
Condensing the cloud: running CIEL on many-core

Malte Schwarzkopf Derek G. Murray Steven Hand
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, United Kingdom

{firstname.lastname}@cl.cam.ac.uk

1. INTRODUCTION
Distributed execution engines have revolutionised data

processing by making parallel programming simple. Sys-
tems such as MapReduce [10], Dryad [13] and Hadoop [1]
can achieve massive throughput when running on thousands
of commodity servers, yet generally only require the pro-
grammer to provide sequential code. These systems were
designed to scale out across many worker machines, each
of which had at most a handful of processors. As such,
intra-server parallelism is either left entirely to the devel-
oper [13, 17], or managed centrally by partitioning machines
into a small number of coarse-grained “slots” [1].

We are interested in how best to marry distributed ex-
ecution engines with future multi-core systems. In partic-
ular, we ask (a) Are execution engines suitable for coordi-
nating execution on a single many-core machine? and (b)
What is the appropriate treatment of multi-core workers in
a distributed cluster? Baumann et al. have pointed out that
modern many-core architectures already share many charac-
teristics with distributed systems [6]. Indeed, as core counts
grow, it becomes inefficient to maintain cache-coherent shared
memory; like in the Barrelfish multikernel architecture, dis-
tributed execution engines are “distributed by default”. Our
ultimate aim is to devise a system that achieves both inter-
and intra-server parallelism: a multi-scale execution engine
for executing parallel programs across any combination of
machines and cores.

In this paper we make a preliminary investigation into the
first of the above questions. Using our recently-developed
Ciel distributed execution engine [17], we compare the per-
formance of simple benchmarks on three quite different 48-
core platforms: an AMD “Magny-Cours” ccNUMA server,
an experimental Intel Single-Chip Cloud computer, and an
Amazon EC2 cluster of 48 uniprocessor VMs (§3). Our re-
sults demonstrate task creation/coordination overhead to be
a problem when using fine-grained tasks, and we demon-
strate a few simple improvements that mitigate these issues.
We also outline a set of further challenges and opportunities
(§4), before discussing related work and concluding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SFMA 2011 Salzburg, Austria
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. ARCHITECTURE COMPARISON
At present, the most commonly used platform for highly

parallel processing is a cluster of machines (either physical
or virtual). These machines typically have only a handful
of cores; in the virtual machine case, a single virtual core
is typically considered best practice. In both physical and
virtual machine clusters, however, the large number of ma-
chines necessitates data transfer over the network between
dependent tasks, although data-local task scheduling can
mitigate this problem somewhat. This raises the question
of whether we can do better by using many-core machines
with access to local data, especially if we are going to see a
continued increase in the number of cores per machine.

In this section, we compare the technical specifications
and processor designs of Intel’s experimental Single-Chip
Cloud and the AMD“Magny-Cours”architecture. We briefly
touch upon the key differences between parallel execution in-
terfaces in many-core machines and we also discuss the po-
tential for “hybrid” clusters of multiple many-core machines.

2.1 Intel Single-Chip Cloud (SCC)
The Intel Single-Chip Cloud Computer experimental pro-

cessor is a 48-core “concept vehicle”, created as a platform
for many-core software research. It makes extensive use of a
network-on-chip for message passing between the cores, each
of which is based on the P54C design used by early Pen-
tium processors. There are a few differences: the L1 cache
is larger, a new instruction for explicit cache invalidation
and a special memory type for message passing have been
added [11]. The cores are 32-bit only, run at between 100
and 800 MHz, and do not support out-of-order execution. A
pair of cores shares a tile, which also holds two L2 caches,
a share of the message passing buffer (MPB) and a router
that connects it to other tiles using a wormhole-switched 2D
mesh network; these on-chip network routers are clocked at
either 800 MHz or 1.6 GHz. The message latency between
adjacent tiles is only 4 clock cycles in the no-load case.

Unlike the Intel Terascale Research Prototype chip [15,
21], the SCC cores are full-featured general-purpose proces-
sors, and so we can easily run an individual instance of Linux
on each core. The cores communicate via either the on-die
shared-memory MPB, with each core having access to an 8
KB share of the total 384 KB; or via shared memory. Since
the cores use 32-bit virtual addressing, they can only access
up to 4 GB of memory; larger memory sizes (up to 64 GB)
can by partitioned between the cores, with each core by de-
fault receiving 1 GB [4].

