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Abstract
Current cloud programming models have opened up new
opportunities, but the platforms they run on are still rooted in
the legacy of single machine-centric computing. This leads
to inefficiency that both costs money and offends scientific
sensibilities. In this position paper, we make a passionate
and necessarily opinionated argument for a research agenda
that challenges fundamental assumptions about operating
systems and “cloud” application software. We present a set
of ideas for possible directions, and hope to elicit fruitful
discussion within the community.

1. Introduction
The IT industry, and, to some degree, systems researchers,
have been obsessed by “the cloud” in recent years, and
have sung the gospel of infinite scalability, big data, energy
efficiency, *-as-a-service, OpEx or CapEx reduction (chose
several).

Commercially, the cloud paradigm has built up momen-
tum, as the success of Amazon’s cloud offerings and the
Hadoop framework shows. Hence it seems clear that in the
future, we will increasingly be processing data on remote
and distributed systems. However, as good researchers, we
have to continuously ask ourselves if we have already found
the best answers to the correct fundamental questions, or if
we are just taking the cheap way out.

In this position paper, we argue that it is time to revisit
some of the fundamental assumptions that much of cur-
rent “cloud” research is making: does the cloud node host
OS really have to look like a traditional UNIX-based sys-
tem? Is it right to train a generation of programmers to use
tightly restricted programming paradigms such as MapRe-
duce? Should we not be putting more effort into re-building
our entire systems stack in such a way that it is designed
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for distributed operation, rather than retro-fitting high-level
frameworks onto 30 years of cruft?

In this paper, we hope to shed some light on these ques-
tions. We first motivate our questioning of the status quo by
highlighting inefficiency issues with the current cloud envi-
ronments (§2), and next discuss a lowest common denom-
inator in requirements that cloud applications have, repre-
senting the minimal feature set we must support (§3). We
then debate the implications of this minimal feature set for
construction of a “cloud node OS”, including the removal
of unnecessary legacy constructs that bear no importance
in this cloud environment, and may hurt performance (§4).
To illustrate the power of this new, slimlined OS struc-
ture, we consider a common paradigm in cloud frameworks
– task-parallel computation – describe how it maps onto
the minimal abstractions, and how it helps to establish a
simple, efficient cloud platform, including support for non-
determinism and memoisation (§5). Finally, we present the
vision of a “cloud compiler”, which transforms high-level
language code into efficient, statically linked task binaries
exploiting the advantages of the platform without program-
mers having to manually break an application up into tasks
(§6). Finally, we relate the concepts presented to existing
work exploring similar approaches (§7), and conclude (§8).

2. Why bother?
It is reasonable to ask why we should bother revisiting as-
sumptions about the way things work, and why what we al-
ready have in “the cloud” is insufficient – after all, it appears
to work well. That is true, and the reluctance to throw legacy
infrastructure – or, more euphemistically put, “proven tech-
nology” – out of the window is understandable. However, as
it stands, software running on the cloud is largely less effi-
cient than it could be. Its performance is subject to high vari-
ation, and the fixed overhead in doing anything at all is high.
Some of this is due to inherent properties of distributed sys-
tems, or the laws of physics, but much of it is human-made
– in the sense that we built and designed both the software
and the hardware used.

Of course, one can compensate for inefficiency by throw-
ing more resources at the problem. That, however, might mo-
tivate us to take a step back and put our optimization hat



on: with the prevalent charging models in the cloud, albeit
coarse, we pay for time, and inefficiency costs time, thus
real, hard money.1

One might argue that the impact of the inefficiency is neg-
ligble compared to the problem size in the “big data” world,
especially as constant overheads are considered. While this
may sometimes be true, it is not always the case. To give an
example, we previously discovered that Hadoop’s record I/O
interface can severely harm the performance of algorithms
executing on many small data, such as k-means clustering,
compared to an array-based implementation possible in less
restrictive or lower-level frameworks [7] – exemplified, re-
spectively, by our CIEL [8] and MPI (see Table 1).

