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In ancient Greek mythology, Proteus (Πρωτευς) is a naval god who keeps changing his
shape, but is said to be able to foretell the future to anyone who manages to capture him and
force him to retain his shape. He is also associated with flexibility and versatility.

My project aims to embody this protean spirit and apply it to computer vision, with the
ultimate aim of being able to capture the real shape of objects from varying visible represen-
tations.

The cover image is a medieval woodcut of the Greek deity Proteus, as displayed as Emblema CLXXXIII the
Book of Emblems by Andrea Alciato, 1531; the image is in the public domain.
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Chapter 1

Introduction

In vain, though by their powerful Art they bind
Volatile Hermes, and call up unbound

In various shapes old Proteus from the Sea,
Drain’d through a Limbec to his native form.

— John Milton, Paradise Lost III.603–06

This dissertation describes the creation of a framework that makes it straightforward for any-
one, even if not yet an expert in the field, to obtain a virtual three-dimensional representation
of a real-world object from a digital video sequence.

1.1 Motivation

In recent years, we have seen multimedia applications using digital video as well as 3D
graphics becoming increasingly ubiquitous in mainstream computing. Many such applica-
tions depend on user-contributed visual content. Although tools to aid with the process of
acquiring this exist, there does not yet exist a tool that unifies both automated analysis of
video data and interactive user input. This would be especially useful for the purpose of
generating 3D content such as 3D building models to use in a virtual online world. For ex-
ample, the virtual cities in Google Earth (see Figure 1.1 overleaf) consist of thousands of
virtual 3D buildings.

There are various diverse use cases for such a tool, but the most important ones seem to be
urban modelling, augmented reality, object tracking and video post-production.

As an example, one could imagine 3D city models (such as those currently used in Google
Earth) being generated automatically from aerial videos; or individual users creating videos
in order to use these for augmented reality scenarios, such as the virtual world of Second
Life1, a level for a computer game, or even a simulation of how they could rearrange the
furniture in their homes.

1 http://www.secondlife.com/
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1.2. CHALLENGES CHAPTER 1. INTRODUCTION

Figure 1.1: Virtual 3D city in Google Earth: St Michael and the Town Hall in Hamburg, Germany,
as seen from above the Alster lake. 3D Buildings c© 2008 CyberCity AG, Images c© 2009 AeroWest

Significant fundamental work was done on 3D structure-from-motion (SfM) – that is, the
process of obtaining a three-dimensional model from object or camera motion – in the 1990s
(see Section 1.3). However, the existing implementations lack accessibility to non-scientific
user groups. These approaches are usually fully-automated and generate point clouds from
video, rather than solid models. Additionally, the quality of any automatic reconstruction is
vulnerable to high degrees of ambiguity, degeneracies in camera motion and feature misiden-
tification and mismatching.

The advantage of fully-interactive modelling techniques is that they make use of the user’s
perception of the object that is being created and can rely on the user to ensure that the
model fits the expectations. However, fully-custom modelling is extremely time-consuming
and generally requires specialist skills in using a modelling package.

A combination of the two, as presented in this project, would seem like an optimal approach
– using structure-from-motion to determine object properties from video data, and exploit-
ing the intelligence of the user to guide this process.

1.2 Challenges

A well known anecdote of computer vision is that AI pioneer Marvin Minsky in 1966 gave
the task of solving the problem of “making a computer see” to a student as a summer project.
In this, he was dramatically underestimating the difficulty of the problem, which turns out
to remain unsolved in the general case up to the present day.

Nowadays, computer vision is regarded as a very challenging field, and the concept of 3D
structure-from-motion is generally recognised within the research community to be a diffi-
cult problem. Despite working algorithms existing, implementations are still seen as chal-

2



CHAPTER 1. INTRODUCTION 1.3. RELATED WORK

lenging and are generally expected to be imperfect.

A major complication is that the problem of inferring three-dimensional shape from two-
dimensional images is fundamentally ill-posed in the sense introduced by Hadamard [10]: it
violates the second and third criterion for a well-posed problem; namely, it does not have an
unique solution and its solution does not continuously depend on the data.

These facts become immediately obvious if the task at hand is considered. The goal is to
infer a 3D shape from images, which are two-dimensional optical projections – and this task
comes down to inverting the 3D→ 2D projection. It is mathematically impossible to find an
unique solution to this, since the process of projection is “destructive” in the sense that it
discards information.

Consequently, the mathematical problems that this project has to solve suffer from an ex-
tremely high degree of ambiguity. Depending on the type of 3-space considered (see Section
2.2.1), between 6 and 15 degrees of freedom exist within the data. Hence any algorithm
capable of obtaining results of satisfactory quality is bound to be fairly complex and its im-
plementation a challenging task to undertake.

Finally, the emphasis on creating a framework accessible for interactive use complicated the
project more by introducing a whole set of further problems: GUI development, concurrency
aspects of live video processing, human-computer interaction and design of data structures
allowing for arbitrary input content added additional layers of complexity, despite these
being, at best, tangential to the problem of structure-from-motion.

1.3 Related work

A comprehensive survey of the entirety of the previous work done in the areas relevant
to this project would by far exceed the scope of this dissertation. However, a number of
sources were especially useful to me, both for familiarisation with the area in general and
implementation of the project in particular.

The standard textbook in the area of SfM is the extensive book by Hartley and Zisserman
[12] which covers two-, three- and n-view geometry and the associated geometric principles
and numerical methods. This book quickly proved to be an indispensable resource for this
project, and will be referenced repeatedly throughout this dissertation.

Significant fundamental work was done by Pollefeys et al. at the University of North Carolina
at Chapel Hill and KU Leuven, resulting in a number of publications [7; 17–19]. Of these,
those covering the acquisition of 3D models from uncalibrated hand-held cameras [17; 19]
are of particular interest.

Some further work, especially on estimation of the fundamental matrix, degeneracy detec-
tion and compensation has been done by Torr [3; 26; 27] at Oxford Brookes University. His
work contributed to the Hartley and Zisserman book [12], and he also provides a compre-
hensive MATLAB structure-from-motion toolkit for two-view geometry [25].

An interesting approach, which is very similar to the aims and design of this project, was
presented by Häming and Peters [11]. Their intent was to design a C++ SfM toolkit to be
used for teaching. Unfortunately, only a single high-level description was published and the

3
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implementation itself is not available.

The implementation that is probably closest to my approach is VideoTrace [31], a semi-
commercial research project of the Australian Centre for Visual Technologies and Oxford
Brookes University. VideoTrace focuses on rapid interactive modelling of complex struc-
tures with a high degree of detail, supporting advanced concepts such as curved surfaces
(using NURBS), extrusions and mirror planes. It differs from this project in the sense that the
structure-from-motion analysis is performed prior to interactive user input being sought.

In addition to the fundamental work done in recent years, the augmented reality idea has
received some research interest [7], as has the idea of urban modelling using automated
structure-from-motion techniques [2]. Vergauwen, Pollefeys et al. also presented some work
on the use of structure-from-motion techniques in archaeology and cultural heritage conser-
vation [20] as well as control of autonomous vehicles in planetary exploration [32; 33].

Commercial exploitation of the techniques developed by research over the course of the
last two decades in this area is only just in its infancy. The VideoTrace project, for example,
is aimed at future commercial exploitation in video post-processing, and the Oxford-based
company 2d32 specialises in products for camera and object tracking, feature detection, vi-
sual effects and mesh generation based on 3D structure-from-motion techniques for indus-
trial and governmental use.

2 http://www.2d3.com/
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Chapter 2

Preparation

Undertaking a project of this scope requires structure, organisation and a high degree of
careful planning. Required resources have to be identified and their use optimised – whilst
at the same time minimising risks as well as maintaining focus.

This chapter starts off by outlining the basic principles of epipolar geometry and giving an
overview of structure-from-motion, as familiarity of the reader with this field of computer
vision cannot necessarily be assumed. The analysis of requirements that was conducted and
the conclusions drawn from it are described. Finally, these are related to choices made about
tools and development methodologies used.

2.1 Introduction to Epipolar Geometry

Before I move on to explaining the principles of structure-from-motion, I am briefly going
to introduce the essentials of epipolar geometry and comment on how they are represented in
the Proteus project.

The term of epipolar geometry is inherently linked to multiple-view vision, and stereo vision
in particular, i.e. the concept of two cameras viewing a scene from distinct positions. Most
of the relations of epipolar geometry can be derived from the familiar pinhole camera model
of optics. This defines points of interest such as the focal point and the image plane. The latter
is located behind the focal point in the pinhole model and contains a top-down mirrored
version of the image (see Figure 2.1).

focal pt.

d

object planex

X

f

image plane −x′
X′

Figure 2.1: Simplified view of the classical single-view pinhole camera model of optics.
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2.1. INTRODUCTION TO EPIPOLAR GEOMETRY CHAPTER 2. PREPARATION

For simplification, epipolar geometry considers a virtual image plane in front of the camera
which is simply a mirror image of the actual image plane at distance −f from the camera.
If we consider a point X in 3D space, seen by two distinct cameras, say C1 and C2, then,
following the pinhole model, the point will have a projection x1 in the image plane of C1,
and a projection x2 in the image plane of C2.

Figure 2.2 illustrates the most important relations of epipolar geometry. The common plane
defined by 3D points X, C1 and C2 is called π, and its intersections with the image planes
define the epipolar lines l1 and l2 in the image planes. Furthermore, the intersection points
between the camera baseline (the line connecting the two camera positions C1 and C2) and the
image planes are called epipoles, denoted e1 and e2. Any projection xi and the corresponding
epipole ei always lie on the same epipolar line li. Note that it is perfectly possible for the
epipoles to lie outside the image.

C1 C2

X

π

l1

l2

e1 e2

x1 x2

Figure 2.2: Epipolar geometry basics: The camera baseline intersects the image planes at the epipoles
e1 and e2; the epipolar plane π intersects the image planes in the epipolar lines l1 and l2.

These definitions are relevant to the structure-from-motion process because they immedi-
ately lead to the formulation of the epipolar constraint and the process of triangulation:

• If the projection of a common point X, say x1, is known, then a line from the camera
centre through this projected point can be constructed, and the projection of the line
in a different view immediately gives rise to the epipolar line l2. The projection of the
same 3D point in the secondary view’s image plane is then constrained to lie on this
epipolar line. If two projections of a point do not lie on (or close to) the reciprocal
epipolar lines, they cannot correspond to the same 3D point.

• By reversal of this, if two projections of a 3D point are known – say x1 and x2 – then
their projection lines (the lines from the camera centres through the projected points)
must intersect in 3-space precisely at X.

The process of calculating the shared 3D point X from two projections as described above is
called triangulation. It should be immediately obvious that the assumption of the projective
rays intersecting exactly in X is only likely to be true for extremely accurate synthetic data; in

6
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the case of structure-from-motion using noisy images, there will be a certain degree of error
and the projection rays will not meet exactly (although they should still be close).

While implementing this project it became apparent that analysis of the relations of epipolar
geometry on given images was a useful tool for debugging. For this reason, I included a
facility to draw the epipoles and the epipolar lines for every matched point between two
frames of a video. An example of this can be seen in Figure 2.3; it was especially useful to be
able to judge the quality of a set of annotations based on whether the epipolar lines coincided
in one point.

(a) “Box” example (b) “Cube” example (epipole outside image)

Figure 2.3: Example content in Proteus with epipolar lines and epipoles drawn as overlays.

An algebraic representation of epipolar geometry, including the epipolar constraint defined
above, is given with the fundamental matrix F. Its meaning and computation is described in
further detail in Section 3.3.1.

2.2 Introduction to Structure-from-Motion

The term Structure-from-Motion is, in general, used to describe any process of inferring three-
dimensional object structure from spatial displacements of features over time due to object
or camera movement.

The particulars of the process depend on what sort of input data is provided, what the view-
ing parameters are, and what the desired output result is. For instance, the techniques for
material obtained from fixed-distance, calibrated stereo camera rigs are very different from
those for uncalibrated, arbitrarily translated hand-held cameras. Similarly, the required out-
put quality for a photorealistic model to be used in augmented reality scenarios is very dif-
ferent from the accuracy required for a navigational system in robotics.

7
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Group Matrix Example DoF Invariants

Projective
[
A t

vT v

]
15 Intersection of lines; tangency

of surfaces.

Affine
[
A t

vT v

]
12

Parallelism of lines and
planes, centroids, plane at
infinity (π∞).

Metric /
Euclidean

[
R t

0T 1

]
6 Angles; Volume (Euclidean

only).

Table 2.1: Common transformations of 3-space and their properties. A is an invertible 3× 3 matrix,
R is a 3D rotation matrix, t = (tX, tY, tZ)T a 3D translation, v an arbitrary 3-vector, v an arbitrary
scalar and 0 a zero-3-vector. Summarised from [12, p. 78].

2.2.1 Ambiguities of 3-Space

When considering three-dimensional space (3-space) in the context of structure-from-motion,
it is important to note first that all coordinates and transformations are specified in terms of
projective geometry, using homogeneous coordinates. Depending on the types of transitions
that are permissible, the level of correspondence between the original object and its recon-
struction in 3-space can differ as a result of varying degrees of ambiguity.

The different classes of ambiguities in 3-space are defined by the transformations that can
validly be applied to the original object. Only a brief and highly simplified introduction is
given here; literature [12, p. 37–ff., 77–ff.] provides more rigorous and detailed material. Ta-
ble 2.1 illustrates the properties of the different classes of 3-space described in the following.

Projective transformations are only constrained to maintain intersections and tangency –
arbitrary rotations, scalings and translations of any coordinate point are permissible.

Affine transformations maintain parallelism and vanishing points in addition to the above,
but do not preserve angles, so objects can appear skewed.

Metric transformations maintain all geometric properties except for volume, and only scal-
ing is permissible. Euclidean space is a special case of this and also preserves volume.

By the scale-variant property of metric space, any reconstruction obtained using structure-
from-motion techniques can only possibly ever be up to an arbitrary scale factor k, unless
additional data specifying lengths and distances in the input is provided. This fact is mir-
rored by the final reconstruction being metric, i.e. a Euclidean reconstruction up to a constant
scale factor.

8
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2.2.2 Overview of the Computation

In general, the process of transformation from flat projections in 2-space to a 3-space model
involves the following four steps (in the spirit of the general algorithm presented by Hartley
and Zisserman [12, p. 453], although with a slightly different emphasis):

1. Identification of features and correspondences: Distinctive features in the input im-
ages are selected and tracked across a series of images. This establishes, for n input im-
ages, a set of up to (n− 1) 2D point correspondences xi ↔ xj for some 1 ≤ i < j ≤ n.
This is done interactively by the user annotating a video in my implementation – see
Sections 3.1.2 and 3.2 for details.

2. Finding an initial solution for scene structure and camera positions

(a) Determination of the fundamental matrix: The initial pairwise point correspon-
dences are used to determine the fundamental matrix F using one of several pos-
sible algorithms (linear, non-linear or stochastic), which represents the epipolar
geometry relations and constraints algebraically. The implementation of this step
is described in Section 3.3.1.

(b) Extraction of camera motion between images: Using the fundamental matrix F, a
camera matrix Pi can be determined for the ith pairwise correspondence (out of an
overall of up to (n− 1) pairwise correspondences). The computation is explained
in Section 3.3.2.

(c) Triangulation of point correspondences: Using triangulation over a set of 2D pro-
jections (xi) in different images using different cameras (Pi), an initial estimate
of the corresponding 3D point Xi is obtained. Multiple triangulation algorithms
were implemented for this project – see Section 3.3.3.

3. Improvement of initial solution: The initial reconstruction is projective, and only iden-
tical to the original object up to a projective transformation (see Table 2.1). In order to
ameliorate this, the reconstruction must be upgraded to a metric reconstruction, which
can be achieved in a variety of ways. For this project, the direct reconstruction method
was chosen, and is described in Section 3.3.4.

4. Model Building: In the final step of the structure-from-motion process, surfaces are
inserted into the refined reconstruction, textures extracted and the reconstructed rigid
model is built from the appropriate primitives. Frequently this is done using dense
point clouds, surface modelling with depth maps or volumetric integration, e.g. using
the marching cubes algorithm [14; 18].

9
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2.3 Requirements Analysis

The initial analysis of requirements was a crucial step in the early stages of this project. The
overall architecture of the framework to be implemented had to be established, and depen-
dencies between modules understood so that development could be structured accordingly.
The main aims of the project are summarised in Table 2.2; these coincide with the original
objectives and success criteria set in the project proposal (see Appendix A.10), bar a few
minor modifications. A detailed breakdown of the sub-goals within each of these was cre-
ated in order to facilitate more fine-grained planning. This list is included in Table A.1 in the
appendix.