The message passing hardware enables software-managed

cache coherency, replacing the familiar bus snooping of tra-
ditional SMP configurations. Instead, RCCE, a purpose-
built message passing library that uses the SCC’s MPB, is
provided and can be used to achieve the required coher-
ence [20].

Hence when running Ciel on the SCC, each worker runs
within the fault domain of a separate OS instance. Thus—
even though all cores are, of course, similarly affected by
global events such as power failures—OS-level failures only
affect a single worker, as in the distributed case. This con-
trasts with the more traditional system described next.

2.2 AMD Opteron Magny-Cours (AMD-MC)
AMD’s “Magny-Cours” processor takes a more conven-

tional approach to building a many-core system: each die
holds up to six cores, with two dies per socket, enabling
up to 48 cores with four sockets [8]. Communication be-
tween the cores, both within a socket and between different
sockets, is realised using AMD’s HyperTransport bus pro-
cotol [12]. Each socket has two DDR memory channels; the
system used in this paper is configured with 64 GB of RAM
(16 GB per socket).

As the system is 64-bit, every core can access all DRAM
(unlike on the SCC), although of course with non-uniform
access latencies. In addition to 64 KB L1 instruction and
data caches, each core has a private L2 cache (512 KB).
There is also a 6 MB L3 cache which is shared between all
six cores on a die; cache coherency within and across sockets
is maintained using a directory protocol called“HyperTrans-
port Assist”(HT Assist). This makes use of a“Probe Filter”,
which determines whether the memory controller generates
a broadcast probe, a directed probe, or no probe at all. Co-
herency control is managed totally in hardware, although
a NUMA-aware operating system can optimize the way in
which it performs memory allocation (e.g. via Linux’s lib-

numa or the numactl utility).

2.3 Hybrid clusters
A single many-core machine may not suffice to run all

required cluster workloads, either because the number of
workers available is limited by the number of cores in the
machine, or because eventually I/O bandwidth becomes a
limiting factor. For these reasons, we believe that in the fu-
ture we will see hybrid clusters that comprise several many-
core machines—or even a heterogeneous mix of multi- and
many-core machines.

In the following, we investigate the operation of an ex-
isting execution engine, Ciel [17], on different many-core
architectures. From the results, we distill a set of challenges
and propose potential approaches to improve performance of
execution engines in a multi-scale setting such as the clusters
of multi- and many-core machines described here.

3. CIEL ON MANY-CORE
The primary aim of this paper is to investigate the perfor-

mance of Ciel, a system designed for clusters of commodity
machines, when running on the architectures described in
the previous section. In this section, we first describe the
configuration of Ciel on a many-core machine (§3.1), and
then, using a series of microbenchmarks, analyse the over-
head of fine-grained task creation (§3.2) and message-passing
latency (§3.3). Finally, we demonstrate that an existing ap-
plication developed for distributed clusters can achieve good

Spawn work

DEPEND

n tasks

(a) timespin (§3.2)

n
tasks

DEPEND

(b) BOPM (§3.4)

Figure 1: Ciel job topologies for the benchmarks in §3.

performance on a many-core machine (§3.4).

3.1 CIEL architecture
Ciel uses a master-worker architecture similar to that

used by previous systems (such as MapReduce and Dryad).
In a Ciel cluster, the master is responsible for coordinat-
ing and dispatching tasks (the atomic unit of computation)
to workers. Workers execute tasks, and also store objects,
which may be the inputs to or outputs from tasks. Data
is exchanged directly between workers, by making remote
requests to other workers’ object stores.

A Ciel job is represented by a dynamic task graph. As
in Dryad, the task graph is a DAG of tasks, where edges
comprise a happens-before relation on tasks, and also im-
ply data-flow between tasks. However, in Ciel, the graph is
dynamic, which means that a task may spawn child tasks,
and delegate the production of its outputs to its children.
This enables a Ciel job to contain data-dependent control
flow, which allows it to express iterative and recursive al-
gorithms. To simplify the construction of a dynamic de-
pendency graph, the Skywriting scripting language allows
programmers to specify a job using familiar imperative or
functional control-flow constructs [16].

