
CS-621 Theory Gems September 30, 2012

Problem Set 1
Lecturer: Aleksander Mądry Due: October 14, 2012

Problem 1. Recall the stock market framework (see Section 2 in notes from Lecture 1). Prove that, in
the worst case, no deterministic prediction algorithm for this framework can make less than 2m∗+log2 n
mistakes. Here, n is the size of the expert set and m∗ is the number of mistakes made by the best expert.

Note: This means that it is essential to employ randomness to obtain the performance guarantee of the
Randomized Weighted Majority algorithm (cf. Lemma 5 in the notes).

Problem 2. Consider the (general) learning-from-expert-advice framework (see Section 5 in notes from
Lecture 1) with n experts. A popular measure of algorithms’ performance in this framework is so-called
regret. The regret is the difference lALG − l∗ between the total loss lALG of the algorithm and the loss
l∗ = mini

∑T
t=1 l

t
i of the best expert in hindsight.

Assume that the game lasts for T rounds (and this value is known in advance) and the loss lti in each
round t is in the interval [0, 1].

(a) Show that the regret suffered by the Multiplicative Weights Update algorithm (with appropriate
parameters) is O(

√
T log n).

(b) How important was it that the MWU algorithm was allowed to switch between experts in each round,
while we compared its performance to the best fixed expert? To answer this, show that for any
algorithm ALG, one can construct an example in which the total loss lALG of this algorithm will be
at least T (1−1/n), while the loss l∗CH of the best “changing” expert is 0, i.e., l∗CH =

∑T
t=1 mini l

t
i = 0.

Problem 3. Show that for any (non-empty) subset S of n experts, the Multiplicative Weights Update
algorithm suffers a total loss lMWU of at most

lMWU ≤ max
i∈S

(
∑
t

lti + ε
∑
t

|lti |) +
ρ ln n

|S|

ε
,

where 0 ≤ ε ≤ 1
2 and each lti ∈ [−ρ, ρ].

Note: This means that MWU algorithm has better performance when there are many good experts.

Problem 4. (Extra credit) Consider again the setting from Problem 2. That is, the (general)
learning-from-expert-advice framework with n experts, the total number of rounds T known upfront,
and lti ∈ [0, 1] for each i and t.

We now would like to be able to bound our regret not with respect to a one “fixed” expert, but to a
“changing” expert that can switch at most k times during the execution of the game. (Of course, we
do not know when the switches happen.) Design an algorithm for this setting whose regret is at most
O(
√
kT log Tn).1

1The optimal bound one can get here is O(
√

kT logn), but you do not need to show that.

1