Goal Description Priority Difficulty Risk

Build graphical user interface frontend High Medium Low

Implement interactive guidance techniques High Medium Low

Implement structure-from-motion algorithms High High High

Implement texture extraction High Medium Medium

Add a facility for exporting the generated model Medium Medium Low

Integrate an existing automated point tracker (KLT) Low Medium Low

Table 2.2: The top-level project objectives in Proteus.

Furthermore, I undertook an evaluation of the dependencies of the different modules of the
project – this was important both in order to be able to make decisions about the develop-
ment methodology to be adopted and in order to decide on the order in which to implement
the different modules. The major dependencies in this project are outlined in Figure 2.4.

In this process, it became apparent that certain core parts of the project, namely the structure-
from-motion pipeline, required a strictly linear implementation as they were part of a chain
of dependencies. Other components were more independent and could feasibly be filled
in with extremely basic prototypes at first, or even left for a later implementation without
impacting on the overall functionality.

KLT

Annotation DS

Serialization

Interpolation

Advanced UI

Video Decoding

Annotation GUI

Edge Snapping

Image Processing

Fund. Matrix

Camera Matrices

Triangulation

Metric Reconst.
3D Data Struct.

Model Export Model Viewer
SfM Pipeline

Figure 2.4: Main dependencies in the Proteus project. Dependencies are in arrow direction.
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2.4 Implementation Approach

The first step of the conceptual planning stage for the project was bound to be a step of
restraining the complexity, and compiling a list of assumptions that had to be made in order
to make the implementation of the project tractable. This section outlines the decisions made
and aims to explain why boundaries were staked like this.

The general functionality that was required to be implemented in order to meet the require-
ments is outlined schematically in the diagram overleaf (Figure 2.5).

An immediate consequence of the ill-posed nature of the structure-from-motion problem
was that the project had to be limited to a specific domain. The first assumption I made was
that the objects modelled could not be moving themselves (i.e. limited to videos of stationary,
static objects with only the camera moving).

In the first stage of the project, a basic interactive annotation interface had to be implemented
and then extended with edge detection to allow interactive “snapping” to image features. In
parallel with this, the data structures to hold the annotation information had to be designed
and implemented – see Section 3.2 for details.

Since the implementation of the structure-from-motion algorithms was identified as a crit-
ical and high-risk component of the project, I decided to limit these to the simplest known
algorithms at first, potentially extending them with more complex alternatives that would
yield better reconstructions later. The initial algorithms chosen were the normalised 8-point
algorithm [12, p. 281–ff.] for the computation of the fundamental matrix, the deterministic
formula for canonical cameras for finding the camera matrices, and the simple homogeneous
linear triangulation [12, p. 312–ff.] for estimating the 3D points (see Section 3.3).

Another important fundamental choice I made was the way to implement the upgrade to
a metric reconstruction: it became evident early in the project that the complexity of this
step, and in particular of attempting a complete implementation of the stratified approach
including self-calibration, had been underestimated and was likely to lead to an unmanage-
able explosion in complexity. For this reason I chose to pursue a simpler approach: a direct
rectification to metric using ground truth [12, p. 275–ff.] – see Section 3.3.4 for details.

As the last step of the reconstruction of a 3D model, textures are extracted from the input
video and applied to the reconstructed model. I decided to communicate with OpenGL di-
rectly for this, i.e. not requiring intermediate storage of texture data to files. The approach
used to extract texture data and coordinates is described in Section 3.4.

In order to be able to display and examine the 3D reconstructions, I chose a combination of
two approaches. Firstly, I decided to build an interface to OpenGL and design an internal
model viewer; this allows for direct and interactive inspection of the 3D model during the
annotation process and hence provides a degree of direct feedback to the user. In addition to
this, I created an exporter into the PLY mesh format1 (see Section 3.7).

A further extension to the project was the integration of an automated point tracker (see
Section 3.6); the implementation was designed so that the integration of a library for this
purpose was supported.

1 Also known as the Stanford Triangle Format, http://local.wasp.uwa.edu.au/~pbourke/dataformats/ply/
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1) Video Capture

2) User annotates 

video sequence

Video sequence

Set of annotated 

video frames
3) Projective Reconstruction

4) Metric reconstruction

Upgrade to metric using 

ground truth points

1. Find Fundamental Matrix

2. Find Camera Matrices

3. Triangulate Points

Edge Detection / 

“Snapping”

Interpolate

Copy / Edit manually

to extend to add. frames

5) Build and export 3D model

Figure 2.5: Schematic diagram of the functionality implemented by the Proteus project.
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2.5 Choice of Tools

2.5.1 Programming Languages

C and C++

The main programming language chosen for implementing the project was C++. This deci-
sion was made two main reasons:

1. The Qt GUI toolkit (see Section 2.5.2) is written in C++ and provides convenient C++
interfaces to its extensive functionality. It even extends the C++ language to an extent
by introducing special constructs like foreach loops and providing convenient inter-
faces to standard libraries, such as QString to std::string.

2. The video decoding library and the high-performance linear algebra libraries are straight-
forward to interface with C++, as these are written in C and C++.

I already had some substantial experience programming in C to start off with, but had not
used C++ beyond small examples and exercises from the taught course in Part IB. This meant
that using it required a degree of familiarisation, first with C++ itself and then with the
particular dialect used by Qt code.

MATLAB

Many of the algorithms were, prior to developing the final C++ implementation, prototyped
in the M programming language of the MATLAB numerical computing package. MATLAB is
a prevalent tool for research and prototype implementations in the area of computer vision
and image processing, and some reference implementations of similar algorithms [13; 34]
were also available for MATLAB .

if ( X.rows() == 2
&& X.columns () == 1) {
// 2-column vector
Matrix T(2,2);
T[0][0] = 0; T[0][1] = 1;
T[1][0] = -1; T[1][1] = 0;

Y = transpose(X) * T;
}

Listing 2.1: C++ version (using QuantLib)

if all(size(X) == [2 1])
% 2-column vector
Y = X’*[0 1; -1 0];

end

Listing 2.2: MATLAB version

Both listings implement:

Y = XT ×
[

0 1
−1 0

]

Figure 2.6: Comparison between C++ and M implementations of a simple matrix operation.

M code makes it very easy to perform both simple and more advanced operations on vectors
and matrices. This is illustrated in Figure 2.6 – note how much closer the M implementa-
tion is to the mathematical notation. The interactive command line and plotting tools facili-
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tate rapid prototyping and aid at initially implementing algorithms without getting bogged
down by low-level implementation details or syntactic intricacies.

Furthermore, using MATLAB allowed for tests with synthetic data to be conducted as part of
the iterative prototyping process in order to guide and verify the C++ implementations (see
Sections 2.6 and 4.2.1).

2.5.2 Libraries

Proteus
Video

Decoding
Library

Linear
Algebra
Library

Matrix
Class

SVD

GUI Toolkit

Extra
Libraries

Serializ-
ation

Feature
Tracker

n-dim.
arrays

Figure 2.7: Conceptual diagram of the abstract library functionalities required in Proteus and their
relationships.

The nature of this project implied from the very beginning that it would have to rely heavily
on libraries to provide much of the basic functionality that was unnecessary and infeasible
to reimplement completely. The abstract functionality provided by libraries, and their inter-
action, are outlined in Figure 2.7, and a concise summary of the libraries used is given in
Table 2.3.

I usually chose the libraries from a set of possible alternatives – preference was given to
libraries that were written natively in C++ or included C++ interfaces, since these would
integrate more easily with the rest of the project.

Video Decoding

A crucial choice in the early stages of the project was the choice of libavcodec for decod-
ing the video input data. This library was originally developed as part of the FFmpeg video
transcoding tool and contains decoding functionality for a very large set of common video
formats. libavcodec seemed to be a good choice due to its widespread use in open source mul-
timedia applications. The poor quality of its documentation later turned out to make it more
difficult to use than anticipated.
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Library Version Purpose License

libavcodec CVS Video decoding (from FFmpeg project) LGPL

Qt 4.4.3 GUI toolkit GPL

QuantLib 0.9.0 Matrix & SVD library BSD (new)

LAPACK 3.1.1 Linear algebra library BSD

BLAS 1.2 Basic linear algebra library used by LAPACK Public Domain

Boost 1.34.1 Multi-dimensional arrays, Serialization Boost Software License

GSL 1.12 Polynomial root finding GPL

KLT 1.3.4 KLT Feature Tracker implementation Public Domain

Table 2.3: Libraries used in the Proteus project.

Graphical User Interface

The central choice of library for the project was probably the decision to use the Qt4 toolkit
for the user interface. Qt, originally created as a GUI toolkit, is a cross-platform framework
that provides a broad range of functionalities such as concurrency control, file access and
multimedia integration, implemented in a consistent, object-oriented way. It seemed ideally
suited for this project due to its cross-platform nature, the availability of tools to facilitate
rapid GUI design and modification [28] as well as IDE integration [29] and richness of doc-
umentation [30].

Linear Algebra

The third main choice that had to be made in terms of core libraries was the choice of a
linear algebra library for matrix operations as well as for solving systems of linear equations.
At first, the TooN library [9] was considered to be the best choice for this – mainly due to
its appealing C++ interface that allows both statically and dynamically sized vectors and
matrices and provides compile-time bounds-checking for statically sized ones.

However, it turned out that TooN’s functionality for the Singular Value Decomposition [12,
p. 585–ff] was insufficient for the needs of the project as TooN does not expose the three
result matrices of the SVD and provides no way to access them.

In the end, QuantLib was chosen as linear algebra library. QuantLib is a very large set of
libraries mainly intended for quantitative finance applications; only a small subset of its
functionality was actually required and used, but this could be achieved by linking against
parts of the library only. As its dependencies, QuantLib brought in the LAPACK and BLAS
libraries; these are highly efficient linear algebra libraries written in Fortran-77 that form the
basis of most modern linear algebra libraries.
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Other

Small subsets of the functionality provided by the popular Boost C++ class library were
used: In particular, boost::multi_array (dynamically-sized multi-dimensional arrays) and
the Boost serialization interface were used.

For the implementation of the optimal triangulation algorithm (see Section 3.3.3), a library
capable of finding the roots of polynomials of arbitrary degree was required. The GNU Sci-
entific Library (GSL) was used for this purpose.

In order to implement the automated feature tracker extension, a reference implementation
[4] of the Kanade-Lucas-Tomasi feature tracker [22] was compiled as a library and dynami-
cally linked into the project.

2.5.3 Other Tools

For viewing, editing and debugging PLY mesh files and to verify the models displayed in
the internal model viewer, the Qt4-based Mesh Viewer2 (“mview”) v0.3.2 was used, as well
as MeshLab3 v1.1.1.

2.5.4 Development Environment

The majority of development work was carried out on my personal machines, running
Ubuntu Linux 8.04 and 8.10, although additional resources provided on the PWF and by
the SRCF4 were used for some purposes, primarily for backups (see Section 2.5.4).

Integrated Development Environments

The main part of the project code was written using the Eclipse IDE, v3.4.1 (“Ganymede”),
with additional plugins to extend its capabilities: The C/C++ Developer Tools (cdt) for de-
velopment of C/C++ code, Qt integration (qtcpp) and Subclipse for Subversion integration.
Eclipse is a powerful IDE that facilitates good software development by aiding in organising
projects into logical structures and making tedious code refactoring tasks easier. It also inte-
grates with the gdb debugger to allow for single-step debugging, stack and memory analysis
and profiling.

MATLAB code was written in the gedit text editor. This is a plain and simple text editor that
provides syntax highlighting for M code. The code was executed and interactively tested
using the M interpreter in the MATLAB -compatible open source package GNU Octave5,
although the commercial MATLAB package on the PWF had to be used in some cases when
non-free toolkits (such as the MATLAB Image Processing Toolkit) were required.

2 http://mview.sourceforge.net/, LGPL
3 http://meshlab.sourceforge.net/, GPLv2
4 http://www.srcf.ucam.org
5 http://www.gnu.org/software/octave/
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Version Control

Some form of version control was crucially important to organising the development pro-
cess for this project. I chose to use the Subversion 1.4 source control management system
for this. This allowed me to, at any point in the development cycle, go back to a previous
revision of a file and facilitated a modify-debug-commit cycle, and furthermore also allowed
development work to proceed on multiple machines with the results being merged in the
repository. Subversion was also used to hold the LATEX source code of this dissertation whilst
it was being written.

Backup Strategy

eurytion.malteschwarzkopf.de

SVN master

pip.srcf.ucam.org

Repository backups (nightly)

SVN snapshots (nightly)

SVN live mirroring (per-commit)

Regular snapshots (nightly)

cassiopeia.malteschwarzkopf.de

Working copy

andromeda.malteschwarzkopf.de

Working copy

aristaios.malteschwarzkopf.de
SVN slave mirror

SVN checkout

Project website

linux.pwf.cam.ac.uk

Secondary repository backups

SVN Checkout / Update / Commit

Hourly updates to project website & checkout

Figure 2.8: Backup strategy employed for the Proteus project.

The backup arrangements made were intended to cover all plausible failure modes and en-
sure that no reliance on any single component working was required. Figure 2.8 illustrates
the backup strategy adopted.

All project data was organised in the centralised Subversion repository stored on my file
server machine. The svnsync tool was used to keep a synchronous backup of the repository
on an off-site machine. The commit hooks on the main repository were modified to trig-
ger an immediate synchronisation after each commit in order to achieve maximum backup
coverage.

Additionally, the entire repository was automatically copied to two off-site locations (the
SRCF server and the PWF file space) by a shell script on a daily basis, and an automated
clean copy of the workspace was kept to for recovery from possible repository corruption.
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2.6 Software Engineering Techniques

The development methodology chosen for this project had to fit in with a number of require-
ments that arose as a result of the nature of the project. Based on the considerations detailed
in Section 2.3, I decided to adopt a Waterfall Development Model [24, p. 66–ff.] in union with
formalised unit-testing methodologies for the implementation of the core structure-from-
motion algorithms, but to use the more rapid and prototyping-oriented Iterative Model for
other components that are of a more exploratory nature.

In order to facilitate the iterative development methodology and allow modifications to in-
dividual modules without affecting other components of the project, a high degree of mod-
ularisation was aimed for from the very start of the project. This was additionally supported
by the choice of C++ as the main implementation language: for example, the data struc-
tures holding the annotations associated with individual video frames (see Section 3.1.2)
are completely generic and independent of both the GUI front-end implementation and the
structure-from-motion algorithms; in fact, it was even possible to integrate the KLT feature
tracker with them without requiring any changes to the data structures.

This modularisation had the secondary advantage of providing inherent protection (further
improved by appropriate use of the C++ language facilities for protection such as classes,
namespaces and access modifiers) – an important property in a project of this size with nu-
merous concurrently executing components.

Finally, adherence to standard good-practice software engineering principles such as a high
degree of cohesion of components, structured and defensive programming and appropriate
graceful handling of exception conditions was actively pursued.

2.7 Summary

In this chapter, I have summarised the work undertaken prior to implementing the project.
A brief introduction to the underlying concepts of 3D structure-from-motion as well as the
particular approach chosen for this project was provided. Due to the extent of reliance on
existing tools and libraries for this project, some detail was given about the choices made
here, and the development methodology was described.

The following chapter will provide detailed insight into the implementation pursued and
elaborate on the different components of the project and their integration.

18



Chapter 3

Implementation

So might I, standing on this pleasant lea,
Have glimpses that would make me less forlorn;

Have sight of Proteus rising from the sea.

— William Wordsworth, sonnet, 1807

This chapter describes the implementation of the interactive structure-from-motion frame-
work that was described in the previous section. The overall system architecture and the
major individual components are considered.

Figure 3.1: A typical session in the Proteus user interface; the video annotator is shown on the left,
and the generated model on the right.

All components were implemented successfully and together form a fully working interac-
tive 3D structure-from-motion system. A sample view of the system while in use is shown
in Figure 3.1.
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As outlined in the Preparation chapter, implementing this project was a large task, both in
terms of complexity and in terms of scale: Proteus interfaces with eight different libraries and
the code size of the C++ implementation alone exceeds 5,000 lines.

Hence in this chapter I will concentrate on giving a general architectural overview, as well as
highlighting difficulties I encountered and decisions I made, but not elaborate on low-level
implementation details. A more detailed description of the implementation will be given for
certain key concepts and algorithms.