# 100-dim. Hadoop CIEL [7] MPI
vectors rec. I/O rec. I/O array array

1.6M 263.9s 149.1s 8.1s 4.57s
8M 888.0s 777.2s 38.0s 18.0s

16M 1664.5s 1536.9s 75.7s 34.9s
32M 3,194.8s 3,050s 150s 73.9s

Table 1. k-means performance for different frameworks’
implementations; reproduced with permission [7].

While using an simple and fairly general framework like
Hadoop MapReduce might be easier for the programmer,
and thus save expensive engineering time, the key question is
whether we can achieve better performance while maintain-
ing the engineering simplicity. Indeed, others have followed
the same tracks: Spark [11] uses the abstraction of resilient
distributed datasets (RDDs) as a flexible alternative, while
integrating into the Scala language. Similarly, the OpenStack
project2 aims to provide a general-purpose cloud stack. We
believe, however that both of these approaches suffer from
inherent inefficiency due to deep layering and their high-
level, user-space nature. Zaharia et al. have made the call for
a data centre operating system [12], but again, they explic-
itly position their vision and some of its implementation at a
higher level than the host OS [3, 11]. The closest approach
to that taken in this paper is that of our previously described
Mirage ecosystem [6], which compiles OCaml applications
to virtualized exokernels. Mirage derives its simplicity from
restricting itself to a virtualized environment. Virtualization,
though, always has an overhead, and it is instructive to note
that large cloud data centre operators such as Google, Face-
book and Microsoft do not use it.

In this paper, we advocate a more radical approach: to
break with legacy assumptions on operating system and ap-
plication structure. Instead, we advocate providing a mini-
mal, high performance OS interface for data access and pro-
gram execution, and including framework-specific abstrac-
tions as libraries in the applications. This deliberately low-

1 The HPC community, where supercomputer time is precious and expen-
sive, has been aware of this for a long time.
2 http://openstack.org

level approach aims to avoid the risk of building ever more
complicated and deeply layered systems, eventually being
unable to see the bottom from the top and vice versa. To
some extent, this is already the case: who can, these days,
when debugging a job running on “the cloud”, tell the exact
nature of a performance glitch, and at which layer it origi-
nated?

In the following, we take a step back, and first consider
the essential functionality required by cloud applications,
and thus the fundamental set of requirements our proposed
approach must satisfy.

3. What do we really need?
Cloud workloads come in all shapes and sizes, but they
broadly fall into two categories: batch data processing,
which is usually not especially time-critical, but must be
scalable to large data sets, and serving, which must both de-
liver high-performance, low latency responses and scale ac-
cording to demand, while performing the appropriate back-
end actions. Some workloads also live in a gray zone be-
tween these: semi-time-critical data processing in response
to a request or incremental processing, for example.

A shared characteristic of all of these is sensitivity to-
wards contention: depending on whether workloads are
CPU-bound, memory-bound or I/O-bound, sharing these re-
sources with other computations will degrade performance.
For this reason, performance isolation is important. Isolation
is also crucial for security reasons, since different jobs are
not necessarily mututally trusted, especially when multiple
users are sharing cloud infrastructure. Historically, multi-
plexing resources and isolating processes from each other
has been the responsibility of the operating system, but it is
nowadays also increasingly enforced at hypervisor level.

Similarly, it is also important to be able to claim new re-
sources as workloads grow, and to be able to discipline rogue
computations if necessary. This execution control has also
traditionally, in a multi-process, time-shared OS, been en-
forced by the kernel, using pre-emption and access controls.
In current cloud frameworks, the responsibility is commonly
split between the host OS – which often has a myopic view
of the host machine, due to virtualization or containerization
– and a global, framework-specific “master” component.

Computations, also need some means of accessing data.
In traditional OSes, temporary and persistent storage are
usually separately managed and accessed via independent
APIs. In the cloud, data is often – even temporarily – stored
distributedly for performance and durability. Access to it
is largely managed by user-space distributed file systems,
which rely on host OS mechanisms to access the actual data
on the machine holding it.

These observations already hint at a minimal set of fea-
tures that we must support; in the following, we additionally
consider specific requirements for the two workload cate-
gories.