For the following experiments, the Ciel master runs on
a single core (although it may use multiple threads for I/O
concurrency), and the workers—and hence tasks—execute
on the remaining cores.

3.2 Task granularity
Distributed execution engines are usually evaluated on

coarse-grained workloads, where the amount of work per-
formed by individual task is sufficiently great to dominate
any overheads of task creation and synchronisation. For ex-
ample, MapReduce uses a default task input size of 64 MB,
which corresponds to a single block in the underlying dis-
tributed file system [10]. However, while the communication
overhead in a cluster encourages the use of relatively large
tasks, the tightly-coupled environment of a many-core ma-
chine might allow the use of finer grained tasks. In this
experiment, we evaluate the performance of Ciel on a syn-
thetic benchmark we have built which allows us to control
the task granularity. At the finest granularity, the over-
heads imposed by the execution engine are exposed, and we
can identify opportunities for improvement specifically for a
many-core environment.

Our timespin benchmark spawns one task per core, each
of which spins for a controllable period of time t, then com-
bines the task results in a single synchronization task (Fig-

No. cores

Relative overhead

1.3x

41.6x

1.04x

5.1x

 0 5 10 15 20 25 30 35 40 45 50
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

timespin [s]

 10
 20
 30
 40
 50
 60

(a) AMD-MC, using separate object stores.

No. cores

Relative overhead

1.3x

1.6x

1.03x

1.06x

 0 5 10 15 20 25 30 35 40 45 50
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

timespin [s]

 1
 1.25
 1.5

 1.75
 2

 2.25
 2.5

(b) AMD-MC, shared object store.

No. cores

Relative overhead

1.3x

1.4x

1.03x

1.04x

 0 5 10 15 20 25 30 35 40 45 50
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

timespin [s]

 1
 1.25
 1.5

 1.75
 2

 2.25
 2.5

(c) AMD-MC, using local IPC mode.

No. cores

Relative overhead

5.1x

47.7x

1.4x

5.7x

 0 5 10 15 20 25 30 35 40 45 50
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

timespin [s]

 10
 20
 30
 40
 50
 60

(d) On the SCC.

Figure 2: Relative overhead of timespin. All values are medians of five runs.

ure 1(a)). The makespan of a timespin run will therefore
be ' t + ε, where ε represents the overhead introduced by
Ciel. In the following, we use the term relative overhead to
refer to the quantity (t+ ε)/t: ideally this will be close to 1.

In the first experiment, we configure the AMD-MC ma-
chine as a cluster comprising a single master and 47 inde-
pendent workers, running on top of a 64-bit installation of
Debian 6.0. Figure 2(a) shows the effect of reducing the
granularity of tasks (reducing spin duration) and increas-
ing the parallelism (number of cores). In the worst case—
spinning for one second on 47 cores—the relative overhead is
42×, which is almost as slow as executing the tasks serially!

A major source of overhead is the fact that the workers
must remotely read their arguments, which are stored in
Ciel’s object store, from the initial (root task) worker. The
current version of Ciel uses a multithreaded HTTP server
to serve the arguments to each task. Therefore there is over-
head from serialising and transmitting the arguments over
a loopback TCP/IP connection, and from contention on the
HTTP server; this server only admits ten connections at
once, resulting in noticeable “steps” being present in Figure
2(a).

The first optimisation that we considered was sharing the
object store between all workers on a single host. Figure 2(b)
shows the performance of the timespin benchmark when the
object store is shared. The worst-case overhead is drastically

reduced from 42× to 1.6×.
We next focused on the task dispatch protocol, which still

uses HTTP over loopback TCP and so presented another
potential optimisation. We developed a version of Ciel,
which uses local IPC, and hence incorporates the master
and worker logic in a single application. This application
has one process per core, and these processes communicate
using OS-level pipes and semaphores. Figure 2(c) shows the
performance of the timespin benchmark on this optimised
version of Ciel. The worst-case overhead is reduced fur-
ther from 1.6× to 1.4×, a relative further improvement of
around 13%. In Figure 3 we focus on the most fine-grained
case. The result shows that Ciel in local IPC mode scales
relatively well as the number of cores increases, suggesting
that the next promising area to target will be the fixed cost
overheads introduced even on a single core.