The key components of the project which are described in this chapter are:

1. Video Decoding
Outlines the facility to load videos into the Proteus frontend.

2. Data Structures
Describes the data structures used to hold annotation data displayed on the front-end
and used within the SfM pipeline and those representing 3D model components.

3. Front-end Interface
Introduces the front-end that is used to interactively annotate video frames and de-
scribes the guidance techniques implemented.

4. Structure-from-Motion Pipeline
Gives an overview of the core algorithms used to reconstruct a 3D model from an
annotated video sequence.

5. Texture Extraction
Extends the SfM pipeline by showing the approach used to produce fully-textured
output models.

6. OpenGL Model Viewer
Briefly introduces the internal OpenGL viewer developed for the front-end.

7. Kanade-Lucas-Tomasi Feature Tracker
Presents the KLT feature tracker and summarises how it was integrated with the project
to provide a facility for fully automated feature tracking.

8. Mesh Export
Explains the PLY mesh format and how the optional extension of allowing models to
be saved this format was implemented.

9. Serialization of Annotation Data
Elaborates on the additional extension of serialization support that I implemented to
aid development.
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3.1 System Architecture

3.1.1 Video Decoding

The video decoding component was the first part of the project to be implemented. Because
the decoded video content would be too large to be buffered in memory in its entirety, decod-
ing proceeds “on-the-fly” as the user navigates through the video. Only a single frame worth
of raw pixel data is ever held in memory at a time. Since there is a some delay in decoding a
video frame on-demand even on fast machines, I chose a multi-threaded implementation in
order to keep the user interface responsive while decoding.

GUI

Decode Thread

slot: decode()

libavcodecco
nt

.e
xe

c.

signal: decodedImage()

updatePixmap()

Buffer

read

Figure 3.2: Schematic overview process of decoding a video frame.

The core of the video decoding components is the decoder thread. The GUI requests a new
video frame to be decoded by asynchronously calling a function in the decoder thread. This
will cause the decoder thread to request the appropriate frame from libavcodec. Once the
frame has been decoded, the image is emitted with a Qt signal (decodedImage), triggering
an update of the front-end display buffer.

The test videos used and their exact parameters are shown in Appendix A.8.

3.1.2 Data Structures

Annotation Data Structures

The identification and matching of features in the input material is the first step of any
structure-from-motion implementation. These elementary data, which are a fundamental re-
quirement for the rest of the structure-from-motion pipeline, must be stored in a data struc-
ture that supports a number of crucial properties:

• Ubiquity: All parts of the structure-from-motion pipeline that need to access feature
correspondence data and all means of populating it should be able to use the same
data structure.
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• Rapid Access: Quick access should be provided not only to features local to the current
image, but also to matched features in other frames.

• Simplicity: The implementation should be simple enough that it is intuitive to under-
stand and can be undertaken in a reasonable amount of time.

• Flexibility: It would be advantageous to support different types of features (vertices,
edges, triangles) that can be defined in terms of composition of each other (e.g. a trian-
gle can be defined in terms of 3 vertices or 3 edges).

• Extensibility: If possible, it would be useful if other geometric primitives could be
added without requiring modification to the fundamental representation.

It is clear that some of these desired properties (such as simplicity and rapid access) are at
least partly orthogonal and some trade-offs will have to be made. Since none of the canonical
data structures provided by standard libraries seemed especially suited for this, I designed
a custom data structure, which is explained in the following and shown in Figure 3.3.

fe
at

ur
es

frames

Figure 3.3: The annotation data structure used: left – representation in memory, right – schematic
illustration on a set of frames. Red nodes are base nodes, i.e. the first occurence of an annotation.

This can, roughly, be seen as a three-dimensional net of pointers: On the horizontal axis,
different frames are shown, and downwards on the vertical axis within a column, a doubly-
linked list of annotation features is built. Cross-references to the first occurence of a feature
are created by the base pointers (represented by dotted lines in Figure 3.3). These allow for
rapid inter-frame access to annotation data.

The three different kinds of features supported – vertices, edges and polygons – all use the
same universal paradigm (previous/next/base pointers), achieving the goal of ubiquity.
The implementation is sufficiently simple that all necessary operations were easy to imple-
ment, and extension to new kinds of feature primitives is straightforward.

A sacrifice made to achieve these goals is access speed – linked lists are O(n) in most opera-
tions; however, the performance impact of this complexity turned out to be acceptable even
for large numbers of features (see detailed measurements in Section 4.3.1).
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3D Data Structures

The data held in the annotation data structures is purely two-dimensional. The structure-
from-motion pipeline (see Section 3.3) returns a 3-vector for each 3D model point inferred.
However, in order to provide useable input to the OpenGL renderer (see Section 3.5) or the
PLY exporter (see Section 3.7.2), more elaborate data structures representing 3D primitives
and their properties, such as colour, texture and composition from elementary primitives,
were required.

For this reason, I designed a number of simple data structures to represent objects in 3D
space:

• ThreeDPoint – This represents a vertex in 3D space; consequently it has three fields
corresponding to the (x, y, z) coordinates and a colour attribute that is a RGB triple. It
is drawn using the OpenGL GL_POINTS primitive.

• ThreeDEdge – Represents an edge, that is a line connecting two vertices, in 3D space. Its
fields are two pointers to the start and end vertices represented as ThreeDPoints. This
is drawn using the GL_LINES primitive.

• ThreeDTriangle – This is the most elaborate 3D primitive supported, and a special case
of a general polygon in 3-space. It is defined in terms of three ThreeDPoint vertices, and
drawn as a GL_TRIANGLES primitive.

ThreeDTriangle is the only primitive that can be textured – however, the texture and the
texture coordinates are specified separately, as the texture extraction step (see Section 3.4) is
independent of the generation of 3D primitives and OpenGL also sets up textures in a step
separate to drawing primitives.

3.2 Annotation Interface

This section describes the graphical user interface of the Proteus system. It will go into some
detail on the different modes of operation and interactive guidance features offered by the
user interface when annotating video frames. A screenshot with annotations highlighting
the important features of the user interface is shown in Figure 3.4 overleaf.

3.2.1 Modes of Operation

The annotation interface has two principal modes of operation which can be used individu-
ally or in combination: Manual annotation and automated feature tracking.

When using manual annotation, features such as corners, edge joints, or distinctive points in
the object texture, are identified and matched by the user by clicking and dragging. This
process can be supported by interactive guidance through edge snapping (see Section 3.2.3).
Since complete annotation with a suitable number of features is quite a tedious task to un-
dertake for multiple subsequent frames, several options are offered to make this step easier
for the user:
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Figure 3.4: Overview of the front-end user interface.

• The complete annotation lists from a different frame can be copied. This will almost
always result in the annotations ending up displaced from the feature points, so a step
of manually moving the annotation points to the correct locations should follow.

• Annotations can be interpolated over a sequence of unannotated frames between two
annotated key frames, assuming a simple linear translational camera motion in be-
tween.

The second approach, automated feature tracking, invokes the Kanade-Lucas-Tomasi feature
tracker, which identifies a specified number of features in the first frame and tracks them
for a specified number of frames. This only produces a set of matched feature points, and
should normally be followed by a step of manual insertion of edges and triangles.
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3.2.2 Adding Annotations

The process of adding annotations is carried out in an intuitive point and click manner: The
user initiates the process of adding an annotation by clicking on a point in the image that
is supposed to be an initial feature point. A red dot will appear, and a yellow dot and line
will show the next feature point and the line connecting the two (see Figure 3.5). By clicking
again, the next feature point can be placed.

Figure 3.5: Creation of two annotations connected by an edge: click, point, click.

3.2.3 Interactive Guidance using “Snapping”

One of the most difficult and tedious parts of the process of manu-
ally annotating a video frame for a human user is to place annota-
tions with pixel accuracy. Hence some way of guiding the user in a
non-intrusive, interactive fashion would be useful.

A very similar problem has been described by Agarwala [1], con-
cerning the annotation of video material for generating cartoons.
There, an approximate tracing provided by the user is fitted to con-
tours found in the image. I decided to adapt this for the Proteus
project: The projected line during the annotation creation phase
should “snap” to distinctive edges in the image, making it easy to
trace the outlines of objects.

Outline of Snapping

The first step to be performed in order to implement snapping is the identification of edges
in the image, which is done by applying an edge detection operator. An algorithm, described
later in this section (see Algorithm 1), is run to work out the snapping score for the vicinity of
the mouse cursor and allows annotations to snap to edges accordingly.

In addition to “snapping” to edges in the image, there is also endpoint snapping, which means
that new annotations will snap to existing annotation points. The underlying assumption is
that if the user is placing a new feature point very close to an existing one, it is likely that
they meant to merge the two. Endpoint snapping takes precedence over edge snapping, but
only considers a smaller window around the cursor.

Of course, there is a chance that the user does not want either form of snapping to happen
– for this situation, there are both UI controls and a key combination (holding the CTRL key
down whilst placing annotations) that can temporarily disable the snapping mechanisms.
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Choice of Edge Detection Operator

There is a number of edge detection operators that are commonly used in computer vision
applications. These are usually classified in terms of being first-order difference or second-order
difference operators, and the canonical way of applying them is to perform a 2D discrete
convolution of the image with the operator.

The discrete form of convolution replaces integration by summation, and hence is expressed
by

h(x, y) = ∑
α

∑
β

f (α, β) · g(x− α, y− β),

where f is the α× β operator, g is the 2D image and h is the resulting image.

The operators considered for this project were the (second-order) Laplacian edge detection
operator and the (first-order) Sobel operators [23], where the former is an isotropic second-
order finite difference operator and the latter are directional first-order derivative operators.

The operation of discrete convolution can sometimes be implemented more efficiently in the
Fourier domain than in the image domain, depending on the relative sizes of the image and
the operator considered. In this case, the kernel size is 3× 3, so this does not apply.

Laplacian

A discrete approximation of the Laplacian operator ∇2 can be used to perform edge detec-
tion by detecting the zero-crossings of the gradient in convolution with the image.

However, there are numerous complications with the Laplacian operator, most prominently
its complexity, the suboptimal performance of the difference-taking approach and its inher-
ent noise sensitivity.

I initially implemented edge detection using the Laplacian operator, but decided against
using it as the default edge detection method when it became clear that its noise sensitivity
led to suboptimal detection. Instead, the Sobel operators were considered as an alternative.
The implementation using the Laplacian is described in Appendix A.3.

Sobel operators

The Sobel operators are a family of directional (non-isotropic) convolution kernels that sepa-
rately detect horizontal and vertical edges:

−1 0 1
−2 0 2
−1 0 1

(a) ∂
∂x

−1 −2 −1
0 0 0
1 2 1

(b) ∂
∂y

These kernels each perform discrete differentiation (difference) in one direction and inte-
gration (summation) in the other. Furthermore, they are a 3× 3 approximation to the first-
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derivative-of-Gaussian kernels. An advantage of this is that it provides an inherent Gaussian
blurring, making the operators less susceptible to noise.

The first kernel will filter for vertical edges (derivative with respect to x), whilst the sec-
ond filters for horizontal edges. The resulting edges will have a polarity, indicating the (one-
dimensional) direction of the edge normal. However, some edges that are at an angle will be
detected by both operators, sometimes with opposite polarities (e.g. the top-left edge in the
example in Figure 3.6).

(a) vertical (b) horizontal (c) gradient field

Figure 3.6: Application of the Sobel edge detection operators: (a) vertical Sobel operator applied, (b)
horizontal, and (c) the values of G, i.e. the gradient field.

It should be noted that with this operator, both very large and very small (negative) numbers
indicate a high gradient. This is a result of the polarity property, and when combining the
results of the two operator applications it needs to be ensured that opposite signs do not
cancel each other out.

For this reason, the gradient approximations resulting from applying the two operators are
combined into a gradient magnitude using the square root of their squared sum,

G =
√

Gx
2 + Gy

2.

Edge Detection Metric

The gradient field – an array of per-pixel gradient values returned from the application of an
edge detection operator – is pre-computed and stored in a dynamically-sized multi_array
provided by the boost library (this choice was made so that the image dimensions would
not have to be fixed, as would have been required with “normal” multi-dimensional C++
arrays).

In order to use this data to snap to edges when adding annotations, the basic assumption
made was that the user will be pointing somewhere in the vicinity of the desired position. In
other words, only a fixed window around the mouse cursor position on the image needs to
be considered, and it can be assumed that this window contains one end of the edge. I chose
to use a 20× 20 pixel window, as this provides a reasonable trade-off between the captured
range and the computational complexity.
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Let h(x, y) denote the 2D function representing the gradient field in the following. A plot of
an example of this function is shown in Figure 3.7.
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Figure 3.7: Plot of the gradient field for a frame of the “Cube” example.

For each of the pixels within the snapping window, a hypothetical line is constructed using
Bresenham’s line drawing algorithm [6]. The method used to find a metric respresenting
how likely a given hypothetical line is to be on, or close to, an edge is as follows (Algorithm
1).

Objective: For a given cursor position C = (x, y), find the most optimal pixel S in a k × k window
(snapping window) to snap a new line endpoint to.

Algorithm:

1. Initialisation: Set S = C and max = 0.

2. Iteration: For each pixel Pij = (xi, yj) in the k× k window,

(a) Construct a hypothetical line with endpoint (xi, yj) using Bresenham’s line drawing algo-
rithm.

(b) Calculate the snapping score, the discrete line integral I over the gradient values along this
line, and normalise it by the line length, giving Inorm.

(c) If the value of Inorm exceeds max and it also exceeds a pre-defined significance threshold,
then set S = Pij and max = Inorm.

3. Termination: Return the pixel coordinates of S.

Algorithm 1: Outline of the algorithm used for edge snapping.

For a hypothetical line r of length n pixels, a summation of the form

I =
n

∑
i=0

h(r(xi, yi))

can be used as an approximation to the line integral. This can be derived from the line inte-
gral using a Riemann sum (see Appendix A.4). The value of this sum can be obtained while
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the line is being constructed by summing the values of h(x, y) for all pixels x, y along the
line.

The value of the line integral is normalised by the length of the projected line, giving an
average per-pixel gradient value. This value can be used as a score for the hypothetical line,
aiding in finding the optimal line trajectory.
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Figure 3.8: Schematic view of the snapping calculations. The dashed red line is the boundary of the
snapping window, the green line is the line corresponding to the optimal snapping score, the yellow
line is where the user is pointing.

3.2.4 Adding Surfaces

The process of inserting a surface into an annotated frame is equally straightforward to
adding the initial annotations, and uses a similar interactive technique: when in surface in-
sertion mode, the user can click a set of points (which may be existing or new feature points)
in order to insert a triangle which has its boundaries defined by those points. Figure 3.9
shows an example of how this process works from the user’s perspective, once again using
the click, point, click paradigm that was already used for insertion of feature points.

Figure 3.9: Creating a new triangular surface in three steps; note how existing and new feature points
are combined to form the vertices of the triangle.

Guidance for the user is provided as the front-end highlights the feature points that have
already been included in the surface, indicated by a red circle. Additionally, candidate points
are highlighted with a blue circle as the mouse cursor moves into their vicinity.
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3.3 The Structure-from-Motion Pipeline

Annotations

Fundamental Matrix

Camera Matrices

Triangulation

Upgrade to Metric

3D Model

Figure 3.10: The structure-
from-motion pipeline.

The structure-from-motion implementation is the heart of the
Proteus project and the part that presented the greatest techni-
cal challenge, for reasons described before (see Sections 1.2, 2.3
and 2.4).

Due to the linear nature of data being processed by subsequent
algorithms, aiming to finally obtain a set of 3D coordinates
suitable for construction of a 3D model, this was implemented
in a pipelined fashion: each of the algorithms builds on the
previous one and its output constitutes part of the inputs to
the next one (see Figure 3.10 for a high-level view).

3.3.1 Computing the Fundamental Matrix

Introduction – The Normalised 8-point Algorithm

The first stage of the structure-from-motion pipeline is the computation of the fundamental
matrix, F. This matrix is an algebraic representation of epipolar geometry as a unique 3× 3,
rank 2 homogeneous matrix with 7 degrees of freedom1. Its property is that it maps a point
xi to the corresponding epipolar line l′i in the other image, i.e. we have l′i = Fxi. This can
be derived from the relations of epipolar geometry either algebraically or geometrically by
point transfer via a 2D homography [12, p. 243–ff.].

The central property of the fundamental matrix is the correspondence condition: for any
pair of corresponding points xi ↔ x′i in two images, x′i lies on the epipolar line l′i in the
second image, and we must have x′i

Tl′i = 0 and hence (since l′i = Fxi),

x′i
TFxi = 0.