3.1 Batch data processing
Batch processing workloads – such as a MapReduce job –
are often implemented in a task-parallel way: many individ-
ual instances of the same code each process a part of the
data. The requirements for doing so are mostly straightfor-
ward: the task consists of a piece of code (compiled or not)
that sequentially processes some input data, producing some
output data. This is remarkably similar to the most primitive
notion of a “program”: a program counter is pointed to the
first instruction in a sequence and runs along it, mutating
some state on the way.

While running, a task consumes resources – disk head
time, memory, CPU time – although the precise amounts can
be dynamic, which makes advance reservation of the exact
resources required hard. Unlike serving jobs or interactive
desktop applications, however, tasks in batch jobs rarely
have idle periods in their execution, assuming they only start
when all inputs are available.

3.2 Serving workloads
Serving remote requests (HTTP traffic, RPCs) is a common
“cloud-side” workload in today’s networked and web appli-
cations, and also a prime example of a workload driven by
fluctuating demand, requiring high scalability. Frequently,
the work is I/O-bound, although this does not have to be the
case – deep backend pipelines (in-memory caches, key-value
stores, databases, content generation, etc.) may add further
computation to the simple request-response scheme. Scal-
ability in these workloads is usually achieved by running
additional instances of the serving code, and multiplexing
requests to them, balancing the load.

Contemporary serving workloads are generally con-
structed by composing traditional long-running processes,
which communicate using standard communication chan-
nels such as TCP.

4. Dumbifying the OS
Cloud platforms today utilize customized versions of exist-
ing mainstream operating systems as host OSes – usually
based on a UNIXoid kernel and the GNU software stack, or
some version of Windows. Frequently, these operating sys-
tem images run inside VMs in a virtualized infrastructure, or
in thin isolation containers in a non-virtualized one.

However, modern operating systems are highly complex.
They consist of many layers of multiplexing, and what is
seen by an application program as a processor that sequen-
tially executes instructions in the program code and accesses
memory is really only an illusion. Not only is the hard-
ware seen often virtual, the execution is also interrupted
by context switches due to scheduler pre-emptions, inter-
rupt handling or virtual machine monitor decisions. Mem-
ory accesses may be translated, sometimes multiple times,
and syscalls may cause unexpected actions to take place. On

top of this, there may be further layers of indirection, such
as a language runtime and user-space threads.

If we recapitulate the essential needs identified in the pre-
vious section – whether for batch job or a serving job – they
do not mandate the complexity of a multi-process, time-
shared operating system with dynamically linked libraries,
drivers and kernel modules. Really, the operating system is
only required to provide four kinds of functionality: execu-
tion control, resource management, isolation and data ac-
cess. It should be feasible to build a simple “cloud OS” sup-
porting these, without requiring a deep stack (like existing
high-level platforms), or virtualized operation (like Mirage).
In fact, the more of the mechanisms for data access and ex-
ecution control currently baked into high-level frameworks
we can standardize and push into a common OS layer, the
higher we should expect our application efficiency and the
environment’s comprehensibility to be.

4.1 Execution control
Such a simplified multi-process OS, which provides noth-
ing apart from the above four features to non-preemptively
scheduled processes without communication primitives, is a
model like that adopted by some embedded operating sys-
tems, such as TinyOS [5]. Unlike most embedded systems,
however, we can make the assumption that the OS is run-
ning on a multi-core host machine, and thus need not to
worry about interrupting processes to handle events, as we
can reserve one or more cores for OS event processing. For
the same reason, livelock is not a problem: if the OS retains
control of one or more cores, it can always kill processes
on others, meaning that a non-preemptive scheduler suffices.
Hence, a process, once scheduled, will not be descheduled or
its execution interrupted, unless it explicitly yields or blocks,
and effectively has dedicated access to a core. We expect that
the lack of context switches and interrupts, combined with
exclusive access to caches and memory local to the core will
result in a noticeable improvement in execution performance
for application code.

