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I am a computer systems researcher and build large,
practical systems to explore fundamentally new de-
signs. In the past few years, my work has focused on
systems for datacenter computing, an area critically im-
portant to modern applications such as web search and
social networks. My research addresses fundamental
mismatches between these new applications’ needs and
conventional system designs. To do so, I rethink sys-
tem designs from their first principles, and aim to build
systems that change industry practice.

Today, we frequently waste computer processor cy-
cles and human developer time because system designs
and application needs are misaligned. This mismatch
forces application developers to either accept ineffi-
ciency or develop complex workarounds. Consider, for
example, how web applications interact with database
backends today. The application developer can either
issue straightforward SQL queries and accept the inef-
ficiency of repeated query evaluation, or she can deploy
an in-memory caching layer (e.g., memcached) and ac-
cept the complexity of querying, invalidating, and man-
aging it. By contrast, redesigning the backend around
web applications’ needs—fast common-case reads and
easily changeable queries—yields an efficient solution
without extra complexity, as I discuss in detail below.

In devising a new system design, I rely on my un-
derstanding of application needs and existing data cen-
ter systems to guide a redesign of the system’s core ab-
stractions from first principles. This often requires in-
venting a new key abstraction or adapting an existing
abstraction for a novel setting. I pick simple and gen-
eral abstractions that solve not merely a specific prob-
lem, but which satisfy a broad category of application
needs. The abstractions must also admit an efficient im-
plementation and have the potential to change practice.

Refining the new system design, testing it, and fully
understanding its advantages and limitations requires
a full-scale implementation. I am happy to take on
the work to implement a complex system, and I eval-
uate my implementations using real applications and
workloads—an important step, as accurate evaluation
of datacenter systems is challenging [1].

In this statement, I primarily discuss three data
center systems projects I have led: Noria, a high-
performance backend for web applications based on

a new data-flow computing model; Omega, a cluster
scheduler architecture for datacenters that shares a clus-
ter between several independent schedulers; and Fir-
mament, a new cluster manager that demonstrates a
general and high-performance approach to scheduling
complex application mixes on large clusters.

Since I focus on building practical systems, my
work has had impact outside of academia. For exam-
ple, Omega influenced the design of several industrial
cluster schedulers, and Firmament is now a community-
maintained scheduler in the Kubernetes cluster man-
ager. Engaging with practitioners often provides me
with ideas for new research directions, and I outline
some current directions at the end of this statement.

High-performance web application backend. A
web application with millions of users easily overloads
a database like MySQL. The overload is a result of the
database architecture, which encourages applications to
issue complex SQL read queries and evaluates them at
query time. This emphasizes query flexibility, but read-
heavy web application workloads are a poor match for
this design: web applications re-evaluate read queries
much more often than they issue updates or change the
queries. An in-memory cache (e.g., memcached or Re-
dis) can improve performance, but induces serious com-
plexity, as the application must maintain the cache.

Noria [2] addresses this mismatch without the ex-
tra complexity of separate caching. Instead of evaluat-
ing the SQL expressions during reads, Noria evaluates
them when processing writes, and stores the precom-
puted results in materialized views that serve reads ef-
ficiently from in-memory state. To update these views,
Noria’s write-side processing feeds updates to the un-
derlying records through a streaming data-flow compu-
tation. Data-flow lends itself to incremental computa-
tion and is easy to scale and parallelize, as the data-flow
graph captures the computation’s dependencies.

The materialized views and intermediate results re-
quired for incremental update processing form the data-
flow’s state. The key idea in Noria is partially-stateful
data-flow, a new data-flow model that I designed.
Partially-stateful data-flow avoids explosion in the size
of this state with many queries and supports downtime-
free query changes. The partially-stateful model in-
troduces a notion of absent—but recomputable—state.
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When a read encounters absent state, an “upquery”
through the data-flow rebuilds the absent state from
ancestral state (or, ultimately, the underlying “base”
input records). State for new queries starts out ab-
sent and upqueries compute state entries on demand.
Partially-stateful data-flow therefore maintains classic
databases’ query flexibility, but combines that flexibil-
ity with the advantages of streaming data-flow, such as
incremental update processing and parallel scalability.
It also permits reducing the data-flow’s memory foot-
print by evicting unnecessary state, which eliminates
update processing costs for rarely-read results.

