
CS-621 Theory Gems November 27, 2012

Problem Set 4
Lecturer: Aleksander Mądry Due: December 21, 2012

Problem 1. Imagine that we want to use a bit array B of only m bits to implement a membership
oracle for a set S = {s1, . . . , sn} of size n, in the case when the elements of S are coming from some
(very) large universe U , i.e., n << |U|.

To this end, we start with all the bits of the array B set to zero and, for each si ∈ S and each j = 1, . . . , k,
we set B[hj(si)] to one. Here, h1, . . . , hk are uniformly random (and independent) hash functions with
hj : U → [m], for each j. (That is, each hj hashes elements of the universe U into the set of numbers
between 1 and m.)

Now, to answer a membership query for a given element s ∈ U , we output “Yes” if B[hj(s)] is set to 1
for all j = 1, . . . , k; and “No” otherwise.

(a) We cannot expect this membership oracle B to give always correct answers. (Why?)
Compute, for a given query s ∈ U and fixed set S, what is the probability p1 of having a “false
negative”, i.e., of B answering “No” when actually s ∈ S? What is the probability p2 of having a
“false positive”, i.e., of B answering “Yes” when actually s /∈ S. (Probability here is taken with
respect to the randomness of the hash functions h1, . . . , hk.)

(b) For a given ratio ρ := m
n of the number of bits m to the size n of the represented set S, what is the

value of k (as a function of ρ) that minimizes the sum p1 + p2?

Note: This approach is a very popular method for storing sparse sets, i.e., sets whose size is much
smaller than the size of the universe.

Problem 2. We want to show that the Count-Min algorithm can be used to solve k-sparse `1-
approximation problem. More precisely, we want to design a streaming algorithm that, for any k ≥ 1,
ε > 0 and δ > 0, has O(kε log n log m

δ) space complexity and, with probability at least 1− δ, computes a
k-sparse vector x̃ such that

|x− x̃|1 ≤ (1 +O(ε))Errk1 , (1)

where x is the vector of true element frequencies and Errk1 = minx̄,‖x̄‖0≤k |x̄− x| is the error of the best
k-sparse `1-approximation to x.

(a) Consider a variation of the Count-Min algorithm in which each of the d = Θ(log m
δ) arrays Al has

length r = 4k
ε (instead of 2

ε). Show that, as long as, the frequency vector x is non-negative (i.e.,
the stream is well-formed)1, with probability at least 1 − δ, the estimate vector x̂ returned by this
algorithm is such that

|xj − x̂j | ≤
ε

k
Errk1 ,

for each element j ∈ [m].

Note: If you get stuck on this problem, email the lecturer to get a hint.

(b) For a given vector x′, let x′U , for some U ⊆ [m], be the |U |-sparse vector resulting from zeroing
out all the coordinates of x′ except the ones in the set U . Show that if we run the variation of the
Count-Min algorithm from (a) and take x̃ := x̂Û , where Û is the set of k largest coordinates of x̂,
then such x̃ satisfies condition (1).

Hint: Note that |x− x̃|1 = |x|1 − |xÛ |1 + |xÛ − x̂Û |1 and that the best k-sparse approximation to x
corresponds to taking x̄ := xŪ for some (unknown to us) Ū ⊆ [m] of size k.

1Note that this assumption is required for the version of the Count-Min algorithm we analyzed in class to work.

1

Problem 3. Consider a scenario in which the data stream consists of m (distinct) edges of a graph over
n vertices (think about edges being elements of [n]× [n]).

(a) Prove that any deterministic streaming algorithm that can determine whether the graph is bipartite
or not has to have Ω(n) space complexity.

(b) Design a deterministic streaming algorithm that solves this task using O(n log n) space.

Note: The number of edges m can be Ω(n2), so a trivial algorithm that just stores all the edges will
not have O(n log n) space complexity.

Problem 4. Let us again consider the scenario when the data stream encodes an n-vertex graph with
m edges. Let T be the number of triangles of this graph, i.e., T is the number of triples {u, v, w} such
that all the three edges (u, v), (v, w), and (u,w) are present in the graph.

(a) Prove that any deterministic algorithm that computes T has to have Ω(n2) space complexity.

(b) (Extra credit) Design a randomized algorithm that, for any ε > 0 and P > 0, has O(1
ε2P) space

complexity and approximates T up to an additive εmn error.

Note: If you get stuck on this problem, email the lecturer to get a hint.

2