Binaries in this environment should come with all their
necessary libraries statically linked, such that, assuming a
matching machine architecture, they can execute without
any external dependencies apart from the narrow OS inter-
face, similar to a library OS approach [9]. This may lead to
very large binaries, but we believe that contemporary and
future data centre networks are not likely to be troubled by
a 100 MB executable, and that the binaries will remain tiny
compared to many of the input data sets processed. The great
advantage that this restriction provides is that we can now
treat binaries as entirely self-contained: they have no depen-
dencies on anything other than their inputs.

4.2 Resource management and isolation
In this model, as with the classical OS model, performance
isolation and fair sharing of comparatively few shared I/O
resources are key challenges. The OS might, however, make



this easier for itself by restricting memory access and I/O
such that it can only occur to and from kernel-provided
buffers. In practice, this means that applications must explic-
itly request and commit I/O buffers via a kernel API, includ-
ing disk accesses and heap allocation. This limitation means
that the OS can throttle any process to a fair share of I/O re-
sources by not supplying any more buffers to it while it waits
for recently commited ones to be drained.

Since executing processes receive exclusive access to a
CPU, the OS can also ensure that buffers granted to them
are, as far as possible, optimally chosen – for example, heap
memory can be granted on the closest NUMA node.

4.3 Data access
The same new kernel API should also provide access to
persistent data, allowing the OS to transparently provide
processes with local or remote data by supplying appropriate
buffers.

Specifically, we advocate that there should exist a syscall
interface to allow a process to request a particular, globally
unique named data object, which will then be resolved lo-
cally or remotely, and once accessible, mapped into a buffer
that is granted to the process. This is effectively replacing
the common distributed file system abstraction with a kernel-
provided lookup functionality that may refer the request to
remote machines or an index server.

Since binaries are also data objects in this global names-
pace, executing a process amounts to asking the kernel to
load the data object into memory and start running it, assum-
ing the data object and sufficient local resources are avail-
able. Alternatively, the kernel may refer the execution re-
quest to a remote machine, instantiating the process there.
This is possible because binaries have no dependencies apart
from their inputs (see §4.1), but, in combination with the
non-preemptive scheduling, also necessitates that any IPC
must go through the kernel buffer API.

4.4 Summary
In the vision outlined above, the OS is degraded to a local
execution and resource multiplexing coordinator.

Of course, dropping support for applications requiring a
shell, standard binaries, a filesystem, multi-threading, lock-
ing, concurrency primitives, pre-emption, or more than a
rather small set of basic drivers may seem extreme. As we
show in the following, though, the basic primitives described
are completely sufficient for task-parallel computation, and
in fact offer particularly appealing benefits to this widely
used cloud application paradigm.

5. It’s task-parallel, Jim!
Task-parallel computation has emerged as a very successful
design pattern for distributed computing, and many popular
cloud data processing systems embrace it. Unlike in paral-
lel programming using threads and shared-memory, the code

for each individual task is entirely sequential, and all syn-
chronization is implicit in the programming model, taking
place when tasks access inputs and produce outputs.

We see the simplicity and tasks’ clearly defined interac-
tion behaviour as an ideal match for a simplified “cloud OS”.
Our particular model considered here takes significant inspi-
ration from our prior work on univeral data-flow program-
ming using CIEL [8], but similar models are imaginable.

Just like a binary in a traditional OS is an executable file,
a task can be treated as just an executable data object from
the OS perspective (see §4.3). Other data objects (which
may themselves be tasks) constitute the inputs and outputs
of a task, and buffers for accessing them can be requested
from the kernel. In order to be able to locate data objects
in the global namespace, they must be named by UUIDs.
If these names are deterministically generated from compo-
nents describing their generating task, freshness and prove-
nance, running a task-parallel computation becomes easy.
For example, the name of an output might be composed from
the generating task’s UUID, the output sequence number, a
version number and a set of input UUIDs used to generate
the output,3 i.e.

output UUID = {task UUID, seq. no., ver., [input UUIDs]}.