An efficient implementation of partially-stateful
data-flow requires careful attention to correctness when
upqueries and streaming update propagation interact
under concurrency. My work contributes the correct-
ness invariants of partially-stateful data-flow, and No-
ria’s multi-threaded and multi-machine implementa-
tion that respects these invariants. Evaluation with a
production workload from the Lobsters news aggrega-
tor website shows that Noria performs well and sim-
plifies the application. With “natural” queries—i.e.,
queries free of hand-tuning—Noria scales to 5× higher
load than MySQL does with the Lobsters developers’
complex, hand-optimized queries. Noria serves up to
14M requests/sec on a single server, compared to 200k
requests/sec for the widely-used memcached/MySQL
combination, and scales well on multiple servers.

My OSDI 2018 paper on Noria uses partial state
to resolve a mismatch between web applications’ needs
and existing backend designs, but I believe that data-
flow with partial state is a key missing piece that en-
ables a more fundamental rethink of backend designs.
In particular, partial state gives rise to new solutions
to traditionally difficult problems like dynamic shard-
ing (new shards can start with absent state), and effi-
cient replication for fault tolerance (recomputing absent
replica state on recovery vs. maintaining replica state at
runtime), and I am excited to explore these directions.

Shared-state cluster schedulers. Backend services
like Noria often share datacenter machines with other
applications. A cluster scheduler manages this sharing
by assigning resources on cluster machines to differ-
ent applications’ tasks. But any single scheduler’s im-
plicit assumptions mismatch some application needs:
their differences—e.g., between long-running services
and finite-duration batch jobs—add complexity if han-
dled, or reduce assignment quality if not. Poor assign-
ments reduce application performance or leave costly

hardware idle (e.g., saturating CPU but not memory).
With Omega [3], I introduced an efficient approach

for multiple cluster schedulers to share a single cluster.
This simplifies scheduler implementation and resolves
a mismatch between different application needs and
conventional scheduler architectures. Omega’s key in-
sight is to expose the full cluster state to all schedulers,
and to let all schedulers make independent decisions.
This shared-state approach allows Omega schedulers to
consider all available information in their decisions—
for example, a service scheduler can see running lower-
priority background work and preempt it. By contrast,
prior approaches either made all decisions in a single
scheduler, or offered only select idle resources to the
different schedulers in isolation.

Sharing full cluster state between schedulers re-
quires them to coordinate in order to avoid impossible
assignments and overloaded machines. Omega sched-
ulers each have a local replica of cluster state and re-
ceive regular updates to it from a centralized master
state (e.g., if a machine failed, or if another scheduler
assigned work). When a scheduler places work, it sends
deltas to the master state that specify its own desired
changes. Deltas are optimistically-concurrent transac-
tions that only commit to the master state if no conflict-
ing change to the same machines has occurred. In case
of a conflict, the issuing scheduler must retry either the
full transaction or part of it. This abstraction leaves in-
dividual scheduler implementations unconstrained, al-
lowing them to use any internal design (e.g., work
queues, batched bin-packing, or constraint solvers), as
long as they produce shared state deltas. Evaluation
with Google production workloads shows that conflicts
are rare in practice, and that Omega’s shared state scales
to long scheduler decision times (e.g., in complex ser-
vice schedulers) and to over a dozen schedulers.

My EuroSys 2013 paper on Omega has impacted
several industrial cluster schedulers. Omega caused
Google to add multi-scheduler support to its Borg clus-
ter manager, focused the Kubernetes cluster manager’s
design on a shared store, and made HashiCorp choose
the same architecture for the Nomad scheduler [4].

