MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.003: Signals and Systems—Fall 2002

Tutorial for the week of October 7th - October 11th

Office Hours

Monday 3-5pm By Appointment

Important Due Dates:

- NO PROBLEM SET THIS WEEK!!!
- Quiz 1 will be held on Thursday, October 17, from 7:30 pm to 9:30 pm in Walker Memorial. Memorial.
- Quiz 1 review sessions are tentatively scheduled for Wednesday, October 9, from 7-9pm, and Thursday, October 10, from 7-9pm. Watch your e-mail for schedule changes and room announcements.

Today: Part I (Review)

- 1. CT and DT Fourier Series
- 2. Frequency Response
- 3. Convolution
- 4. System properties

Today: Part II (Looking forward)

1. Continuous Time Fourier Transform and related concepts (New stuff)

Continuous Time Fourier Series

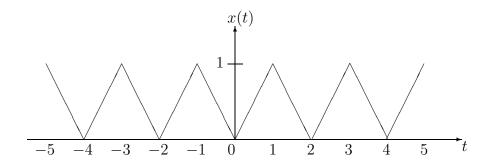
Recall:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_o t} dt \text{, where } \omega_o = \frac{2\pi}{T}.$$

[Example]

1. The periodic waveform, x(t) shown below, has Fourier coefficients a_k .



- (a) Find a_0 .
- (b) Find the Fourier series for $\frac{dx(t)}{dt}$.
- (c) Use the result of (b) and properties of the continuous-time Fourier series to help determine the Fourier coefficients of x(t).

Discrete Time Fourier Series

Recall:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_o n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jn\omega_o k} , \text{ where } \omega_o = \frac{2\pi}{N}.$$

[Example]

1. Suppose we are given x[n], y[n], and z[n] as follows

$$x[n] = 1 + \cos(\frac{7\pi}{3}n)$$

$$y[n] = \sin(\frac{\pi}{3}n + \frac{\pi}{4})$$

$$z[n] = x[n]y[n]$$

$$g[n] = x[n] * y[n]$$

Find the Fourier series coefficients for z[n] and g[n].

Frequency Response

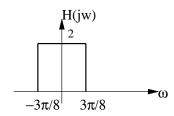
Recall: If we put an input $x(t) = e^{j\omega t}$ into an LTI system we get out:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau)e^{j\omega t}e^{-j\omega \tau}d\tau$$
$$= e^{j\omega t}\int_{-\infty}^{\infty} h(\tau)e^{-j\omega \tau}d\tau$$
$$= e^{j\omega t}H(j\omega)$$

where $H(j\omega) = \int_{\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$. We call $H(j\omega)$ is the frequency response of the system.

[Example]

1. An LTI system has a frequency response depicted below:



If the input, $x(t) = \cos(\frac{\pi}{2}t) + \cos(\frac{\pi}{4}t)$, what will y(t), the output be?

2. Plot the magnitude of the following frequency response:

$$H(e^{j\omega}) = 1 - e^{-j\omega}$$

Work Space

Convolution and System Properties

Recall: When we put a signal x(t) (or x[n]) into a system characterized by an impulse response of h(t) (or h[n]), then the output will be y(t) (or y[n]), which is given by

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

Use Flip and Shift method to determine bounds on t or n (ie, regions where h[n] and x[n] overlap). Then go through the motions of actually calculating the output.

For system properties, there are

- Linearity Check whether the output of $ax_1(t) + bx_2(t)$ is equal to $ay_1(t) + by_2(t)$, where $y_1(t)$ and $y_2(t)$ are the results of inputting $x_1(t)$ and $x_2(t)$, respectively.
- Time Invariance Check whether the output of $x_1(t-t_0)$ is equal to $y_1(t-t_0)$, where $y_1(t)$ is the result of inputting $x_1(t)$.
- Stability Check whether the impulse response, h(t) (or h[n]), is absolutely integrable (summable)

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

If it is absolutely integrable, then the system is stable.

• Causality - Check whether the impulse response, h(t) (or h[n]), is non-zero for negative values of t (or n).

$$h(t) \neq 0$$
 for $t < 0$

If the above condition is true, then the system is **non**-causal.

[Example]

1. Suppose a system takes an input x(t) and produces the output

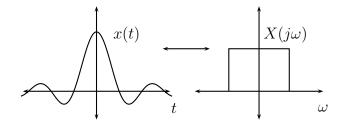
$$y(t) = x(-t+5)$$

Is the system time invariant?

Continous Time Fourier Transform

Today, we'll focus on exploring properties of the CTFT via the sinc-box transform pair.

A function of the form $x(t) = \frac{\sin(W\pi t)}{\pi t}$ is known as a *sinc*. This function has zero crossings whenever $\sin(W\pi t)$ has zero crossings, except at t = 0. Therefore, it has zero crossings at



The Fourier Transform of any x(t) of the form $\frac{\sin(At)}{Bt}$ will be a box in frequency. That is, it will be of the form

$$X(j\omega) = \begin{cases} C & \text{for } |\omega| \le D \\ 0 & \text{otherwise} \end{cases}$$

Likewise, a box in time, will have a Fourier Transform which is a sinc in frequency. All you have to really remember is

$$box \longleftrightarrow sinc$$

Everything else works out by using CTFT properties

[Example]

Find the Fourier Transform of the function $x(t) = \frac{\sin(At)}{Bt}$.

Solution

First, let's characterize this function.

