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“[...] In this position paper, we make a
passionate and necessarily opinionated
argument [...]"

“The abstract accurately describes this
paper! It is passionate and opinionated
and full of sensibilities.”
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CO CONTROVERSIAL OPINIONS
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Highly general %

Familiar environment

Existing tools



\ /--' Large base images

Slow to spawn

® .
e Death by generality

= Layering

[and yet, the programming models are often restrictive!]
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Experiment from D. Murray,

A distributed execution engine supporting
data-dependent control flow.

PhD thesis, University of Cambridge,
2011.



What do we really need?



Batch

Input data Output data
objects objects

“Magic box”

l.e. some algorithm
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Serving




Virtualize custom pVMs

Back to the Eighties!




Redis example
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Numbers and experiment by Séren Bleikertz: http.//openfoo.org/blog/redis-native-xen.html



http://openfoo.org/blog/redis-native-xen.html�

Mantra:

Make the OS do exactly (and just)
what is needed.
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Execution control

Resource management

|solation

Data access



Execution control

Non-preemptive scheduling

Dedicated cores

Centralize I/0 mgmt

Statically link all user binaries



Resource Management & Isolation

Principle of OS buffer mgmt: request/commit

Request/commit interface

Backpressure for fairness

Embrace hardware heterogeneity



Resource Management & Isolation
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Hyperthread



Ads by-Geegte-Cambridge Computer Lab

Benchmark your HW heterogeneity

Learn things about your architecture
that you never knew!

http://fable.io




Data access

“Data object” abstraction

Global, deterministic naming

Transparent DO & buffer mgmt

[N.B. binaries are just DOs, too!]



Output UUID

Data access

task UUID | sequence num. | version

.....

. Capabilities

» Consistency levels




“People should not need to know about OS-level
stuff in order to program the cloud!”

| hear your cries...

“This is going to be a nightmatre to program!”



Compiler support

New, bespoke toolchain

Simple interfaces

“Everything is a task”



Take-away:

How about we push the good things about
MapReduce into the OS?



Take-away:

How about we restrict the OS to have
simplicity and predictable performance?
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