The simplest algorithm for finding the fundamental matrix is the normalised 8-point algorithm
[12, p. 281–282], summarised in Algorithm 2. I chose to implement this algorithm due to its
relative simplicity compared to the alternatives – however, there are a number of degenerate
cases in which it will not yield a unique or a high-quality solution.

Singularity Constraint

It is very important to ensure that the fundamental matrix is a singular matrix of rank 2. If
this is not the case, the epipolar geometry relations represented by it will not be accurate and
the epipolar lines l′ = Fx for different x will not coincide in one point (see Figure 3.11).

In order to enforce this constraint, the matrix F found by solving the simultaneous equations

1 The central role of the fundamental matrix in epipolar geometry has even resulted in the dedication of a
song – see “The Fundamental Matrix Song” by Daniel Wedge, http://danielwedge.com/fmatrix/

30

http://danielwedge.com/fmatrix/


CHAPTER 3. IMPLEMENTATION 3.3. THE STRUCTURE-FROM-MOTION PIPELINE

Objective: For a given set of n image point correspondences in two images xi ↔ x′i, where n ≥ 8,
determine the fundamental matrix F, subject to the correspondence condition x′i

TFxi = 0.

Algorithm:

1. Normalisation: The coordinates of the feature points are transformed according to normalising
transformations T and T′. Both of these scale and transform the points such that

(a) their centroid is at the origin, and

(b) their root mean square distance from the origin is
√

2.

Hence the points considered in the next step are x̂i = Txi and x̂′i = T′x′i.

2. Finding the fundamental matrix F̂′: This is a two-step process:

(a) Linear solution: Build an n× 9 matrix A that is composed from the matches x̂i ↔ x̂′i and
apply the SVD to find the column corresponding to the smallest singular value, giving a
9-vector that represents F̂′ in row-major order.

(b) Singularity constraint enforcement: Constrain F̂ to be of rank 2 by minimising the Frobe-
nius norm ‖F̂ − F̂′‖ for det F̂′ = 0 by taking the SVD of F̂ = UDVT and building F̂′ as
U · diag(r, s, 0) · VT where r and s are the two largest singular values of the SVD of F̂.

3. Denormalisation: The normalisation of step 1 is reversed by computing F = T′TF̂′T.

Algorithm 2: The normalised 8-point algorithm for finding the fundamental matrix, adapted from [12,
p. 281–ff.].

in the matrix A is corrected so that its corrected version F′ minimises the Frobenius norm

‖F− F′‖ =

√√√√ m

∑
i=1

n

∑
j=1
| fij − f ′ij|

2,

subject to the condition that det F′ = 0, i.e. that F′ is rank-deficient. The recommended
method for this is to take the SVD of the initial fundamental matrix, F = UDVT. Since D
is by definition a 3 × 3 diagonal matrix, we can extract its two largest components: say
D = diag(r, s, t) where r ≥ s ≥ t. Using these, the fundamental matrix is re-assembled
using F′ = U · diag(r, s, 0) · VT.

Figure 3.11: Illustration of the effect of enforcing the singularity constraint (magnified); non-singular
fundamental matrix F on the left, singular F on the right.
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Implementation

A crucial challenge in the implementation of this algorithm was to find a technique for solv-
ing the system of n simultaneous equations introduced by the matrix A. In the general case,
a linear solution is not possible, so a least-squares solution was pursued instead. Hartley
and Zisserman suggest using the method of Singular Value Decomposition [21, p. 301–ff.], and
specifically of finding the singular vector corresponding to the smallest singular value.

The QuantLib library provides a class, SVD, to perform the SVD of a matrix, which, impor-
tantly, provides methods to access the matrices U, D and V that make up the SVD.

The implementation of the singularity constraint enforcement was relatively straightforward
since it only amounted to taking the SVD again, extracting the two largest singular values
from D and rebuilding the matrix using the newly created diagonal matrix instead of D.

3.3.2 Finding the Camera Matrices

P2P

Projection

P = 

P

Figure 3.12: Illustration of the role of the camera matrix in the projection process.

After the fundamental matrix has been found, the next step is to extract the camera matrices.
The significance of a 3× 4 camera matrix is that it provides an algebraic way to perform a
projection: For a 3D point X, specified as a 4× 1 vector, and a camera matrix P, it is always
the case that x = PX, where x is the 2D projection of X into the image plane of the camera C
giving rise to P. This relationship can be seen more clearly in Figure 3.12.

The camera matrix also provides information about the position and orientation of the cam-
era in 3-space, which is relevant for the following stages of the structure-from-motion pro-
cess. It is, however, important to note that a pair of camera matrices uniquely determines
a fundamental matrix, but that the converse is not true: due to projective ambiguities, any
fundamental matrix can correspond to multiple sets of camera matrices.

The precise composition of the camera matrix depends on the camera model used and has
been the subject of some extensive literature [12, p. 152–ff.] and discussing this in detail
would be outside the scope of this dissertation. The relevant models for the purposes of this
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project were the projective and metric cameras and, correspondingly, camera matrices. The
determination of metric camera matrices is described further in the context of upgrading the
reconstruction to metric in Section 3.3.4.

For a fundamental matrix F, the corresponding camera matrices are given by

P = [I | 0] and P′ = [[e′]×F | e′],

where I denotes the 3× 3 identity matrix, | denotes matrix concatenation, 0 is a zero 3-vector
and the notation [e′]× is the skew-symmetric matrix

[e′]× =

 0 −e′3 e′2
e′3 0 −e′1
−e′2 e′1 0

 .

The implementation of this was straightforward using the standard classes and linear al-
gebra routines provided by QuantLib. I chose to use contraction with the epsilon tensor ε ijk
[12, p. 563] as a means of implementing the generalised cross product between the 3-vector
corresponding to the epipole e′ and the fundamental matrix F.

3.3.3 Triangulation of Points

In general, the process of triangulation in two or three dimensions describes a method to find
the position of the third vertex of a triangle, knowing only the other two vertex positions and
the respective angles from the baseline connecting them.

C1 C2

l1

l2

e1 e2

x1 x2

Figure 3.13: Illustration of the problem of projection rays missing each other in 3D space.

Naïve geometric triangulation assumes that for an existing triangle there is always an inter-
section point of the two lines that connect in the third vertex – this is true in two dimensions,
but obviously not in three where rays can miss each other in space. As outlined before, with
noisy input data to the structure-from-motion pipeline, this is the default case rather than
an exception (see Figure 3.13 for an example). Hence the algorithms described in the fol-
lowing aim to minimise the distance between the projection rays in order to find the best
approximation to the intersection point.

I implemented two algorithms for triangulation: The simple homogeneous Direct Linear Trans-
formation (DLT) method and the optimal triangulation algorithm based on minimisation of a
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Objective: Given a set of n = j− i point correspondences across n images of the form

xi ↔ xi+1 ↔ ...↔ xj−1 ↔ xj

and a set of n camera matrices Pi, ..., Pj, find the 3D point X corresponding to the xi, ..., xj such that
the algebraic distance between the projection rays is minimised.

Algorithm:

1. Preconditioning: A homography H that scales the 2D points xi, ..., xj by 1
2 of the image size and

translates them by −1 in each direction is constructed and applied, giving x̂i, ..., x̂j.

2. System of simultaneous equations: For each image point xk, it is the case that xk = PkX, which
gives rise to two linearly independent equations per image. These equations form the 2× 12
matrix Ak. The different Ak are combined into a 2n× 12 matrix A such that AX = 0.

3. Solution: Solve by computing the SVD of A and choosing the smallest singular value as X.

Algorithm 3: The homogeneous DLT algorithm for triangulation across n images, based on [12,
p. 312].

geometric error cost function. While the linear homogeneous algorithm was fairly straight-
forward to implement and gave quick results, allowing for verification of other parts of the
pipeline, the optimal algorithm has a much greater implementation complexity, but provides
provably optimal results [12, p. 313].

The Homogeneous DLT Algorithm

The choice to implement the homogeneous DLT as the basic triangulation algorithm was
made mainly because it is easily generalised from two to n views (cf. [12, p. 312], which
provides this for two views). The full adapted derivation that I developed for n views can
be found in Appendix A.7.

My implementation is described in Algorithm 3. The step of establishing the equations for
the matrix A was implemented by contraction of xkP with an ε-tensor that was already used
for the cross product in the computation of the camera matrices (see Section 3.3.2). This gives
rise to two equations in two unknowns from each image in the correspondence, which can
be expressed as a 2× 12 matrix that is concatenated onto A. As before, the SVD is used to
solve the resulting system of linear equations.

In order to aid modularisation of the implementation, I implemented a number of linear
algebra helper functions, the most prominent of which was the set of overloaded submatrix
methods that allow an arbitrary subset of a QuantLib matrix to be extracted into a new one.

The Optimal Triangulation Algorithm

The second triangulation algorithm implemented is the optimal triangulation algorithm [12,
p. 313–ff.], an overview of which is given in Algorithm 4 (overleaf). The virtue of this algo-
rithm is that it is invariant to the projective frame of the cameras (the homogeneous DLT
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algorithm is only invariant to affine transformations, but not projective ones) and is less
susceptible to noise in the input images than the linear algorithms.

C1 C2

X̂

e1 e2

x̂1
x̂2

x1

x2

d1

d2

Figure 3.14: The 3-space point X̂ projects to points x̂1 and x̂2. These satisfy the epipolar constraint,
while the measured points x1 and x2 do not. The point X̂ should be chosen so that the reprojection
error d2

1 + d2
2 is minimised.

The underlying theoretical foundation stems from the fact that the feature correspondences
identified in the images will not in general correspond to exact projections of the correct 3-
space point, as illustrated in Figure 3.14. Noise and lack of precision in the sub-pixel region
mean that the measured points x1 ↔ x2 for two views do not exactly satisfy the epipolar
constraint (see Section 2.1). Hence this algorithm seeks to identify points x̂1 ↔ x̂2 that satisfy
the epipolar constraint x̂2

TFx̂1 = 0 and still lie as close as possible to the measured points,
i.e. minimise the geometric error function C(xi, xj) = d(xi, x̂j)2 + d(xi, x̂j)2, subject to the
epipolar constraint.

This minimisation can be performed in a variety of ways; Hartley and Zisserman present a
Sampson approximation [12, pp. 314–315] and a non-iterative solution method that is prov-
ably optimal under the assumption of Gaussian noise.

The latter method was implemented for this project and is described in detail in Algorithm
4 and further, including the full derivation, by Hartley and Zisserman [12, p. 315–ff.].

A considerable challenge for the C++ implementation was posed by the solution of the poly-
nomial in step 7 – since this is a sixth-degree polynomial, no general closed-form solution ex-
ists. A simple Newton-Raphson approximation was not deemed sufficient in this case since
finding an appropriate initial guess is very difficult and cannot guarantee convergence for
all (up to six, possibly complex) roots. I ended up using the complex polynomial root finding
functions provided by the GNU Scientific Library2, which successfully identify all roots.

A disadvantage of the optimal triangulation algorithm is that it does not straightforwardly
generalise to more than two views. This is because some steps, particularly those to do with
the cost function, i.e. steps 6–9, are inherently based on there being a pairwise correspon-
dence. For this reason, it was only implemented for two-view reconstructions, and the ho-
mogeneous DLT algorithm was used for the n-view reconstruction code.

2 GSL-1.12, http://www.gnu.org/software/gsl/
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Objective: Given a point correspondence of the form xi ↔ xj and a fundamental matrix F,

a. first compute the corrected correspondence x̂i ↔ x̂j such that the geometric error

C(xi, xj) = d(xi, x̂j)2 + d(xi, x̂j)2

is minimised subject to the epipolar constraint x̂j
TFx̂i = 0,

b. and then find the 3D point X corresponding to x̂i ↔ x̂j.

Algorithm:

1. Define transformation matrices Ti and Tj:

Ti =

1 −xi
1 −yi

1

 and Tj =

1 −xj
1 −yj

1


which takes xi = (xi, yi, 1)T and xj = (xj, yj, 1)T to the origin.

2. Translate F to the new coordinates by setting F = T−T
j FT−1

i .

3. Find the epipoles for the cameras corresponding to the fundamental matrix such that Fei = 0
and ej

TF = 0.

4. Form the rotation matrices Ri and Rj such that Riei = (1, 0, ei3)
T and Rjej = (1, 0, ej3)

T:

Ri =

 ei1 ei2
−ei2 ei1

1

 and Rj =

 ej1 ej2
−ej2 ej1

1


5. Redefine F again to be F = RiFRj

T.

6. Let fi = ei3 , f j = ej3 , a = F22, b = F23, c = F32, d = F33.

7. For the polynomial g(t), defined as

g(t) = t((at + b)2 + f 2
j (ct + d)2)2 − (ad− bc)(1 + f 2

i t2)2(at + b)(ct + d) = 0

find solutions for t, obtaining up to 6 real or complex roots.

8. Evaluate the cost function

s(t) =
t2

(1 + f 2
i t2)2

+
(ct + d)2

(at + b)2 + f 2
j (ct + d)2

at the real part of the each of roots. Select the minimum value tmin.

9. Evaluate the two epipolar lines li = (t f , 1,−t) and lj = (− f j(ct + d), at + b, ct + d)T at tmin and
find the closest points to the origin on these lines:
These points are x̂i and x̂j.

10. Transfer these back to the original coordinates by setting x̂i = T−1
i Ri

Tx̂i and x̂j = T−1
j Rj

Tx̂j.

11. Use these points as input to the homogeneous DLT algorithm and obtain the 3D point X̂.

Algorithm 4: The optimal triangulation algorithm, adapted from [12, p. 318].
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3.3.4 Transformation to Metric Reconstruction

After the initial triangulation, a projective reconstruction will have been obtained. This is a re-
construction that is identical to the original object only up to an arbitrary projective transfor-
mation – more precisely, merely intersection and tangency properties of lines and surfaces in
3-dimensional space are invariant. The perceived quality of the reconstruction is thus highly
dependent on the viewing position and the projection resulting from it – from a position that
is close to the original camera positions, the reprojection error may be very small, whilst for
a different viewing position it might be very large. This problem is illustrated in Figure 3.15.

Perspective 1 Perspective 2

P1
P2

Figure 3.15: Weakness of the initial projective reconstruction – the same object seen from different
perspectives; the approximate camera perspectives are shown on the left. P1 was close to the original
camera position, whereas P2 was opposite it.

In order to obtain a more useful and generic 3D representation, this reconstruction can be
“upgraded” to an affine or a metric reconstruction.

There is a large variety of techniques to implement this step, including consideration of three
views using trifocal tensors [12, p. 365–ff.] in order to refine the reconstruction based on pair-
wise matching, or the computation of a stratified reconstruction using an infinite homography
H∞ by considering the plane at infinity (π∞; the plane in which the vanishing points lie) and
subsequent upgrade to a metric reconstruction based on the absolute conic ω.

Figure 3.16: The Ground Truth Point Editor in
use.

All of these approaches are very complex
both in implementation and computation.
For this reason, I chose to implement the
direct method for upgrading to a metric re-
construction [12, p. 275–ff.]. This approach
uses ground truth coordinates specified by
the user in order to infer a homography that
allows the metric camera matrices PM to be
found.

In order to be able to use this with the
rest of the framework, a facility for the user
to input the ground truth coordinates was
required. A Ground Truth Point Editor dia-
log was added to the front-end, allowing
specification of five (or more) ground truth
points in a table (Figure 3.16).
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Objective: Given a set of projected points xi and their initial projective reconstructions Xi as well as a
set of (at least five) ground truth coordinates XEi, find the metric reconstructions for all XEi.

Algorithm:

1. Get metric camera: Using an adapted version of the DLT algorithm for camera resection [12,
p. 178], compute two linearly independent equations per given ground truth point:

[
0T −wiXEi

T yiXEi
T

wiXEi
T 0T −xiXEi

T

]P1

P2

P3

 = 0

and solve this for P (12-vector that holds the entries of camera matrix P), giving the metric
camera matrix PM = PH−1, where H is a homography relating the projective camera to the
metric one.

2. Do the same for subsequent images, obtaining further metric cameras.

3. Triangulate again: Using the metric camera matrices and the initial point correspondences as
input, run the normal triangulation algorithm to obtain the metric positions of 3D point Xi.

Algorithm 5: The transformation to metric using ground truth points.