3.3 Message passing performance
We repeated the timespin benchmark on the Intel SCC,

running 48 instances of Linux (Figure 2(d)). However, since
the SCC cores run completely independent instances of In-
tel’s SCC Linux, the performance is roughly as bad as when
using independent object stores on the AMD-MC machine
(Figure 2(a)). A major cause of the overhead is the fact
that the Linux instances on the SCC communicate by mak-
ing HTTP requests to each other using the special rckmb

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

Number of cores

all−in−one
shared object store

Figure 3: Detailed comparison of the 1s case of timespin

using a shared object store and all-in-one mode.

 1e−08

 1e−06

 0.0001

 0.01

 1

HTTP−A HTTP−S TCP−E TCP−A TCP−S RCCE−S

T
im

e
 [

s
]

32B
256B

1024B

Figure 4: Message latency for various protocols (HTTP,
TCP and RCCE) and platforms (AMD-MC, SCC, EC2).
Note the log-scale y-axis.

network driver that implements TCP/IP over the SCC’s on-
chip message-passing buffers. To further investigate this,
we compared the performance of different message-passing
transports to identify opportunities for improving the over-
head in fine-grained Ciel jobs. We measured the time to
transmit small (32 bytes), medium (256 bytes) and large (1
KB) messages over HTTP and raw TCP sockets, as well as
using RCCE on the SCC.

Figure 4 shows the cost of various message-passing tech-
niques on the many-core machines as well as in the dis-
tributed cluster. The worst case on both the SCC and the
AMD-MC machine is HTTP access to the pre-existing Ciel
object store, which uses the abovementioned multithreaded
HTTP server (written in Python) to provide remote access1.
For small messages—such as a Ciel task descriptor, which
is usually around 256 bytes—raw TCP achieves almost two
orders of magnitude improvement, and using native RCCE
message passing on the SCC (“non-gory” API) improves by
another order of magnitude. At larger message sizes, the
cost of using RCCE approaches that of loopback TCP on
the AMD machine, while on the SCC—where TCP is im-
plemented over the rckmb network driver—a performance
gap remains. We believe this is since RCCE uses the small

1The performance of HTTP requests between machines in
the distributed cluster on EC2 was comparable to the data
series shown and is omitted owing to a lack of space.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 40 60 80 100

S
p

e
e

d
u

p

Tasks

800k (E)
800k (A)
400k (E)
400k (A)
200k (E)
200k (A)

Figure 5: Speedup comparison of the BOPM benchmark
running distributed on EC2 and on the AMD-MC machine.

8 KB per-die message passing buffers on the SCC, whereas
TCP can make use of larger buffers on the AMD-MC ma-
chine (and in the distributed case).

3.4 Binomial options pricing
We now consider a compute-intensive application that can

be parallelized using Ciel. The binomial options pricing
model (BOPM) is a dynamic programming algorithm for
numerically computing the expected value of a stock option,
based on a model of market volatility, long-range trends,
and the strike and current spot prices [9]. BOPM is a CPU-
intensive algorithm that has O(n2) running time, where n is
the number of time steps (i.e. the resolution). Figure 1(b)
shows the task dependency graph. In the dynamic program-
ming matrix, the element at position (i, j) depends on ele-
ments at (i + 1, j) and (i + 1, j + 1), which means that it
exhibits pipelined parallelism.

We compared the performance that Ciel achieves when
running BOPM on the 48-core AMD-MC machine, and a
cluster of 48 EC2 m1.small virtual machines running Ubuntu
10.04, for various resolutions. Due to the faster clock speed,
the AMD-MC machine achieves better absolute performance
in all configurations. As a more meaningful comparison, Fig-
ure 5 compares the parallel speedup over a serial execution.
In both cases, the speedup initially increases with the num-
ber of tasks, because the maximum degree of parallelism
becomes greater. However, increasing the number of tasks
achieves diminishing returns, and eventually the overhead
of task creation begins to dominate and reduces the parallel
speedup.