In this scheme, names are capabilities, such that in order to
access a data object, a task needs to know either its name, or
the components necessary to generate the name. Since the
OS does not supply a file system or any data object listing
primitive, tasks must explicitly communicate the names be-
tween them.4 Second, the scheme can support both relaxed
and strong consistency on data: when requesting a data ob-
ject, the kernel can either be instructed to perform an ex-
pensive check on the version number (e.g. by querying a
distributed meta-data index), or omit this check and use a
potentially stale version of the data object (cached locally or
fetched from a remote). The version number could also be
set to a special value indicating a non-deterministically gen-
erated data object, which must be re-generated every time on
every access by executing its generating task.

If data objects are cached locally when used (executed
or accessed), frequently executed task binaries (e.g. mapper
or reducer tasks) are likely to be cached locally once one
instance has started running. Similarly, it is possible to re-
use deterministically generated data objects cached from
previous computations, such as intermediate results from a
MapReduce job.

6. Compiling to the cloud
Assuming the simple cloud OS model works well with task-
parallel computations, as dominant in today’s batch process-
ing frameworks, two key questions remain: first, how the

3 Usually, but not necessarily, the inputs to the generating task.
4 Although it is of course possible for an application to build its own
directory or index abstraction on top of the data objects.



task binaries are generated, and second, how other types of
applications can be supported in an OS providing little in the
way of traditional APIs.

Ideally, a programmer would write a cloud application in
a higher-level language, and a compiler would automatically
translate the application into a binary suitable for running on
the simple cloud OS. In practice, the best way to achieve this
might be to translate the application into a set of independent
tasks, given that we have shown task-parallel computations
to map well onto a simple OS API. This is a very hard
problem if mutable global state exists, as its presence makes
it tricky to precisely identify what the inputs and outputs of
a task are. Without mutable global state, however, a classic
data-flow analysis might be able to give us an idea how
data is passed between different parts of an application. This
approach differs from existing similar approaches – such
as CIEL’s Skywriting language [8], or Cilk-NOW’s spawn

primitive [1] – in that task boundaries are inferred, rather
than explicitly specified.

Indeed, it might be possible to express even serving work-
loads using the task-parallel paradigm, if non-determinism is
supported. Ultimately, as a blue-sky vision, it might be con-
ceivable for a compiler to be written in a task-oriented way,
such that it generates task binaries from source code stored
in data objects, all running over the cloud infrastructure.

Implementing such a compilation infrastructure is a large
and ambitious project, but we believe that recent advances
in modular compiler design, such as the LLVM project [4],
make it much easier to build the necessary modules, while
still generating very efficient machine code.

7. Nothing new under the sun?
As with many positions in systems research, our ideas and
concepts are not entirely novel, and variants have been pro-
posed before.

In 2008, Thibault et al. considered the potential of run-
ning HPC applications on top of Xen by linking the appli-
cation to a small “stub domain” OS [10]. More recently,
Zaharia et al. made the case for a coherent data centre OS
instead of ad-hoc solutions [12], although their position is
more pragmatic, and explicitly not concerned with the host
OS in cloud data centres or questions of efficiency, but with
cluster-wide coordination and framework interoperability is-
sues. They do, however, identify the similar roles for a data
centre OS as we have discussed as properties of a host OS in
this paper: fair resource sharing, performance isolation and
data sharing between jobs. With the Mesos cluster manager,
which manages different applications’ resource allocations
and enables different frameworks to share a cluster with-
out detrimental effects on performance [3], the same authors
have delivered a part of their vision.

We have already discussed the Mirage OS, coming from
the same motivation we advocate, but designed for a virtu-
alized environment and less oriented towards task-parallel

computation [6]. The CACHE kernel [2] supports memory-
based messaging for IPC, and the Drawbridge OS is the a
recent library OS that bundles libraries with applications in
a similar way to our statically linked binaries [9].

8. Let’s find out!
We do not know if any aspect of the approach we have
proposed in this paper will actually exhibit the envisioned
benefits over the state of the art – but we do firmly believe
that we should try to find out. While we do not plan to
implement all of the ideas discussed in this paper in the short
term, we are planning to investigate some of the concepts we
proposed. We encourage the community to think outside the
box, and to be willing to challenge widely accepted “truths”
about OS design when thinking about the cloud.
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