The suggested method of approaching the direct reconstruction itself infers the homogra-
phy H by direct correlation of the ground truth points to the 3D points in the projective
reconstruction using the homography, i.e. XEi = HXi, for measured ground truth point XEi.
Consequently, the projection of Xi is related by xi = PH−1XEi. However, solving this for H
is non-trivial, since it requires the homography H to be obtained by decomposition of the
matrix product PH−1. For this reason, I devised a new algorithm to derive the metric camera
matrices that does so without explicitly solving for H – the crucial insight being that H is actu-
ally only required to transform the projective camera matrices to their metric counterparts.
The algorithm is described in Algorithm 5. Since it only uses input data from a single image,
it is inherently generalisable to n-views.

Implementing this algorithm was reasonably straightforward – as usual, a MATLAB imple-
mentation preceded the C++ implementation in order to ensure the soundness of results.

A discussion of the effects of choosing different possible ground truth points can be found
in the Evaluation chapter – see Section 4.3.4.

3.4 Texture Extraction

As the final step of the structure-from-motion pipeline, I implemented a facility to extract
texture data from the input video and impose it onto the previously generated 3D model.

The implementation I chose for extracting textures is a two-step process:

1. Extraction of pixel data from image:

(a) The annotations, and in particular the surfaces, are used to determine the bound-
aries of the texture to be extracted.
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(b) The pixel data between these boundaries is copied to a buffer in memory or writ-
ten to a file and padded appropriately.

2. Determination of texture coordinates: OpenGL requires a set of texture coordinates
that identify where in the texture data the polygon vertices should be localised. These
coordinates are computed and stored in a data structure.

(a) Annotated frame (b) Step 1: Boundaries (c) Step 2: Full texture

Figure 3.17: Texture extraction example; the highlight in (a) was added manually for illustration.

3.4.1 Texture Data Extraction

Figure 3.18: Textured model pro-
duced from the example in Figure
3.17.

In the data extraction step, first the correct size of the tex-
ture is calculated by considering the bounding box of the
surface. Since OpenGL textures are required to have side
lengths that are equal to powers of two, the width and
height of the bounding box are rounded up to the next
power of two. The buffer is then initialised with all black
pixels.

In the next step, Bresenham’s line drawing algorithm [6]
is used to demarcate the edges of the texture in the buffer,
filling a one pixel wide edge with the appropriate colour.
An example of the intermediate shape generated by this
is shown in Figure 3.17b.

Subsequently, a scanline algorithm (see Algorithm 6) is
run on the buffer, filling the parts of the image that are
within the texture with the appropriate pixel data. In or-

der to determine whether a boundary crossing is entering or leaving the texture, a crossing
count is maintained.

3.4.2 Texture Coordinates

In the final part of the texture extraction code, the texture coordinates are calculated. These
control the way in which OpenGL will project the texture onto the surface, and hold the
position of the vertices relative to the texture rectangle.
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Objective: Given an image containing triangle outlines, fill in the texture data within the triangle.

Algorithm:

1. Initialisation: Set y = 0, x = 0.

2. Scanline Iteration: Set crossings = 0. Iterate over all x. For each pixel (x, y),

• if it is not black, it is on a line. Increment crossings when the next black pixel is detected.

• if crossings is odd, fill in the pixel (it must be inside the triangle).

Increment y and repeat.

3. Termination: Once the top of the image is reached, terminate.

Algorithm 6: The texture extraction algorithm (summarised, disregarding special cases).

v1

v2

v3

a

h

b

w

c

Figure 3.19: Texture coordinates example.

An illustrative example of this, which the following explanation will refer to, is given in
Figure 3.19. The coordinates of the vertices relative to the bounding box, i.e. v1 = (b, c),
v2 = (0, a), v1 = (w, 0), are taken and divided by the side lengths of the texture in the
respective components. This gives, for each component, a ratio in the range [0, 1] of the vertex
position within the texture. More precisely, in the above example, we get

Tv1 =
(

b
w

,
c
h

)
, Tv2 =

(
0,

a
h

)
, and Tv3 = (1, 0) .

This ratio is then stored to a TextureCoords data structure, which is just a n× 2 array (where
n is the number of vertices on the polygon, so n = 3 for triangles) and this data structure is
passed to the rendering code, along with a pointer to the texture data in memory.
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3.5 Model Viewer

OpenGL provides a cross-language, cross-platform API for 3D graphics that is fundamen-
tally based on a stateful, procedural approach to rendering.

The model viewer is an OpenGL-based viewing widget that can display fully textured re-
constructed 3D models right away from the output of the structure-from-motion pipeline.

3.5.1 Display Modes

(a) Point Cloud Mode (b) Wireframe Mode

(c) Shaded Mode (d) Textured Mode

Figure 3.20: Examples of the different rendering modes in the model viewer.

The model viewer supports four different display modes, as illustrated in Figure 3.20.

1. Point cloud mode: In this mode, merely the vertices of the model are assembled into
a drawing list and are then rendered in GL_POINTS mode. This produces uniformly
coloured 2D points that always face the camera, located at the vertex coordinates.
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2. Wireframe mode: This mode adds lines connecting the vertices, and displays both
interconnecting lines (rendered as a GL_LINES list) and vertices. The lines are uniformly
coloured.

3. Shaded mode: In shaded mode, the colour values at vertices are taken into account
and are linearly interpolated across the triangles in the model.

4. Textured mode: A list of textured GL_TRIANGLE elements is rendered. The textures are
extracted using the techniques described in Section 3.4 and a list of pointers to their
representations in memory is provided to the model viewer along with a list of texture
coordinates. This then passes these pointers and texture coordinates to OpenGL, which
draws and interpolates the textures on the model. This mode is the most complex dis-
play mode and consequently it takes marginally longer to render the model than in
shaded mode.

Note that not every combination of annotations may provide output in every mode – for ex-
ample, if only points and edges exist in the annotations, then obviously shaded and textured
mode will be no different in appearance from wireframe mode.

3.5.2 OpenGL with Qt

In order to provide this output, a customly written Qt widget, GLWidget, that provides an
OpenGL viewport via Qt’s OpenGL module is used. Even though the Qt module abstracts
away some of the complexity of integrating an accelerated OpenGL viewport into a Qt dia-
log window, it still requires the programmer to write some fairly basic OpenGL setup and
rendering code.

A full description of the OpenGL code written for the implementation of the model viewer
is beyond the scope of this dissertation, but a short summary will be given in the following
(and some example code for drawing a textured triangle can be seen in Listing 3.1).

GLuint list = glGenLists (1);
glNewList(list , GL_COMPILE );

glEnable(GL_TEXTURE_2D );
glShadeModel(GL_FLAT );

glBindTexture(GL_TEXTURE_2D , textures[tex_index ]);
glBegin(GL_TRIANGLES );

for (uint8_t j = 0; j < 3; j++) {
glTexCoord2f(tc[j][0], tc[j][1]);
glVertex3f(t.v(j).x(), t.v(j).y(), t.v(j).z());

}
glEnd ();

glEndList ();

Listing 3.1: Code used for drawing a textured triangle.
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In order to render a model in projective OpenGL space, it is first necessary to set up a viewing
volume and configure various global parameters such as back face culling and shading.

Objects to be drawn are arranged in drawing lists, which contain a set of coordinates and in-
terpret them in different ways depending on the type of drawing list. Implementing this was
made fairly straightforward by the abundance of OpenGL related documentation, although
the official OpenGL programming guide, the “Red Book” [16] proved most useful. A small
complication I encountered was the fact that Qt and OpenGL use different byte-orderings
for specifying RGB triplets3, but this was easily overcome by passing the GL_BGRA option to
the glTexImage2D() function, which is responsible for loading textures into OpenGL.

3.6 Kanade-Lucas-Tomasi Feature Tracker

(a) Tracking features...

(b) ... and the result

Figure 3.21: KLT in action.

The Kanade-Lucas-Tomasi feature tracker (KLT) is a stan-
dard feature tracking algorithm commonly used in com-
puter vision applications. Based on work initially pub-
lished by Lucas and Kanade in 1981 [15], it was later ex-
tended by Shi and Tomasi [22] and has been implemented
for many languages and platforms.

It first locates features by examination of the minimum
Eigenvalue of a local gradient matrix, computed by con-
volution with the derivative of a Gaussian for the sur-
roundings of each pixel. It then subsequently uses a
Newton-Raphson minimisation of the difference in inten-
sity between two windows in two different images to
track the window movement.

I thought that it would be a useful extension to the project
to integrate an automated means of feature tracking – this
could facilitate very rapid construction of reconstructions
by simply connecting up automatically inserted feature
points.

The implementation of the KLT algorithm that I used is
provided as a C library by Stan Birchfield [4]. It provides a functional interface that, given
image data pointers, image dimensions and a desired number of features, will detect fea-
tures in the first image and then track them across a sequence of images, returning a
KLT_FeatureList data structure.

My integration of this into Proteus amounted to adding the following components:

1. A tracker thread in which the feature tracking computation runs – this is so that the
GUI does not become unresponsive during feature tracking. It operates in a way that
is very similar to the video decoding thread described in Section 3.1.1.

3 Qt internally uses the endianness of the machine to determine the byte order, which on a little endian x86
machine amounts to BGRA, i.e. placing the blue value in the most significant byte of a word. OpenGL by default
uses RGBA, and hence expects the red value in the most significant byte.

43



3.7. MESH EXPORT CHAPTER 3. IMPLEMENTATION

2. Writing code to convert between the native representation of annotations in Proteus
and between KLT_FeatureList data structures.

Of those, the former turned out to be significantly more challenging than the latter – before
features can be tracked for a video frame, it first needs to be decoded. In order to ensure
this, a regime of locks using the facilities provided by QFuture (an abstract locking imple-
mentation provided by Qt on top of pthreads, using condvars and mutexes) had to be built,
allowing the GUI thread continue running concurrently, but enforcing strictly serial execu-
tion of decoding and tracking for any particular single video frame.

The conversion of data structures on the other hand was extremely straightforward to im-
plement: Only the x and y fields of the KLT_Feature struct and a unique identifier for every
feature are required in order to be able to populate the list of annotation points used by the
front end.

3.7 Mesh Export

3.7.1 Choice of Model Format

Figure 3.22: Exported mesh in the
mview mesh viewer.

A facility to export 3D models generated in Proteus into
a well-supported model format was one of the proposed
extensions included in the original project proposal.

I chose to use the PLY mesh format [5], also known as the
Stanford Triangle Format, which is a standard format for
portable storage of high-resolution mesh data in scientific
applications. The choice fell onto the PLY format for two
reasons: it is an open and well-documented format, and
encoding into it is straightforward to implement since it
comes with an ASCII variant.

The following section will briefly touch on how exporting
to PLY files was implemented in this project.

3.7.2 PLY Exporter

Due to the simplicity of the PLY file format, the implementation of the PLY export code
was fairly straightforward. All that was required was a facility to convert the collections of
ThreeDPoint, ThreeDEdge and ThreeDTriangle primitives into their respective representa-
tions in the PLY format and write those out to a file, one line per primitive.

The actual implementation uses the C++ standard library file stream class ofstream to cre-
ate a file stream object with an overloaded “«” operator to store strings into the file. Looping
over the primitive collections (passed as std::vector), strings are generated by simple con-
catenation and passed into the output stream using the overloaded operator.
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3.8 Serialization of Annotation Data

During development, it became clear that a way of permanently storing a sequence of anno-
tations and being able to load them again at a later point in time would be advantageous to
facilitate debugging and comparative testing.

In order to implement this, a mechanism to serialize the annotation data structure – in fact,
the entire list of data structures corresponding to the individual frames of the video – had to
be devised.

The difficulty of this task was increased by the fact that by design the annotation data struc-
tures rely heavily on pointers, which are normally pointing into memory dynamically allo-
cated at run time. Simply writing out the pointer targets would not suffice, since the memory
addresses would be different on the next execution of the program. Hence a deep copy mech-
anism for pointers had to be used.

Investigation showed that the boost C++ library includes a serialization framework that is
capable of performing deep copies of pointers and, in addition to this, supports ASCII and
XML output formats. These are both human-readable and hence ideal for manual inspection
of the contents of the data structures as well as modification of details. In the process of seri-
alizing the data structure, boost resolves pointers and replaces them by numerical references
to other parts of the output file.

I implemented the necessary methods to support the boost serialization mechanism – an
excerpt from an example export is shown in Listing 3.2.

<?xml version="1.0" encoding="UTF -8" standalone="yes" ?>
<!DOCTYPE boost_serialization >
<boost_serialization signature="serialization::archive" version="4">
<fv class_id="0" tracking_level="0" version="0">

<count >210</count>
<item_version >0</item_version >
<item class_id="1" tracking_level="0" version="0">

<id>0</id>
[...]

<list class_id="2" tracking_level="0" version="1">
<ehead class_id="3" tracking_level="1" version="0" object_id="_0">

<n1 class_id="4" tracking_level="1" version="0" object_id="_1">
<x>361.5 </x>
<y>393</y>
<base class_id="-1"></base>
<next class_id_reference="4" object_id="_2">

<x>473</x>
<y>302</y>

[...]

Listing 3.2: Sample XML Serialization Export.

Furthermore, boost serialization supports versioning – thus making it possible to load seri-
alized data from previous versions even if the data structure has been changed in the mean-
time: each object carries a version number with it that can be tested for in the deserialization
code.

45



3.9. SUMMARY CHAPTER 3. IMPLEMENTATION

3.9 Summary

This chapter described the implementation work I have done for the Proteus project. This en-
compassed a survey of the interactive annotation frontend, its operation and guidance fea-
tures as well as the underlying data structures. Then I moved on to describing the structure-
from-motion pipeline, which consists of implementations of algorithms for finding the fun-
damental matrix, finding the camera matrices, triangulation and upgrading the reconstruc-
tion to metric. The theory behind these core algorithms was explained and related to the
design decisions made when implementing them.

Finally, I outlined the texture extraction process and the implementation of the internal
OpenGL model viewer, before moving on to the additional extensions implemented, namely
integration of the KLT feature tracker, export to PLY meshes and serialization of annotation
data to the XML format. All of these components were implemented successfully, and to-
gether they form a complete interactive structure-from-motion framework.
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Chapter 4

Evaluation

O Heaven, were man
but constant, he were perfect: that one error

fills him with faults; makes him run through all sins
Inconstancy falls off, ere it begins.

– Proteus in “The Two Gentlemen of Verona” by William Shakespeare.

The objective of this chapter is to present a concise overview of the results of the design
and implementation work undertaken for Proteus, and to compare the results to the initial
goals. It describes the main quantitative results obtained and, using a number of examples,
demonstrates how 3D models are successfully reconstructed from video sequences.

Furthermore, the chapter elaborates on the conduct and analysis of a user study that was
carried out to evaluate the front-end user interface, looking in particular at its interactive
guidance features.

4.1 Overall Results

The success criteria of the project as described in the initial proposal (see Appendix A.10)
were threefold (summarised for brevity here):

Criterion 1: A video annotation framework that supports [...] “snapping” of feature points [...] has
been implemented.

This goal was tackled at the start of the implementation, and the results are described in
Sections 3.1.1, 3.1.2 and 3.2. The result is a fully-functional graphical front-end for annotation
of videos, supporting advanced guidance features using edge detection (see Section 3.2.3).

Criterion 2: An interactive structure-from-motion implementation [...] has been implemented. It is
shown to be working by applying it to a 360 degree shot of a cube or some other distinctive geometric
shape.

This goal made up the core of the project and, as expected, was the most difficult of the ob-
jectives. A structure-from-motion pipeline was built (see Sections 2.1 and 3.3), using various

47



4.2. TESTING CHAPTER 4. EVALUATION

different algorithms. Its evaluation is undertaken in Section 4.3 and includes the aforemen-
tioned “Cube” example.

Criterion 3: Textures for the faces in the extracted 3D model are obtained from the input image data
using per-polygon texture extraction. [This] is shown to be working by applying the method to a
textured cube.

The final goal has been described in Section 3.4. Textures can be extracted and applied to the
OpenGL model generated by the structure-from-motion pipeline.

Furthermore, a number of optional extensions – both ones that were included with the orig-
inal project proposal and ones that were developed additionally – have been implemented
successfully. Namely, the most important of these are:

• An interactive OpenGL-based viewing widget (Section 3.5).

• Integration of the KLT feature tracker (Section 3.6).

• Export to the PLY mesh format (see Section 3.7.2).

• A facility to save/load sets of annotations as/from an XML file (Section 3.8).

A pleasing overall result is that the minimum quality of input content supported actually
turned out to be much lower than originally expected – relatively noisy VGA-resolution M-
JPEG videos from a standard digital photo camera were found to be sufficiently good to
produce acceptable 3D reconstructions.

4.2 Testing

Since this project encompassed several components that had to be developed in a highly
linear fashion, testing and verification were crucial to its success. Hence each component
was tested both individually and when it was integrated with the rest of the system.