4. CHALLENGES AND OPPORTUNITIES
The results of the previous section point to several challenges—

and opportunities for optimisation—when running Ciel on
a many-core architecture. In this section, we discuss these
challenges, and draw examples from the literature that could
improve performance of Ciel.

4.1 Reducing contention
When tasks become very fine-grained, the overhead from

contention begins to dominate. This is particularly notice-
able in Figures 2(a) and 2(d), where the server that serves

task inputs is heavily contended, leading to a pronounced
step in the graph where the number of cores exceeds the
number of server threads. A simple approach would be to re-
place the server component with an event-based server that
uses asynchronous I/O [22].

However, as tasks grow even more fine grained, individ-
ual data structures in the master will become contended.
For example, the master maintains a task graph, and at
present all accesses to the task graph are serialised in a sin-
gle thread. This strategy may be overly conservative: since
many updates to the task graph affect disjoint regions, we
could reduce contention by implementing fine-grained lock-
ing, and/or moving to an optimistic update scheme using
transactions.

4.2 Efficient message-passing
The results in §3.3 highlight the opportunities for exploit-

ing efficient message-passing mechanisms on the SCC pro-
cessor. Replacing the heavyweight HTTP-based messaging
in Ciel with messages based on RCCE would greatly re-
duce the minimum task execution time, and hence allow
finer-grained tasks to run efficiently.

As the granularity decreases further, having all workers
communicate with a central master—whether running on-
chip, in the same machine, or remotely—will become a source
of contention. Previous work on Barrelfish has shown that
some collective operations can be made more efficient by
exploiting the interconnect structure and building a mul-
ticast tree [5]. Given that Ciel is aware of the task de-
pendency structure, we could exploit similar communication
patterns in Ciel on many-core. A possible approach sup-
porting this is to have each worker report to a local “coordi-
nator” process (or core), which acts as a proxy between the
local workers and the central master. However, on the SCC,
RCCE allows only strictly blocking communication [20]—
but in order to allow the coordinator to receive from any
other core on the chip, a non-blocking receive functionality
is required. The iRCCE [7] extension to RCCE provides
non-blocking abstractions such as message queues and re-
quest handlers. We have started implementing the coordi-
nator/worker model using iRCCE for the SCC, and using a
local worker thread pool on the AMD-MC architecture. One
challenge is that the current implementations of RCCE and
iRCCE busy-wait for incoming messages. We are developing
an interrupt-driven alternative alleviating this performance
bottleneck.

4.3 Exploiting sharing
Figures 2(a) and 2(b) show how sharing the object store

between workers can lead to a performance improvement.
The benefits arise from the file system layer, since in the
shared case, each object maps to a single file, which can
often be read directly from the buffer cache. However, the
buffer cache is a rather crude mechanism for performance
optimisation, and we believe we should be able to do better
by explicitly managing the objects ourselves.

For example, the BOPM application (§3.4) uses files to
stream data between tasks. This approach is suited to dis-
tributed clusters, because it avoids deadlock when there are
more runnable tasks than available workers. On a single
many-core system, however, this streaming could be safely
achieved by direct message passing between tasks, or even
via a shared-memory ring buffer. More generally, instead of

sending large messages (e.g. the bulk data passed between
tasks), we could simply pass pointers to shared memory be-
tween tasks. This would, however, be especially challenging
on the SCC, as the shared memory accessible from all cores
is limited to 64 MB at present, although means to extend
it have been suggested [14]. An ideal system would adapt
the means used to share and communicate objects depend-
ing on the relative locations of the tasks involved, and the
communication channels available.

4.4 Multiplexing input/output
All of the benchmarks considered in this paper are CPU-

intensive, but transfer relatively little data. However, Ciel
and other distributed execution engines are primarily de-
signed for high-throughput processing of large amounts of
data. Assuming for now that the workers use hard disks
for storage, the most efficient data access pattern is long se-
quential reads. Näıvely running multiple I/O-bound tasks
on the same machine will harm performance, because con-
tention in the disk scheduler would lead to undesirable disk
access patterns.