- Zero crossings We know that x(t) has zero crossings whenever At is a multiple of π . Therefore, the zero crossings occur at $\frac{k\pi}{4}$ for all non-zero integers k.
- x(0) We can do this by limits:

$$\lim_{t \to 0} x(t) = \frac{\lim_{t \to 0} \sin(At)}{\lim_{t \to 0} Bt}$$
$$= \frac{\lim_{t \to 0} A \cos(At)}{\lim_{t \to 0} B}$$
$$\Rightarrow x(0) = \frac{A}{B}$$

Next, let's figure out what it's Fourier Transform is going to be. We're going to make use of the following important properties:

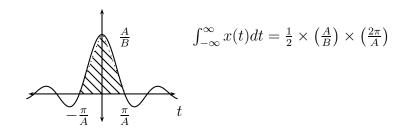
$$X(j0) = \int_{-\infty}^{\infty} x(t)dt$$
$$\int_{-\infty}^{\infty} X(j\omega)d\omega = 2\pi x(0)$$

Since we know that $X(j\omega)$ is of the form

$$X(j\omega) = \begin{cases} C & \text{for } |\omega| \le D \\ 0 & \text{otherwise} \end{cases}$$

we just need to determine C and D.

• C - We know that C = X(j0). This is just the area under x(t). Note that the area under the sinc is just given by the area of the inscribed triangle



Therefore, $C = X(j0) = \frac{\pi}{B}$.

• D - This is the width of the box. Since we know that the area under $X(j\omega)$ is equal to $C \times (2D)$, we can use

$$\int_{-\infty}^{\infty} X(j\omega)d\omega = 2\pi x(0)$$

$$C \times 2D = 2\pi \times \frac{A}{B}$$

$$\frac{\pi}{B} \times D = \pi \times \frac{A}{B}$$

$$\Rightarrow D = A$$

Therefore,

$$X(j\omega) = \begin{cases} \frac{\pi}{B} & \text{for } |\omega| \le A\\ 0 & \text{otherwise} \end{cases}$$

Eigenfunctions of LTI Systems

Complex exponentials are eigenfunctions of LTI systems for both DT and CT.

$$x(t) = e^{j\omega_0 t} \qquad h(t)$$

$$H(j\omega) \qquad y(t) = H(j\omega_0)e^{j\omega_0 t}$$

$$x[n] = \alpha^n \qquad h[n]$$

$$H(e^{j\Omega}) \qquad y[n] = H(\alpha)\alpha^n$$

This is especially nice if the inputs happen to be periodic signals, because then we can represent them as a linear combination of exponentials. The output can then be represented in terms of the sum of the responses to each of these exponentials.

For example, if x(t) is presented to a system with a frequency response $H(j\omega)$, and x(t) is periodic, then

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

and the output, y(t) will be given by

$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

That is, y(t) will have Fourier coefficients $a_k H(jk\omega_0)$.

This tells us meaning of the frequency response, $H(j\omega)$:

The frequency response, $H(j\omega)$, essentially "magnifies" the frequency component of x(t) at ω_0 by the amount $H(j\omega_0)$.

Examples

1. Suppose we have a CT system whose frequency response is as follows:

$$H(j\omega) = \begin{cases} 1 & \text{if } |\omega| = \omega_0 \\ \frac{1}{2} & \text{if } |\omega| = 2\omega_0 \\ 0 & \text{otherwise} \end{cases}$$

Find the output y(t) if the input signal is

$$x(t) = \cos(\omega_0 t) + \cos(2\omega_0 t) + \cos(3\omega_0 t)$$

Work Page

Convolution Review

DT convolution

1. Evaluate the following DT convolution sum:

$$y[n] = (2^n u[n]) * (3^{-n} u[n])$$

CT convolution

- 1. The impulse response of a system is $h(t) = e^{-at}u(t)$, a > 0. Calculate the step response s(t) of the system.
- 2. Evaluate the following CT convolution integral:

$$y(t) = [u(10+t) - u(3+t)] * e^{-t}.$$

Work Space

Extra Problems

1. x[n] is a periodic discrete signal with the following properties:

- (a) It is real.
- (b) It is even.
- (c) Its fundamental period is N = 5.
- (d) $\sum_{n=-2}^{n=2} x[n] = 0$.
- (e) Its Fourier coefficient $a_6 = 1$.
- (f) $\frac{1}{5} \sum_{n=0}^{n=4} |x[n]|^2 = 2$.

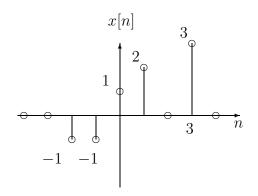
Find an expression that describe x[n] completely.

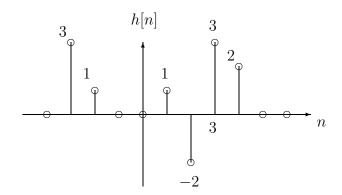
2. Suppose x[n] is a discrete time periodic signal with period 4, such that

$$x[n] = \begin{cases} 2, & n = 0 \\ 1, & n = 1 \\ 0, & n = 2 \\ 1, & n = 3 \end{cases}.$$

- (a) Let $x_a[n] = x[n]$, $x_b[n] = (x[n])^2$, and $x_c[n] = x[-n]$. Find the discrete time Fourier series of each of these signals.
- (b) In addition, if each of these signals is the input to an LTI system, with frequency response $H(e^{j\Omega}) = 3e^{-2j\Omega}$, find the Fourier series of the output signal in each case.

3. Compute the convolution y[n] = x[n] * h[n]:





Work Space