4.2.1 MATLAB Unit Tests

Since the MATLAB implementations of some algorithms were used as a basis for the C++
implementations in the actual production code, the verification of their correctness was es-
pecially crucial. For this reason, I wrote a modular unit testing framework that verifies all
MATLAB components individually using pre-defined synthetic input data with known re-
sults that had been verified either manually or using existing toolkits [13; 25; 34].

Each unit test consists of a test case with well-defined inputs and expected outputs. It calls
the appropriate MATLAB function with the inputs, and then compares the outputs with the
expected values. For every test, an individual maximum error threshold is set (between 10−3

and 10−9, depending on the task) and the results are checked against this. This approach
can be seen as an instance of the methodology of Black Box Testing, where knowledge about
the internals of an application is ignored and merely the correctness of the output for well-
defined input is judged.
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Figure 4.1: The output from the unit test framework for the MATLAB routines.

A short shell script was written in order to be able to quickly run all of these tests in sequence.
The resulting output from the script is shown in Figure 4.1; the script itself is shown in the
appendix in Section A.2.2 and an example test case is shown in Section A.2.1.

4.2.2 Verification of the C++ Implementation

After the MATLAB code had been established to work correctly, the process of porting it
to C++ was mainly characterised by stepwise porting the algorithms, verifying agreement
between the two implementations after every major stage. This was done using the same
synthetic input data that was already used for the MATLAB tests, so that comparisons were
straightforward.

In order for the implementation to pass a test to satisfactory standard, the values returned
by the C++ and MATLAB implementations were allowed to differ at most by orders of mag-
nitude that could be attributed to differences in floating point representations (MATLAB uses
single-precision, while my C++ code uses double-precision floating point).
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4.3 Empirical Evaluation

In this section, I will briefly outline how some parts of the project were evaluated in terms
of quantitative measures – in particular, the performance of the system and the accuracy of
the reconstruction mechanisms.

4.3.1 Performance Evaluation

While an analysis of the user interface responsiveness is difficult to conduct empirically, the
performance of the reconstruction code can be measured. Table 4.1 shows measurements
taking using different reconstruction modes and different numbers of input features.

8 features 26 features 100 features
Projective, 2-view, wireframe 3.1 7.2 22.1
Projective, 2-view, shaded 17.3 40.8 –
Projective, 2-view, textured 134.0 540.1 –
Projective, n-view, wireframe (n = 10) 13.0 27.0 85.2
Metric, wireframe 5.0 10.7 22.9
Metric, shaded 23.4 45.4 –
Metric, textured 142.0 541.2 –

Table 4.1: Time measurements for different reconstruction techniques and input sizes. All values are
medians of 50 runs and all times are in milliseconds. “–” denotes no measurement being taken. The
100 feature case was only measured for wireframe mode since no detailed model with surfaces for 100
features was available.

A number of observations can be made from this data. The reconstructions in general are
computed very quickly. The largest single overhead in the computation is added by texture
extraction, which results in the reconstruction time going up by about an order of magnitude.
This was expected and is explained by the texture extraction algorithm being unoptimised
and large textures having to be copied into the OpenGL memory buffers.

There is no significant difference between the projective and the metric reconstruction ap-
proaches – the metric reconstruction tends to take marginally longer, which again is not
surprising since it encompasses the projective reconstruction. Similarly, the n-view projec-
tive reconstruction for n = 10 takes longer than the simple 2-view one by about an order of
magnitude, which corresponds to a linear growth in the number of frames considered.

4.3.2 Structure-from-Motion Pipeline

The main component of the project that can be evaluated quantitatively is the structure-
from-motion pipeline.

A useful measure for this purpose is the idea of the reprojection error that is introduced by a
reconstruction [12, pp. 95–98]. In other words, if a 3D point X is reconstructed from (amongst
others) a projection x, then the reprojection error is the mismatch between x and the point
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x̂ = PX, i.e. projecting X again using the appropriate camera matrix P. This is commonly
expressed as

d(xi, x̂i) =
√

((xi / wi)− (x̂i / ŵi))
2 + ((yi / wi)− (ŷi / ŵi))

2,

i.e. the geometric distance between reprojected point x̂i and the original projection xi.

A useful way of relating the reprojection error to an entire frame with multiple annotation
points is to calculate the mean reprojection error for the image, which for n annotation points
is given by

1
n ∑

i
d(xi, x̂i).

The reprojection error will be used as the main evaluation metric in the following, and a
number of other criteria will also be mentioned as appropriate.

4.3.3 Projective Reconstruction

The projective reconstruction code is evaluated using the “Box” example. This is a very sim-
ple geometric shape and described with a small set of eight annotations, which is the exact
minimum required for being able to find the fundamental matrix (see Section 3.3.1).

Figure 4.2: “Box” projective reconstruction example input frames.

2-view Projective Reconstruction

The reprojection error for the 2-view reconstruction was generally found to be very low.
The geometric distances of the reprojected points from the original image points barely ever
exceed 2 pixels (3.125 %� in x and 4.167 %� in y-direction) and are normally within the sub-
pixel range.

A wider baseline between the views considered was, as expected, found to yield a greater
reprojection error. Figure 4.3a (overleaf) shows the mean reprojection error for 2-view recon-
structions based on three annotated frames shown in Figure 4.2, plotted on a log10 scale. It
can clearly be seen that the reprojection error increases significantly with the 30 and 58-frame
baseline in the second and third image pair.
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(a) 2-view projective reconstruction
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(b) n-view projective reconstruction

Figure 4.3: (a) Mean reprojection error for three pairs of projective views on the “Box” sequence
(Frames 0/10, 10/68 and 68/98), (b) Mean reprojection error for pairs of images generated from 2 up
to 6 input frames using n-view reconstruction (Frames used: 68–75). Red – first frame of the pair,
blue – second frame.

N-view Projective Reconstruction

The algorithms used to compute the n-view reconstruction are the same as those used for the
2-view reconstruction, and the computation merely differs in the fact that (n− 1) subsequent
camera matrices are computed and the triangulation algorithm is supplied with n inputs per
point.

The baseline reprojection error is identical to the one introduced by the 2-view reconstruction
since the camera matrices are computed iteratively across pairs of views. Hence it should be
expected for the reprojection error to increase as it is accumulated over a series of views.
The diagram in Figure 4.3b shows the evolution of the reprojection error for reconstruc-
tions based on two to six input frames. It is notable that the reprojection error increases
significantly between the 2-view and the 3-view reconstruction, but only slowly increases
thereafter.

4.3.4 Metric Reconstruction

The test content used for the evaluation of the metric reconstruction is the “Cube” example.
Two annotated frames from the cube sequence and the resulting reconstruction are shown
in Figure 4.5. There are an overall of 26 annotations in this example.

When considering the geometric distance of the reprojected points from the original projec-
tions in this example, as plotted in Figure 4.4, an interesting observation is that the disparities
in y-direction are significantly greater than those in x-direction. This can be explained by the
fact that the camera movement in the “Cube” example sequence is primarily a translation in
x-direction, and hence this is reflected more accurately in the camera matrices.

Note also that the first six reprojections are exactly on the original points – this is because
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Figure 4.4: Geometric distance of reprojected points in “Cube” sequence from original image points.
µ = (0.0119,−0.0242), σ = (0.0748, 1.024).

these points were specified as ground truth points and hence are reprojected extremely ac-
curately by the metric camera matrices as these are computed from them.

From the distance data in Figure 4.4, the reprojection error for the metric reconstruction can
be calculated. As the fairly low disparities would suggest, this turns out to be rather small
for the “Cube” sequence. The mean reprojection error for two pairs of frames, with a baseline
of 30 and 40 frames respectively, is found to consistently be close to 1 pixel. Notably, after
the upgrade to metric, there seems to be less variation in the reprojection error.

Experiments also showed that sequences with more annotation information generally had a
lower and less variable reprojection error after the upgrade to metric than those with only
scarce annotation information.

(a) Annotated input frame 1 (b) Annotated input frame 2

(c) Metric reconstruction of the cube, various views (backside view on the far right)

Figure 4.5: “Cube” metric reconstruction example.

53



4.3. EMPIRICAL EVALUATION CHAPTER 4. EVALUATION

Choice of Ground Truth Points

When experimenting with different choices of ground truth points for the upgrade from
projective to metric reconstruction (as outlined in Section 3.3.4), it quickly became evident
that not all possible choices yield reconstructions of the same quality.

As pointed out by Hartley and Zisserman [12, p. 275–ff.], using more than three co-planar
points will yield a poor quality of reconstruction, since these only add information in two
dimensions. An example of this can be seen in Figure 4.6 – note how the vertices on the roof
are displaced enormously from their real coordinates.

(a) Initial ground truth points (b) Results: the roof vertices are displaced due to coplanarity of
the other vertices

(c) Amended ground truth points (d) Results: the reconstruction is reasonably accurate

Figure 4.6: (a), (b): Attempt of a reconstruction of the facade of the School of Pythagoras in St John’s
College – the upgrade to metric fails due to coplanarity of more than three ground truth points; (c), (d):
Using a different set of ground truth points, the reconstruction now succeeds. Ground truth points
highlighted in pink for illustration.

This indicates that not all possible ground truth points (and combinations thereof) are equally
well suited to give rise to a metric reconstruction. Furthermore, I found that using points
with a wide baseline and close to the boundaries of the bounding box of the object yielded
significantly better results than if a set of points inside the object was used. The reason for
this is likely to be that the implicit homography created in the step of upgrading to the metric
reconstruction corresponds better to the overall model if points on the outside are chosen.
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4.4 User Study

Originally, I did not intend this project to include a user study. However, it became clear that
some components could only be evaluated properly through subjective judgement. In par-
ticular, the front-end and guidance techniques implemented do not lend themselves towards
an objective evaluation and are judged by users according to highly subjective criteria.

4.4.1 Conduct

The study was conducted over a range of ten days in April 2009 and included six partic-
ipants, all of which were current or former students of the University of Cambridge. All
subjects agreed to participate in the study and for their data to be used anonymously for the
purpose of this dissertation by signing an informed consent form (see Appendix A.9.2). The
same computer was used in all runs of the study in order to avoid the results being skewed
by environmental factors. Furthermore, all participants were given the same information
about the project before they participated (see script in Appendix A.9.3).

4.4.2 Identification of Variables and Choice of Tasks

In order to decide which tasks to include with the user study, it was crucial to first establish
the variables that were to be tested for. The exact details of this process are provided in
Appendix A.9.1.

As the main aim of this evaluation, I chose to analyse the perception of the interactive guid-
ance through “edge snapping” in terms of usefulness and accuracy. In order to facilitate this,
the subjects were asked to annotate a frame of a given video using the front-end, successively
using three different variants of the program:

1. With edge and point snapping, controllable by the user (i.e. the CTRL key can be used
to disable snapping temporarily).

2. With edge and point snapping, but not controllable.

3. Without any snapping or guidance at all.

The time taken to complete the tasks was measured, and participants were asked to com-
plete a short questionnaire about the subjective perception of the annotation process after
completing the tasks. The questionnaire is included in Appendix A.9.4.

4.4.3 Annotation Performance

The quality of the annotations made varied greatly between different participants – two
examples are shown in Figure 4.7. Some participants also included “imaginary” lines and
features in their annotation sequences (i.e. annotations for features that are obscured in the
image, but which they knew were located at a certain position). This did, however, not hap-
pen frequently enough to allow for a proper analysis of the effects on the reconstruction.
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(a) 31 annotations (b) 16 annotations

Figure 4.7: Sets of annotations of the “Blocks” sequence from different participants of the user study.

Since the participants were not constrained in the number of annotation points they could
place, the absolute time they took varied considerably (between about 36 seconds and 3 min-
utes). In order to obtain a useful quantitative metric from this, the total time was normalised
by the number of annotation points placed to give the per-point annotation time. The times are
summarised in Figure 4.8; the numbers above the bars indicate which order the participant
was given the techniques in.
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Figure 4.8: Normalised per-annotation time taken to annotate the video frame by each participant.
Numbers indicate the order in which the test runs were performed.

The dominant trend in this data is quickly found in the fact that there seems to be a signif-
icant learning effect between the first and subsequent runs, despite the users being given a
chance to familiarise themselves with the interface before doing the actual tasks. With one
exception, all participants took longest on the first run. I believe that this must partly result
from a continued learning process and partly from familiarisation with the video.

Furthermore, and this was an unexpected result, the method with controllable snapping in
many cases yields a longer per-point annotation time than non-controllable snapping. In
retrospect, this is not all that surprising: the participants usually made an effort to create a
more exact and accurate annotation when they were using this technique. Additionally, the
use of both keyboard and mouse in the process might have had a slowing effect.
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4.4.4 Preference for Edge Snapping Algorithms

The central question that the evaluation study sought to answer was whether there is a pref-
erence for interactive guidance through edge snapping. The data gathered from the post-
study questionnaire would suggest that this is the case: most participants found the guid-
ance useful and accurate.

Snapping – Usefulness

In the first question, participants were asked to rate the perceived usefulness of the inter-
active guidance provided. The results are shown in Figure 4.9 – the most positive feedback
was given on the technique that supported user-controllable edge snapping.

Strongly agree Agree Neither nor Disagree Strongly disagree

Snapping, user-controllable

Snapping, not controllable

No snapping

0% 20% 40% 60% 80% 100%

“The interactive guidance was useful”

Figure 4.9: Results: Section 1, Question 1 – Usefulness of interactive guidance.

In order to verify the statistical significance of these results, the Kruskal-Wallis test was used.
This test aims to confirm or reject the null hypothesis that there is no statistically significant dif-
ference between a set of groups, i.e. that the differences observed are purely by chance. It does
so by ranking results and relating a test statistic to a Chi-squared distribution. The results of
applying this test are shown in Table 4.2, with statistically significant results highlighted.

p-value
Question 1 – Usefulness of snapping
All methods 0.152
Pairwise: no snapping and controllable snapping 0.081
Pairwise: no snapping and non-controllable snapping 0.440
Question 2 – Edge detection accuracy
All methods 0.013
Pairwise: no snapping and controllable snapping 0.011
Pairwise: no snapping and non-controllable snapping 0.017
Question 3 – Tediousness of annotation
All methods 0.397

Table 4.2: Results of the Kruskal-Wallis test. Statistically significant results are highlighted in bold.
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The Kruskal-Wallis test for the first question indicates that there is likely to be a statistically
significant difference between the controllable method and the one without snapping, but
not with the other pair.

Snapping – Accuracy

The second question specifically aimed to capture the perceived accuracy of the edge detec-
tion in the different methods – including a placebo-control in the case of the third method,
which did not have any edge detection. The results in Figure 4.10 show that the snapping
was judged to be mostly accurate, with only minor differences between the two snapping-
based methods.

Strongly agree Agree Neither nor Disagree Strongly disagree

Snapping, user-controllable

Snapping, not controllable

No snapping

0% 20% 40% 60% 80% 100%

“The detection of edges was mostly accurate”

Figure 4.10: Results: Section 1, Question 2 – Accuracy of edge snapping.

In the case of the control, only one in six participants was under the impression that there
was accurate edge detection, all others judged it to be inaccurate, hence confirming the
judgement to be largely objective.

There is no statistically significant difference between the two snapping-based methods ac-
cording to the Kruskal-Wallis test, but there is between each of those and the version without
snapping.

Snapping – Tediousness

In the third question, participants were asked to judge how tedious they found the annota-
tion process. I included this question in order to evaluate whether there was a correlation
between the perception of tediousness and the provision of interactive guidance. The results
in Figure 4.11 indicate that there might be a correlation, but that it is not especially strong.
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Strongly agree Agree Neither nor Disagree Strongly disagree

Snapping, user-controllable

Snapping, not controllable

No snapping

0% 20% 40% 60% 80% 100%

“I found the annotation process easy and non-tedious”

Figure 4.11: Results: Section 1, Question 3 – Ease/tediousness of the annotation process.

4.4.5 Overall Impression

In the final part of the questionnaire, participants were asked to rate their subjective impres-
sion of how easy to use the toolkit they just tested was, plus how it compares to other means
of constructing 3D models, and to provide any further comments they might have.

The universal opinion seemed to be that the toolkit was indeed easy to use and that this
method of constructing models was significantly more accessible than current professional
3D modelling packages. The results are summarised in Figure 4.12.

Strongly agree Agree Neither nor Disagree Strongly disagree

0% 20% 40% 60% 80% 100%

“Overall, the system was easy to use”

is more intuitive than other ways”

“This approach to constructing 3D models

Figure 4.12: Results: Section 2 – Overall impression. The subjective perception is that the system is
easy and intuitive to use.
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Including all of the comments that were made by participants of the evaluation study would
exceed the scope of this dissertation, but a brief survey of comments is given below.