The opportunity for improvement comes from the fact
that modern servers, in addition to multiple cores, have mul-
tiple disks. A current holder of the “Indy” sort benchmark
record, TritonSort, achieves high throughput by explicitly
partitioning disks into input disks and output disks [19].
However, TritonSort is a specialised application for sorting,
and more general scheduling policies are required in order to
get equivalent performance in an execution engine. For ex-
ample, each many-core machine could support slots in multi-
ple scheduling classes: d “I/O” slots (where d is proportional
to the number of disks in the machine) and n−d “compute”
slots for CPU-bound tasks (where n is the number of cores
available in the machine).

4.5 Intelligent fault tolerance
Ciel is currently rather conservative with respect to fault

tolerance: all task outputs are written to disk to enable
recovery after a software fault. However when tasks are co-
located on a single machine, a larger degree of fate sharing
occurs. As such it may be more sensible to avoid these
writes, and perhaps move instead to a lightweight in-memory
store. More generally, we believe that a multi-scale Ciel
will need to take fault domains into account when assigning
tasks to workers. For example, when proactively scheduling
a back-up task, it will be prudent to assign this to a worker
in a disjoint fault domain.

5. RELATED WORK
The problem of achieving high throughput on multiple

processors has been extensively studied before, most no-
tably in the High-Performance Computing (HPC) commu-
nity. The de facto standard parallel programming mod-
els are OpenMP (for shared memory) and MPI (for dis-
tributed memory). OpenMP is mainly geared towards par-
allelising independent loop bodies, though recent versions
have included task-parallel constructs [3]. However, the
shared memory assumption ultimately limits the scalability
of an OpenMP program. MPI is a lower-level programming
model, in which processes explicitly send messages to one
another. Because the message endpoints must be named ex-
plicitly, MPI does not easily support dynamic cluster mem-

bership, which is a typical requirement for a distributed ex-
ecution engine (since workers may fail at any time).

Phoenix [18, 23] reimplements the MapReduce program-
ming model for many-core machines. It makes extensive
use of shared memory communication for moving data and
threading to schedule tasks. However, Phoenix only works
within on a single many-core machine and has no support
for participation in a larger cluster. Notably, it lacks inter-
machine message passing primitives, and furthermore, it of-
fers no fault tolerance as all threads are within the same
fault domain.

The idea of using an execution engine to simplify paral-
lel programming on many-core machines is similar to the
idea of deterministic multiprocessing (DMP). For example,
Determinator is an operating system that enforces deter-
ministic parallelism by restricting processes’ ability to write
to shared memory, and hence it avoids the problem of data
races in parallel code [2]. Ciel also supports deterministic
parallelism, but offers a richer programming model than De-
terminator because it supports futures in addition to strict
fork-join parallelism. Furthermore, although it includes a
distributed execution mode, Determinator does not provide
Ciel’s fault tolerance guarantees.

6. CONCLUSIONS
In this paper, we have investigated the performance of the

Ciel distributed execution engine on a variety of many-core
platforms. Our results show that an unmodified version of
Ciel can run on a wide range of platforms, and that we can
exploit platform-specific features to enhance performance.
We are actively exploring some of the challenges outlined
above, and hope to move on to develop a multi-scale ver-
sion of Ciel which can coordinate execution across a hybrid
cluster of cores and machines.

7. ACKNOWLEDGMENTS
We would like to thank Intel for giving us access to an SCC

system, and the anonymous reviewers for their comments,
which substantially enhanced this paper.

References
[1] Apache. Apache Hadoop http://hadoop.apache.org.

[2] Aviram, A., Weng, S.-C., Hu, S., and Ford, B. Efficient
system-enforced deterministic parallelism. In Proceedings of
OSDI (2010).

[3] Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin,
Y., Massaioli, F., Teruel, X., Unnikrishnan, P., and
Zhang, G. The Design of OpenMP Tasks. IEEE Trans.
Parallel Distrib. Syst. 20, 3 (2009), 404–418.

[4] Baron, M. The Single-Chip Cloud Computer. Microproces-
sor Report 24, 4 (2010).

