CS-621 Theory Gems November 27, 2012

Problem Set 4
Lecturer: Aleksander Mqgdry Due: December 21, 2012

Problem 1. Imagine that we want to use a bit array B of only m bits to implement a membership
oracle for a set S = {s1,...,8,} of size n, in the case when the elements of S are coming from some
(very) large universe U, i.e., n << [U].

To this end, we start with all the bits of the array B set to zero and, for each s; € Sandeach j =1,...,k,
we set B[h;(s;)] to one. Here, hq,...,h; are uniformly random (and independent) hash functions with
hj : U — [m], for each j. (That is, each h; hashes elements of the universe I into the set of numbers
between 1 and m.)

Now, to answer a membership query for a given element s € U, we output “Yes” if B[h;(s)] is set to 1
for all j =1,...,k; and “No” otherwise.

(a) We cannot expect this membership oracle B to give always correct answers. (Why?)
Compute, for a given query s € U and fixed set S, what is the probability p; of having a “false
negative”, i.e., of B answering “No” when actually s € S7 What is the probability ps of having a
“false positive”, i.e., of B answering “Yes” when actually s ¢ S. (Probability here is taken with
respect to the randomness of the hash functions hq, ..., hg.)

(b) For a given ratio p := * of the number of bits m to the size n of the represented set S, what is the
value of k (as a function of p) that minimizes the sum p; + po?

Note: This approach is a very popular method for storing sparse sets, i.e., sets whose size is much
smaller than the size of the universe.

Problem 2. We want to show that the Count-Min algorithm can be used to solve k-sparse {;-
approximation problem. More precisely, we want to design a streaming algorithm that, for any & > 1,
€ >0 and § > 0, has O(g lognlog %) space complexity and, with probability at least 1 — 4§, computes a
k-sparse vector T such that

2 — 1 < (14 O(e) Erh, (1)

where x is the vector of true element frequencies and ErrllC = ming ||z,<k |Z — x| is the error of the best
k-sparse {1-approximation to x.

(a) Consider a variation of the Count-Min algorithm in which each of the d = ©(log %§*) arrays A; has
length r = % (instead of %) Show that, as long as, the frequency vector x is non-negative (i.e.,
the stream is well-formed)!, with probability at least 1 — §, the estimate vector # returned by this
algorithm is such that
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for each element j € [m].
Note: If you get stuck on this problem, email the lecturer to get a hint.

(b) For a given vector z’, let z;, for some U C [m], be the |U|-sparse vector resulting from zeroing

out all the coordinates of =’ except the ones in the set U. Show that if we run the variation of the

Count-Min algorithm from (a) and take & := 2, where U is the set of k largest coordinates of Z,
then such Z satisfies condition (1).

Hint: Note that |x — 2|1 = |z[1 — |zy[1 + |vy5 — 2]1 and that the best k-sparse approzimation to x
corresponds to taking T := xg for some (unknown to us) U C [m] of size k.

1Note that this assumption is required for the version of the Count-Min algorithm we analyzed in class to work.



Problem 3. Consider a scenario in which the data stream consists of m (distinct) edges of a graph over
n vertices (think about edges being elements of [n] x [n]).

(a) Prove that any deterministic streaming algorithm that can determine whether the graph is bipartite
or not has to have Q(n) space complexity.

(b) Design a deterministic streaming algorithm that solves this task using O(nlogn) space.

Note: The number of edges m can be Q(n?), so a trivial algorithm that just stores all the edges will
not have O(nlogn) space complexity.

Problem 4. Let us again consider the scenario when the data stream encodes an n-vertex graph with
m edges. Let T be the number of triangles of this graph, i.e., T is the number of triples {u, v, w} such
that all the three edges (u,v), (v,w), and (u,w) are present in the graph.

(a) Prove that any deterministic algorithm that computes T has to have 2(n?) space complexity.

(b) (Extra credit) Design a randomized algorithm that, for any ¢ > 0 and P > 0, has O(=5) space

complexity and approximates T up to an additive emn error.

Note: If you get stuck on this problem, email the lecturer to get a hint.