“The snapping was really good [...]. It really is a tedious task and the [...] snapping is
definitely helpful at making it less so.”

“It was good!”

“[...] snapping is mostly accurate, [but] is frequently a few pixels off; I suspect the approach
without snapping would produce a more accurate 3D model although it would take much
longer [...]”

“Cool!”

“Can we use this on Google StreetView images to build a model of Cambridge?”

4.4.6 Discussion

The analysis of the results of the user study has shown that there is a statistically significant
preference for variants of the user interface that utilise edge detection to provide interactive
“snapping” when annotating the video. Both the statistical results and subjective impres-
sions conveyed by participants suggest that the variant which allows the user to temporarily
turn snapping off was received best.

4.5 Summary

In this chapter, I have presented an evaluation of the Proteus project from a variety of differ-
ent perspectives. I first compared the results achieved to the original aims of the project – all
of which have been fulfilled completely, and were in fact extended by a number of extensions
that make the toolkit more useful.

An empirical evaluation of the reconstruction performance and quality was undertaken, and
the relative errors were found to be acceptably low for all reconstruction methods imple-
mented. Errors could be reduced further using a range of techniques (see Appendix A.6 for
a brief overview), but the level reached is more than satisfactory for the purpose of obtaining
basic 3D models.

Finally, I described the user study that was undertaken to evaluate the experimental and
subjective aspects of the project. The results show a very positive and promising resonance
towards the concept of interactively guided structure-from-motion, which is in line with the
overall success of the project.

A number of reconstructions that were produced using the Proteus framework are shown in
Figures 4.13, and Figure 4.14 shows a practical use case of a model generated using Proteus
being placed in Google Earth, implementing the example use case mentioned in the intro-
duction chapter.
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(a) “Hotel” (b) “Cube”

(c) “Box”

Figure 4.13: Various reconstructions generated using Proteus.

Figure 4.14: A mysterious cube has appeared on the Rathausmarkt in Hamburg... (model generated
using Proteus, converted using MeshLab and placed using Google Sketchup).Google Earth; 3D Buildings
c© 2008 CyberCity AG, Images c© 2009 AeroWest

61



4.5. SUMMARY CHAPTER 4. EVALUATION

62



Chapter 5

Conclusions

This dissertation has described the design, implementation and evaluation of the Proteus
interactive structure-from-motion framework.

Looking back to the start of the project, I have to admit that I was – to an extent – ignorant
towards the enormous complexity of this undertaking. Had I known the complexity and
amount of the work I took upon myself, I might have thought twice. However, my ignorance
may well have been a blessing – for most parts, I thoroughly enjoyed the journey I embarked
on, and whilst working on Proteus, I certainly learnt a lot about an exciting field of computer
vision that I had previously been unfamiliar with.

5.1 Achievements

All initial goals of the project have been achieved, and in fact surpassed – not only was the
core of the project implemented successfully, a number of optional extensions, have also
been implemented. Some of these were part of the original proposal and some were only
conceived during the development phase.

In addition to the end product that exists with the Proteus software, I have also acquired
a good degree of insight into the concepts and fundamentals of multiple view geometry,
structure-from-motion and state-of-the-art algorithms as well as cutting-edge research being
done in this area.

I consider the project successful both in the objective sense and in the personal sense of
having furthered my knowledge and abilities.

Proteus, to my knowledge, breaks new grounds in that it is the first publically available
structure-from-motion toolkit that works on input material obtained from consumer-grade
digital cameras and also the first one that makes use of interactive annotation as a method
of feature identification and matching.
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5.2 Lessons Learnt

The main lesson that I learnt from this project was that it is very easy to underestimate the
complexity of implementing a large-scale application based on research-level techniques of
which no reference implementations exist yet. In the core parts of the structure-from-motion
components, it often happened that what was a reasonably short description of a method
in literature turned out to be a large and complex piece of code to implement. However, a
systematic approach imposed control and allowed this to eventually succeed, even leaving
time for some more optional extensions.

Since the user study for the evaluation of the front-end was not initially planned to be a
part of the project, it had to be designed and conducted within a very short timeframe. This
resulted in a tight constraint on the number of subjects and hence a low sample size. If I
were to do this project again, I would design the user study much earlier and aim to recruit
a larger group of participants in order to improve results.

5.3 Future Work

The Proteus implementation is complete in the sense that it works and fulfils the success
criteria for the project. Nonetheless, there is scope for some further work on it.

My code will be made available on the internet1, licensed under the GNU General Public
License (GPL), for anyone to download and use.

The major improvements that could be made to the project are the implementation of more
elaborate algorithms for the structure-from-motion pipeline and improvements to the graph-
ical front end. A brief summary of possible further development is given below.

• User Interface: Selectable “tools” for drawing line sequences and surfaces would make
the front end more intuitive to use than the current scheme using hotkeys for mode
selection.

• Structure-from-Motion Pipeline: A full stratified reconstruction approach [12, p. 267–ff.]
that does not require ground truth information could be implemented. In addition to
this, a statistical algorithm for determining the fundamental matrix using maximum-
likelihood estimation could be added.

• Automatic Triangulation: For example, Delaunay triangulation [8] could be used to
automatically triangulate surfaces on an object with highlighted edges.

1 On the project website, http://proteus.malteschwarzkopf.de
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Appendix

A.1 Detailed List of Requirements

System Feature Priority Difficulty Risk X/ ×

Graphical User Interface Front End

1.1 Basic design and skeleton code High Low Low X

1.2 Multithreaded video decoding using libavcodec High Medium Low X

1.3 Navigation within a video High Medium Low X

1.4 Annotation facilities for nodes, edges and triangles High Medium Low X

1.5 Internal OpenGL-based model viewer High Medium Medium X

1.6 Ground-truth point editor Medium Low Low X

Data Structures

2.1 Design and implement annotation data structure High Medium Medium X

2.2 Data structures for 3D primitives High Medium Medium X

Interactive Guidance

3.1 Implement edge detection using the Laplacian operator High Medium Low X

3.2 Implement edge detection using the Sobel operators High Medium Low X

3.3 Integrate edge detection metrics with the GUI High Medium Low X

3.4 Snapping to existing annotation points High Medium Low X

3.5 Interactive guidance for triangle insertion Medium Medium Medium X

3.6 Automatic triangulation of annotation sets Low High Medium ×

Structure-from-Motion

4.1 Implement linear algebra & epipolar geometry helper functions High Medium Low X

4.2 Fundamental matrix computation using normalised 8-point algo-
rithm

High High High X

4.3 Camera matrix computation High Medium Medium X

4.4 Triangulation using homogeneous DLT algorithm High Medium High X

4.5 Triangulation using optimal algorithm Medium High Medium X

4.6 Direct upgrade to metric reconstruction using ground truth points High High High X

Texture Extraction

Continued on Next Page. . .
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Table A.1 – Continued

5.1 Extract texture data to image files High Medium Medium X

5.2 Compute texture coordinates & pass them to OpenGL High Medium Medium X

Export / Permanent Storage

6.1 Support exporting models into PLY mesh format Medium Medium Low X

6.2 Support saving/loading of annotation data (serialization) Medium High Medium X

Automated Feature Tracking

7.1 Implement multithreaded decoding/tracking across a frame se-
quence

Medium High Medium X

7.2 Conversion of KLT data structures to internal ones Medium Medium Low X

Testing and Evaluation

8.1 MATLAB unit testing framework High Medium Low X

8.2 Facility for calculating reprojection error High Medium Low X

Table A.1: Detailed breakdown of requirements identified in the Proteus project.
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A.2 Unit Test Code

A.2.1 Example Test Case – test_triang_optimal.m

The test case shown in Listing A.1 performs a test run of the optimal triangulation algorithm
(see Section 3.3.3) in MATLAB . The input test data is set up by the call to test_setup, and
the results in Xc are compared to the known-good result in X. If the two agree within an error
margin of 10−6, then the test succeeds.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Unit test for optimal triangulation algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function r = test_triang_optimal ()

test_setup

[F,dummy ,dummy] = fundmatrix(x1,x2);

P1 = eye(3,4);
P2 = P_from_F(F);

ps = {P1 ,P2};

is = [ 640 640; 480 480; ];

% triangulate using optimal algorithm (minimise geometric distance)
[xh1 ,xh2] = opttri(F,p1(:,1),p1(: ,2));

ut = [hnormalise(xh1) hnormalise(xh2)];

u = [ ut(1,:); ut(2,:) ];

X = X_from_xP_lin(u,ps ,is);

Xc = [ 0.7308134
-0.6825388
-0.0029042
0.0066419 ];

% work out the boolean test result - is our result within 10^-6 of the expected
% answer?
r = !( isequal(round2(X ,0.000001) , round2(Xc ,0.000001)));

return
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% main body

if (BATCHMODE == 1)
r = test_triang_optimal ();
exit(r);

end

Listing A.1: Test case code for testing the optimal triangulation algorithm.

71



A.2. UNIT TEST CODE APPENDIX

A.2.2 Batch Testing Script – run.sh

In order to be able to quickly and conveniently run all unit tests and ascertain whether a
change introduced any errors in a directly or indirectly dependent algorithm, I wrote a small
shell script that runs all unit tests and outputs the results (see Figure 4.1 in Section 4.2.1 for
an example of what the output might look like). The script is shown below in Listing A.2.
#!/bin/bash

SUCC=0
FAIL=0

log_success () {
echo -e " [ \e[1;32m OK \e[m ] : $@"
SUCC=$(($SUCC + 1))

}

log_fail () {
echo -e " [ \e[1;31m FAILED \e[m ] : $@"
FAIL=$(($FAIL + 1))

}

run_test () {
if [ $3 -eq 1 ]; then

octave -q --eval ’BATCHMODE = 1;’ $1 --persist
else

octave -q --eval ’BATCHMODE = 1;’ $1 --persist > /dev/null
fi

R=$?

if [ $R -eq 0 ]; then
log_success $2;

else
log_fail $2;

fi
}

##########################################
# main body
##########################################

if [[ -nz $1 && $1 = ’-v’ ]]; then
VERBOSE =1;

else
VERBOSE =0;

fi

echo "+-----------------------------------------------------------------------+"
echo "| Proteus Maths Unit Tests |"
echo "+-----------------------------------------------------------------------+"
echo
echo " Run started at ‘date +%k:%M:%S‘ on ‘date +%a\,\ %e\ %b\ %Y‘"
echo
run_test "test_homography2d.m" "2D Homography" $VERBOSE
run_test "test_resid.m" "Residual function" $VERBOSE
run_test "test_epstensor.m" "Epsilon Tensor" $VERBOSE
echo
run_test "test_fundmatrix.m" "Fundamental Matrix" $VERBOSE
run_test "test_cameras.m" "Camera Matrices" $VERBOSE
run_test "test_triang_linear.m" "Triangulation (linear algorithm)" $VERBOSE
run_test "test_triang_optimal.m" "Triangulation (optimal algorithm)" $VERBOSE
run_test "test_upgrade.m" "Upgrade to Metric" $VERBOSE
echo
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echo " Done."
echo -e " \e[1;32 m$SUCC\e[m passed , \e[31m $FAIL\e[m failed."
echo
echo " Run finished at ‘date +%k:%M:%S‘ on ‘date +%a\,\ %e\ %b\ %Y‘"
echo

Listing A.2: Shell script to run all unit tests in a batch and output the results.

A.3 Laplacian Operator for Edge Detection

The Laplacian operator ∇2 for continuous functions in Cartesian coordinates is defined as
the sum of the second partial derivatives in x and y. One of several possible discrete ap-
proximations to the Laplacian operator is given by the isotropic discrete convolution kernel
shown in Figure A.1d.

The result of convolution with this kernel can be seen in Figure A.1c. The edges are localised
at zero-crossings of the 2D function – this can clearly be seen in the adjacent bright and dark
lines.

∇2 f = ∂2

∂x2 f + ∂2

∂y2 f

(a) contin. Laplacian

(b) input image (c) Laplacian applied

−1 −2 −1
−2 12 −2
−1 −2 −1

(d) discrete approx.

Figure A.1: Application of the Laplacian edge detection operator.

The results can then be used to generate the gradient field – however, the gradient value
of zero at the edges needs to be converted into a large value in order to be able to use the
line integral method described before. In order to be able to do this, the gradient values are
clamped to the interval {−128, ..., 127} and the absolute value is stored in the gradient field.
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A.4 Derivation of the Discrete Line Integral

In Section 3.2.3, an approximation to the discrete line integral is given by

I =
n

∑
i=0

h(r(xi, yi)).

This can be derived from the continuous line integral using a Riemann sum as shown in the
following.

Consider the continuous line integral along the projected line:∫ b

a
f (r(t)) |r′(t)| dt

for some scalar field f : U ⊆ Rn → R and r : [a, b] → L being a parametrisation of line L
such that r(a) and r(b) give the endpoints of L.

In order to derive a discrete equivalent of this, a Riemann sum can be used. Consider a sum
of the form

I = lim
∆t→0

n

∑
i=1

f (r(ti))∆si

where ∆si = |r(ti + ∆t)− r(ti)| = |r′(ti)|∆t is the distance between subsequent points on
the line.
Since in the given case the line is defined by a discrete set of points at fixed distance (the
pixels), the distance term ∆si simply becomes 1, and the parameter t is replaced by a pair
of the form (x, y). The limit then becomes redundant, since the ∆t term just collapses to the
distance between two pixels on a line. By substituting h for f , the approximation shown
above can be found.

A.5 Derivation of the Fundamental Matrix

In order to find the fundamental matrix, sufficient data to find the homography Hπ is re-
quired. If this is given, then the above equation can be used to compute F: it can be expanded
for x = (x, y, 1)T and x′ = (x′, y′, 1)T, giving

x′x f11 + x′y f12 + x′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0

where fij are the (unknown) entries of the fundamental matrix.
Letting f denote the 9-vector corresponding to the entries of F in row-major order, a set of
linear equations can be obtained for n point matches (each match corresponds to a row):

Af =

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn n

 f = 0

Since F has seven degrees of freedom, at least seven point correspondences are required in
order to be able to solve for the fundamental matrix.
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A.6 Techniques to Optimise Reconstruction Quality

The initial solution obtained from the structure-from-motion algorithms is likely to only be a
very rough estimation of the actual scene geometry: It is only a projective reconstruction, and
input data ambiguities will be reflected in the data.

In the Proteus implementation, I have used the method of direct reconstruction using ground
truth data due to its relative simplicity and universal applicability. However, there are various
other ways of improving on the initial reconstruction, a brief survey of which is given in the
following.

1. Camera calibration: Attempt to extract the intrinsic camera parameters such as focal
length and aperture from the given point correspondences; the space of solutions and
approaches to this task is quite large, but a common approach seems to be to translate
the camera parameters to constraints on an absolute conic, ω, solve for this and use the
result as a calibration pattern.
This approach is generally used as part of a stratified reconstruction approach.

2. Trifocal tensors: This extends the pairwise matching used in 2-view geometry by re-
lating triples of views in addition to pairs, and uses this to reduce the ambiguity in the
projection by further restricting the possible positions of the reconstructed 3D point
through the constraints imposed by the third view.

3. Dense depth representation: In addition to the strong feature correspondences used
for the initial reconstruction, less pronounced correlations between other image points
can be used to extract further surface detail for a higher quality reconstruction.

4. Bundle Adjustment of point correspondences: For a reconstruction that has been ob-
tained from a sequence of images, a final improvement can be made by performing
a global minimisation of the reprojection error, aiming to find the camera matrices P̂k
and the 3D points X̂i which have projections minimising the least squares distance to
the known image points xi. Since this is a minimisation problem of an enormous scale,
usually sparse techniques like Levenberg-Marquardt minimisation are employed. No-
tably, this approach basically implements the techniques used in the evaluation chap-
ter of this dissertation as a “feedback loop” to the structure-from-motion algorithms,
thereby aiming to obtain an optimal reconstruction.

Some of these techniques, especially trifocal tensors [12, p. 365–ff.] and bundle adjustment
[12, p. 434–ff.] are well-described in literature already, whilst others, such as self-calibration
of hand-held cameras, are still an open area of research.
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A.7 Derivation of n-view Homogeneous DLT Triangulation

The central component of linear triangulation algorithms is a system of simultaneous linear
equations, represented as a matrix A. This matrix is constructed by considering that for each
point in images i, ..., j there is a relation of the form xi = PiX (this is just the algebraic expres-
sion for the projection), although xi and PiX can differ in magnitude by an arbitrary non-zero
scale factor.

