time should be roughly Θ(n2). This leads to upper bound on the spectral gap of this graph being
roughly O(1/n2) and, again, this bound turns out to be asymptotically tight.

4. Finally, let us consider the bolas graph Bn depicted in Figure 2(d). The only difference from the
dumbbell graph is that in this graph we have a path graph Pn/3 that connect the two complete
graphs Kn/3 instead of just one bridge edge. Again, our heuristic for estimation of the mixing
time is to consider the expected time to cross from one complete graph to the other. By similar
reasoning, we get that the probability for us to enter the path is Θ(1/n2), but now one can show that
we have only probability of Θ(1/n) of reaching the other end of the path before exiting it through
the endpoint we entered. This hints at the mixing time of Θ(n3) and, once more, the resulting
upperbound on the spectral gap of this graph turns out to be tight, i.e., λ̂(Bn) = Θ(1/n3). (As
we will see later, O(n3) is the worse-case bound on the number of steps (in expectation) required
to explore any graph of n vertices. So, bolas graph is an example of an graph that has worst
bottlenecks from the point of view of random walks.)
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(a) (b)

(c) (d)

Figure 2: Some example graphs. (a) Path graph Pn (b) Binary tree graph Tn (c) Dumbbell graph Dn

(d) Bolas graph Bn
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