Scalable cluster schedulers. Some emerging appli-
cations, such as training reinforcement learning mod-
els via simulations, generate huge numbers of short-
running tasks that schedulers like those atop Omega
must handle. The high decision throughput required by
these applications mismatches the classic, queue-based
scheduler design, which computes the assignment of

Page 2 of 5



Research Statement Malte Schwarzkopf

each task individually, creating a scalability bottleneck.
With Firmament [5], I address this mismatch and

show that even a centralized scheduler with access to
all cluster state can scale to high throughput. The key
idea is to use highly-efficient constraint solvers, whose
algorithms amortize the costs of placement decisions
over batches of tasks, thus making individual decisions
cheap. Constraint solvers also allow for higher-quality
placement decisions, as they globally consider all as-
signments, rather than making heuristic decisions my-
opically for one task at a time. Firmament can express
a wide variety of scheduling policies as min-cost, max-
flow (MCMF) constraint problems, but must address
the latency that constraint solvers can induce while pro-
ducing a solution. Firmament reduces this latency by
combining multiple MCMF algorithms, and through an
incremental MCMF formulation that reuses prior work.
Using these techniques, Firmament matches the low la-
tency of recent distributed parallel schedulers. As dis-
tributed schedulers only see statistical samples of clus-
ter state, Firmament’s full state yields better decisions.

I implemented Firmament as a full-scale prototype
cluster manager. After the OSDI 2016 paper appeared,
an open-source community made Firmament available
as a Kubernetes scheduler, and now maintains it [6].

Other datacenter systems. During my Ph.D., I also
worked on several other collaborative research projects.

CIEL [7] improved the efficiency of parallel pro-
cessing over large data for algorithms with data-
dependent control flow, such as iteration to conver-
gence. CIEL was the first parallel processing system for
“big data” to natively express data-dependent control
flow. The key idea is a dynamic data-flow computing
model that modifies the executing data-flow computa-
tion to spawn additional parallel tasks if necessary (e.g.,
for a new loop iteration). Other researchers have since
applied ideas from CIEL in systems for scientific com-
puting and scale-out reinforcement learning.

Datacenter applications can interfere with each
other through the shared datacenter network—for ex-
ample, a MapReduce job’s network packets can delay
latency-critical responses of a web application back-
end. QJUMP [8] introduces an immediately deploy-
able approach to controlling such network interference.
QJUMP’s key idea is to rely on packet prioritization
and rate limiting mechanisms readily available in com-
modity network switches and the Linux kernel. Prior
approaches, by contrast, required hardware or kernel
changes. With QJUMP, application performance im-

proves by 2–5× due to reduced network interference.
Finally, I co-designed the Musketeer workflow

manager [9] to remove the need for developers to
choose a parallel data processing system when im-
plementing “big data” pipelines. Musketeer’s key idea
is to decouple workflow expression from execution.
Users write a declarative workflow (using e.g., SQL,
language-integrated queries, or a vertex-centric bulk-
synchronous parallel program) and Musketeer trans-
lates the workflow to executable code that runs on par-
allel execution engines such as Hadoop MapReduce,
Spark, Naiad, PowerGraph, and others. This decou-
pling saves developers the effort to manually port work-
flows when upgrading to a new data processing sys-
tem. Musketeer also suggests efficient backend execu-
tion engines for the workflow to further reduce com-
plexity. Musketeer’s key idea of decoupling expression
and execution of data processing pipelines was timely:
the Apache Beam project now provides similar abstrac-
tions for production use.

Musketeer’s ideas also triggered a current project of
mine. Conclave [10] is a query compiler that transforms
a relational query into an efficient secure multi-party
computation (MPC). MPC allows mutually distrusting
parties (e.g., different companies) to run joint compu-
tations without revealing their private data. Conclave
combines cheap, local cleartext processing with costly,
secure MPC steps that are needed when parties ex-
change data. Crucially, Conclave automatically deter-
mines the split into local and MPC parts—simplifying
an otherwise onerous developer task, and making exe-
cution more efficient. Compared to baselines that run
the entire query inside a secure MPC, Conclave scales
to three to six orders of magnitude larger input data
while still returning results in minutes.

Future directions. I am enthusiastic to continue re-
search in computer systems, both building on my expe-
rience with datacenter systems and expanding into new
areas. I am particularly excited about the following di-
rections: securing the user data stored and processed in
datacenters against leakage through inevitable applica-
tion bugs; devising new abstractions for interaction be-
tween systems; and building infrastructure for new ap-
plication domains such as machine learning, while also
investigating how these domains can improve systems.