[5] Baumann, A., Barham, P., Dagand, P.-E., Harris, T.,
Isaacs, R., Peter, S., Roscoe, T., Schüpbach, A., and
Singhania, A. The Multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of SOSP (2009).

[6] Baumann, A., Peter, S., Schüpbach, A., Singhania, A.,
Roscoe, T., Barham, P., and Isaacs, R. Your computer
is already a distributed system. why isn’t your OS? In Pro-
ceedings of HotOS (2009).

[7] Clauss, C., Lankes, S., Galowicz, J., and Bemmerl,
T. iRCCE: A Non-blocking Communication Extension to
the RCCE Communication Library for the Intel Single-Chip
Cloud Computer – User Manual. Tech. rep., Chair for Oper-
ating Systems, RWTH Aachen University, December 2010.
Users’ Guide and API Manual.

[8] Conway, P., Kalyanasundharam, N., Donley, G., Lepak,
K., and Hughes, B. Cache Hierarchy and Memory Subsys-
tem of the AMD Opteron Processor. IEEE Micro 30, 2 (Mar.
2010), 16–29.

[9] Cox, J. C., Ross, S. A., and Rubinstein, M. Option pric-
ing: A simplified approach. Journal of Financial Economics
7, 3 (1979), 229–263.

[10] Dean, J., and Ghemawat, S. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of OSDI
(2004).

[11] Howard, J., Dighe, S., Hoskote, Y., Wijngaart, R.
V. D., Mattson, T., et al. A 48-Core IA-32 Message-
Passing Processor with DVFS in 45nm CMOS. In Proceed-
ings of ISSCC 2010 (2010), vol. 9, pp. 58–59.

[12] Hypertransport Consortium. HyperTransport 3 Spec-
ification, http://www.hypertransport.org/default.cfm?
page=HyperTransportSpecifications, 2008.

[13] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly,
D. Dryad: distributed data-parallel programs from sequen-
tial building blocks. In Proceedings of EuroSys (2007), ACM,
pp. 59–72.

[14] Kubaska, T. Shared Memory on Rock Creek, http://
communities.intel.com/docs/DOC-5644.

[15] Mattson, T., Van der Wijngaart, R., and Frumkin, M.
Programming the Intel 80-core network-on-a-chip terascale
processor. In Proceedings of Supercomputing (2008), IEEE
Press.

[16] Murray, D. G., and Hand, S. Scripting the cloud with
Skywriting. In Proceedings of HotCloud (2010), no. 3.

[17] Murray, D. G., Schwarzkopf, M., Smowton, C., Smith,
S., Madhavapeddy, A., and Hand, S. CIEL: a universal
execution engine for distributed data-flow computing. In
Proceedings of NSDI (2011).

[18] Ranger, C., Raghuraman, R., and Penmetsa, A. Eval-
uating MapReduce for Multi-Core and Multiprocessor Sys-
tems. In Proceedings of HPCA (2007).

[19] Rasmussen, A., Porter, G., Conley, M., Madhyastha,
H. V., Mysore, R. N., Pucher, A., and Vahdat, A. Tri-
tonSort: A Balanced Large-Scale Sorting System. In Pro-
ceedings of NSDI (2011).

[20] van der Wijngaart, R., Mattson, T., and Haas, W.
Light-weight communications on Intel’s single-chip cloud
computer processor. ACM SIGOPS Operating Systems Re-
view 45, 1 (2011), 73–83.

[21] Vangal, S. R., Howard, J., Ruhl, G., Dighe, S., Wilson,
H., Tschanz, J., Finan, D., Singh, A., Jacob, T., Jain,
S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar,
N., and Borkar, S. An 80-Tile Sub-100-W TeraFLOPS
Processor in 65-nm CMOS. IEEE Journal of Solid-State
Circuits 43, 1 (Jan. 2008), 29–41.

[22] Welsh, M., Culler, D., and Brewer, E. SEDA: an ar-
chitecture for well-conditioned, scalable internet services. In
Proceedings SOSP (2001).

[23] Yoo, R., and Romano, A. Phoenix rebirth: Scalable
MapReduce on a large-scale shared-memory system. In
Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC) (2009).