This relationship can also be expressed by saying that the cross product of the two vectors
must be the zero vector, i.e. xi × PiX = 0. This cross product can be written as a set of equa-
tions linear in the components of X (let pkT

i denote the kth row of the ith camera matrix Pi):

xi(p3TX)− (p1TX) = 0

yi(p3TX)− (p2TX) = 0

xi(p2TX)− yi(p1TX) = 0.

Of these three equations, only two are linearly independent since the third is a linear com-
bination of yi times the first plus xi times the second. Including two equations from each
image only, this cross product can be written out as a set of 2n simultaneous equations in 2n
homogeneous unknowns for n = l − k images:

xk p3T
k − p1T

k
yk p3T

k − p2T
k

...
xl p3T

k − p1T
l

yl p3T
k − p1T

l


︸ ︷︷ ︸

A

X = 0.

In order to solve a set of equations of the form AX = 0, two methods can be utilised: The
homogeneous DLT method, and an inhomogeneous method [12, p. 313]. The former was imple-
mented for this project, as described in Section 3.3.3.
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A.8 Test Content

A.8.1 Content Creation and Acquisition

The test content that I used whilst developing and evaluating the Proteus project was mostly
obtained by myself using a Panasonic Lumix DMC-TZ5 digital camera, taking short video
shots of various objects. The “Hotel” example was created from a set of images2 obtained
from the Carnegie Mellon VASC Image Data Base, which supplies a number of public do-
main image sequences for computer vision research. The images were converted into a video
sequence that could be used with Proteus.

A.8.2 List of Test Content Sequences

No. Sample Frame Description

1

Box
00:20 min., M-JPEG, 640×480, 30fps
Used for: Basic projective reconstruction development,
texture extraction tests

2
Blocks
00:10 min., M-JPEG, 640×480, 30fps
Used for: Annotation tests, user study

3

Cube
00:07 min., M-JPEG, 640×480, 30fps
Used for: Metric reconstruction development, texture
extraction tests, user study

4

Laptop
00:17 min., M-JPEG, 640×480, 10fps
Used for: Texture extraction development, annotations
with noisy input data

5

Hotel
00:04 min., MPEG-4, 512×480, 25fps
Used for: Testing automated feature tracking and
projective reconstructions

6
Rickroll
03:35 min., MPEG-1, 352×240, 30fps
Used for: Basic video decoding tests

2“hotel” sequence in the “Motion” category http://vasc.ri.cmu.edu//idb/html/motion/hotel/index.
html
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A.9. USER STUDY MATERIAL APPENDIX

A.9 User Study Material

A.9.1 Identification of Variables

Since the main user interface had mainly been designed to be functional (e.g. not using tool-
bars or visual keys to represent different options), an evaluation of this was deemed to be
unnecessary – the interface itself can be refined independently of the underlying system and
could be redone completely for a commercial implementation.

The annotation mechanism itself however does present a number of variables that lend
themselves to evaluation:

1. Perceived helpfulness of interactive guidance through “snapping”.

2. Perceived accuracy of the snapping process.

3. User appeal of the idea of “drawing on video”.

4. Overall ease of use and intuitivity.

5. Comparison to other modelling techniques.

All of these variables were included in the user study.

A.9.2 Informed Consent Form

Proteus � GUI Evaluation Study

Informed Consent Form

I wish to participate in an user evaluation study which is being conducted by Malte Schwarzkopf, a Computer
Science student at the University of Cambridge Computer Laboratory. The purpose of the research is to assess
the results of work carried out during a �nal year project. The study involves use of a graphical user interface
and subjective assessment of di�erent features. My name will not be identi�ed at any time, but comments I
make may be anonymously quoted. I understand that I am free to withdraw from participation at my will at
any time.

I agree to the above Informed Consent Form.

Signed
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A.9.3 Outline of running the Study

Proteus � GUI Evaluation Study

April 28, 2009

There are three sample videos: Cube, Blocks and Disk.

The user is given a basic explanation of how the Proteus GUI front end works (see below) and is asked to
annotate a video sequence. The number of annotations they can make is not constrained; instead an average
�time per annotation� value will be taken later to compensate for di�erent amounts of detail being used.

�Proteus is an interactive modeling tool. It works by the user, i.e. you, putting annotations onto a video and
then relates them to generate a three-dimensional representation.
This study aims to evaluate how well di�erent techniques in how the user interface guides you when annotating
a video work.
You will now be given a video and I am asking you to �annotate� it by drawing outlines onto it, highlighting the
edges in the video. You can start by left-clicking the point where you want to start and it should be intuitive
from there. You can terminate a sequence of lines by double-clicking the right mouse button.�
[ Before doing case 2:
�You can also disable the magnetic snapping by holding down the Ctrl key.� ]

There are three annotation modes that are being evaluated:

1. Snapping only, using the Sobel operators

2. Snapping and no snapping, using the Sobel operators

3. No snapping

The user is asked to annotate a video using these 3 techniques. The time taken is measured and normalised
by the number of annotations made. Di�erent subjects are asked to annotate di�erent videos and with the
di�erent in di�erent orders, compensating for the learning e�ect.

At the end, the user is given an evaluation form and is asked to rate the di�erent techniques in terms of ease of
use. This data will be related to the measured times to compare subjective and objective perception.

Subject Run 1 Run 2 Run 3

1 3 2 1
2 1 3 2
3 1 2 3
4 2 1 3
5 2 3 1
6 3 1 2

All tests runs are done in the same setting, using the same hardware. The set of subjects is a selected group
of current and former students of the University of Cambridge, ranging across a set of di�erent subjects and
backgrounds.
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A.9.4 Post-Study Questionnaire
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A.10 Original Project Proposal

Malte Schwarzkopf
St John’s College

ms705

Computer Science Tripos Part II Individual Project Proposal

Proteus – An interactive 3D model acquisitor

October 23, 2008

Project Originator: Malte Schwarzkopf and Christian Richardt

Resources Required: See attached Project Resource Form

Project Supervisor: Christian Richardt

Signature:

Director of Studies: Dr Robert Mullins

Signature:

Overseers: Dr Frank Stajano and Dr David Greaves

Signatures:
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Introduction and Description of the Work

In recent years, consumer-grade digital video capture equipment has become much more
affordable, whilst at the same time the computing power available at low cost increased.
On a similar ground, 3D computer graphics hardware has become a lot faster and more
affordable. These factors have led to these particular uses of digital technology becoming
more ubiquitous. Fast broadband connections and the emergent “web 2.0” phenomenon
that gave rise to platforms such as YouTube have similarly contributed to giving home-made
videos a much more prominent role in our everyday lives and culture.

These factors have led to an increasing research interest in combining the classical 2D im-
age and video processing technology with three-dimensional computer graphics. Structure-
from-motion and the idea of acquiring 3D models from two-dimensional image material is
a specific branch of a broader research area, and one that has seen some significant steps
forward recently, yet still seems to bear a lot of promise and potential.

A lot of research effort has been put into analysing video data in order to obtain information
about objects for guidance systems or recognition problems, however this has usually been
limited to either a poor visual quality or utilised very specific hardware setups and highly
specialised equipment. Little consideration has been given to the idea of providing home
users, with often limited computing experience, with the necessary tools to transform videos
into 3D world models, using the consumer-grade equipment available to them.

The aim of this project is to implement a simple structure-from-motion system that can gen-
erate a 3D model of an object in a scene from a video, using inputs interactively provided by
the user to assist the model extraction.

It is well known that the human visual system is well-suited to recognising shapes and ob-
jects in an image, and can do so more efficiently than current image processing technology
can. In order to utilise this in the context of a 3D model acquisitor that uses video as its input
data, an interface that allows the user to “annotate” a video frame with object information,
hence pointing out distinctive features in the object such as corners, edges and shapes. In
order to assist the user in this process and provide some additional guidance, a "snapping"
concept, which snaps lines to edges in the video, will be implemented.

After the first key frames have been annotated, the software will attempt to use the data
provided by the user to estimate how the perspective has changed relative to another video
frame. Features are then interpolated between frames, and the user is give an opportunity
for corrective measures in case the interpolation has produced an inaccurate result.

Ultimately, a completely annotated sequence of video frames should have been obtained.
This is then used to extract the 3D structure of the object in the video. In the implementation
planned for this project, some information will already be provided by the interactive anno-
tations on the video, so that the step of feature identifcation and matching can be simplified
significantly compared to fully automatic systems.
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Resources Required

In order to model a real-world use case as accurately as possible, the project will use videos
taken using a hand-held digital camera as sample input material. Please see the attached
project resource form for details on this.

Apart from the camera, there are no special requirements. I am planning to undertake devel-
opment on my personal machines, doing regular automated and manual backups to off-site
locations such as the PWF and the servers provided by the SRCF.

Starting Point

In proposing this project, I am planning to build on the following resources:

• Internships at Broadcom Europe in 2007 and 2008 – I worked as a summer intern in
the 3D graphics group of the Mobile Multimedia department at Broadcom Europe Ltd.
for two summers. My work was primarily related to 3D hardware, but I was exposed
to the basic principles OpenGL and 3D computer graphics.

• Previous programming experience – I have a good working knowledge of C and have
in the past implemented projects of significant size in C. I am familiar with C++, but
haven’t used it much beyond the Part IB lecture course.

Substance and Structure of the Project

In order to ensure successful completion of the project, it has to be divided into manageable
chunks of work, and there have to be various levels of fallback options to compensate for
possible difficulties and issues that might delay the implementation.

For this project, there are three central stages that each consist of a number of sub-tasks that
need to be completed:

1. Interactive video annotation toolkit: This step will provide the user with a very simple
GUI framework that can be used to “annotate” key frames in a video with feature
information. There is a obvious and direct relation between the number and distance
of key frames, the accuracy of the annotations, and the quality of the reconstruction of
the object in a 3D model. This stage of the project involves the following tasks:

• Creating a video annotation framework: This will be a simple C/C++ implemen-
tation of an image viewer that displays individual frames of a video and that
has got an annotation framework on top, allowing for a wireframe to be drawn
onto the image. For video decoding, the libavcodec library, which is part of the
open source ffmpeg cross-platform video library, is intended to be used; the user
interface toolkit to be used will either be Gtk+ or Qt, both of which are free and
cross-platform.
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• Implementing interpolation: For the frames in between key frames, the annota-
tions from previous keyframe are copied and an estimation of their possible rela-
tive displacement is made. The user will be allowed to edit them (move, add and
remove vertices).

• Implement “snapping”: Inspired by the concept outlined in [1], snapping of fea-
ture points to to detected edges or feature outlines in the image as well as other
feature points will be implemented. This will mean that lines drawn on the model
by the user will “snap” to the most likely location, thereby correcting for small in-
accuracies between user input and image data, allowing for a rapid, yet accurate
annotation process.

2. 3D model generation: From the annotated video data, proceed through extracting the
relative camera motion between frames, and hence the camera perspectives in the in-
dividual frames, using principles of epipolar geometry (projective reconstruction) on
to regenerating a metric representation of the scene geometry and rectification of the
different views. Finally, generate depth maps and from those, generate spatial surfaces
that can then be used to build the 3D model. Display the final model using an OpenGL
canvas. An approach to this is presented in [19], although the assumption here is that
all information about the object has to be extracted automatically and autonomously
from the video data by the system.

3. Texture extraction and projection: Implement a simple texture extraction scheme whereby
the “best” frame is determined (i.e. the one where most of a plane/polygon is visible,
ideally a direct front-facing shot) and extract the bitmap texture data from the video
for this frame. Apply to the generated output polygon. Note that this requires working
out what the OpenGL varyings for this texture mapping should be.

Possible Extensions

1. Scene background extraction: Extract the (static) scene background and project it onto a
background plane in the generated 3D scene.

2. Export of 3D model data into some well-supported format: Implement support for exporting
the generated structures to a free OpenGL model format so that it can be used with any
application understanding this format.

Success Criteria

The primary success criteria for this project are detailed in the following. These criteria are
essential for the project to be considered a success.

1. A video annotation framework that supports annotation of video frames and imple-
ments “snapping” of feature points selected, thereby guiding the user in annotating
the video, has been implemented.
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2. An interactive structure-from-motion implementation that uses the feature points sup-
plied by interactive annotation has been implemented. It is shown to be working by
applying it to a 360◦ shot of a cube or some other distinctive geometric shape.

3. Textures for the faces in the extracted 3D model are obtained from the input image
data using per-polygon texture extraction. It is shown to be working by applying the
method to a textured cube.

In terms of possible extensions of the project, implementing one or more of the following
would increase the success of the project, but this is not essential.

1. The final 3D model generated can be exported into a well-supported model format so
that it can be used in real-world applications (such as Google Earth, Second Live or a
3D computer game).

2. Extraction of the invariant scene background and projection onto a bounding box to
create the illusion of the 3D object being in the surroundings it was captured in.

Timetable and Milestones

There are four and a half months of time available to do this project. I am aiming to finish
the implementation work by the middle of March, i.e. the beginning of the Easter vacation.

I estimate that the work will be partitioned into 3 week slots as follows:

Slot 0: October, 1st – October, 17th

• Research, familiarisation with literature on the subject and analysis of different existing
concepts.

• Work out an approach to do the feature data to 3D conversion.

• Investigate libraries and write test programs to utilise them and for familiarisation.

Milestone: Write project proposal.

Slot 1: October, 18th – November, 7th

• More research and reading. Familiarise with ideas of epipolar geometry and the math-
ematical foundations of the processes of projective reconstruction, self-calibration, rec-
tification and model generation.

• Start on implementing the annotation framework. Have facility to load and decode
video and to display individual frames and draw annotations onto them.
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Slot 2: November, 8th – November, 28th

First part of the core implementation phase.

• Get annotation framework to work and have per-frame annotations working together
with techniques to interpolate the feature annotations between frames.

• Implement “magnetic snapping” of lines/features to regions in the image.

Milestone: Have a working annotation interface, including video decoding and automatic
“snapping” of feature points at the end of this time slot.

Slot 3: November, 29th – December, 19th

Second part of the core implementation phase.

• Implement first iteration of the core model acquisition code: Projective reconstruction
from data provided by the annotations, self-calibration of camera parameters, metric
reconstruction.

• I will also need to write some auxiliary code at this point in order to be able to test and
debug the different steps of the model acquisition process whilst not yet having a final
output; this might make development more tedious.

Slot 4: December, 20th – January, 9th

Third part of the core implementation phase.

• Add final stages of model acquisition code: Depth maps, surface generation and model
building. Tackle any issues with the earlier stages.

• Implement generation of the OpenGL data structures used for models and implemen-
tation of a display canvas.

• Implement simple texture extraction by using the best possible texture for a face found
in a frame and applying it to the face in the final model.

Milestone: Working implementation of model acquisition and -generation for simple ob-
jects.

Slot 5: January, 9th – January, 30th

Progress report, implementation of extensions and catchup time.

• Finish texture extraction implementation, trying to refine the quality of the extracted
textures and their projection onto surfaces.

• Start implementing one or several of the optional extensions to the project.
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• Write progress report and hand it in.

Milestone: Present progress, have a fully texture simple geometric object being recreated
using interactive annotation by the end of the time slot.

Slot 6: January, 31st – Feburary, 20th

Further extension implementation and catchup time.

• Continue implementing optional extensions to the project.

• Investigate further extension possibilities that might have arisen during development
and possibly implement extra features.

Milestone: Working implementation of one or several extensions, depending on the choice
made.

Slot 7: Feburary, 21st – March, 13th

Catchup time. Start writing dissertation.

• Buffer time to catch up any delay incurred at previous stages.

• Fix remaining bugs and outstanding issues and optimise some parts of the code. Take
measurements and benchmarks and analyse the results for evaluation.

• Start writing the dissertation by producing an outline and writing the introductory
sections.

Slot 8: March, 14th – April, 3rd

Write dissertation up to draft standard.

• Write the main parts of the dissertation. Generate figures, intergrate results and evalu-
ation.

• Typeset the dissertation and produce a draft to be handed in.

Milestone: Dissertation draft finished by the end of the timeslot.

Slot 9: April, 4th – April, 24th

Finish dissertation.

• Finish off the dissertation. Add more benchmarking and evaluation results.

• Address any formatting and typesetting-related issues.

• Incorporate comments on draft received from supervisor and proofreaders.
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Slot 10: April, 25th – May, 15th

Buffer time, dissertation deadline at the end of the timeslot.

• Address any remaining issues with the dissertation and hand it in when done.

• Use the remaining time for revision for the exams.
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