Securing user data. Current datacenter systems lack
structural protections to secure users’ private data
against accidental leakage. Web applications today
store data in backends shared by all users without sepa-
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rate authentication. Bugs in the application logic hence
easily expose users’ private data, such as a private post
intended only for friends. The last—and only—line of
defense is for developers to carefully write queries that
correctly apply the necessary security filters. A much
better approach is to specify, a single, global security
policy that the backend system enforces on all frontend
queries. Such a policy might specify what data are vis-
ible, directly or in modified form, to each user. In ef-
fect, this puts each user—and her queries—into her own
“parallel universe”, within which applications can add
arbitary queries without worrying about security.

It might be promising to realize this “multiverse”
model using a data-flow system similar to Noria. Data-
flow naturally lends itself to delineating universes: each
user’s universe forms a subgraph, created perhaps in
response to user login, of a global data-flow. If the
data-flow enforces security policies on records that pass
the subgraph’s boundary nodes, no data in violation
of the security policies can reach that universe. There-
fore, even if the user adds arbitrary queries to her uni-
verse, she cannot read any data that violate the secu-
rity policies. This approach can apply fundamentally
more sophisticated security policies than classic row-
level and column-level access control, but the challenge
is to make it efficient. Supporting thousands or millions
of user universes in a single data-flow creates much
larger data-flow graphs and state sizes than any current
system (including Noria) can handle. Building such a
system will require new mechanisms for compression,
efficient execution, state sharing, and live modification
of enormous data-flows. I have started exploring these
ideas in a new prototype system, “MultiverseDB”, de-
rived from Noria, with encouraging initial results.

Beyond the systems challenges, other questions re-
main. How can we specify declarative security poli-
cies and check them for self-consistency? How can we
prove their manifestation as data-flow nodes correct?
Answers may draw on research in programming lan-
guages, information flow control, or formal verification,
ideally in collaboration with experts in these fields.

Cross-system data management. I am also interested
in whether we can extend these security policies across
multiple datacenter systems, such as a database and
a photo store. This requires mechanisms to enforce
global security policies on interaction between differ-
ent systems, and to contain security breaches if they oc-
cur. For example, RPCs may exist in a particular “uni-
verse”, and security policies may apply to their han-
dling and responses. This may require abstractions sim-

ilar to those operating systems expose, albeit for data-
center systems [11]. Moreover, recent legislation like
the EU’s General Data Protection Regulation (GDPR)
gives users more control over their personal informa-
tion held in data centers—requiring e.g., extraction and
removal from all systems on request. Compliance with
such legislation is onerous with current systems, but
new cross-cutting abstractions may simplify it.

Fault-tolerant machine learning. New systems innova-
tions will also be required to efficiently support emerg-
ing application domains such as distributed machine
learning. Machine learning model training and serv-
ing, for example, often relies on stateful simulators and
services. Scaling these components and making them
fault-tolerant requires new techniques. In particular, I
am interested in whether scalable data-flow paradigms
are compatible with classic primary/backup failover.
This would avoid having to roll back to a checkpoint,
and improve the recovery time of—perhaps safety-
critical—ML systems. For efficiency, the backup com-
ponent would ideally avoid replicating the full process-
ing of the primary prior to a failure.

Machine learning for cluster schedulers. Machine
learning techniques may also themselves be helpful
to systems. For example, designing cluster schedul-
ing policies for systems like Omega and Firmament
remains a challenging, manual task. With collabora-
tors at MIT, I am currently exploring whether mod-
ern reinforcement learning techniques can learn a good
scheduling policy directly from the workload. Our pro-
totype already learns scheduling algorithms for high-
level objectives like low average batch job duration and
outperforms state-of-the-art, human-optimized batch
schedulers by 1.2–2× [12]. However, further work is
needed to investigate whether reinforcement learning
can learn policies for complex application mixes in dat-
acenters where no single high-level objective exists.

Summary. Computer systems research is often driven
by exogenous factors, like changing hardware, chang-
ing applications, or a changing legal environment (e.g.,
the GDPR). I am excited to continue to design and
build systems that address mismatches induced by such
changes, rethinking key abstractions from their funda-
mentals up. Making these new abstractions efficient,
easy-to-use, and secure requires insights from across
many areas of computer science. I believe that building
full-scale systems is a good way to drive this collabo-
ration, to understand the advantages and limitations of
possible solutions, and to change real-world practice.
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