A down-to-earth look at the
cloud host OS

Malte Schwarzkopf Steven Hand

2.5 UNIVERSITY OF

14ﬁi'

AP CAMBRIDGE

“[...] In this position paper, we make a
passionate and necessarily opinionated
argument [...]"

“The abstract accurately describes this
paper! It is passionate and opinionated
and full of sensibilities.”

THE FOLLOWING PRESENTATION HAS BEEN APPROVED FOR
SELECTED AUDIENCES ONLY
BY THE AUTHORS

CO CONTROVERSIAL OPINIONS

PROVOCATIVE, SPECULATIVE, OPINIONATED CONTENT

A==

)
S
o
U]
—
Q
(%]
>

Highly general %

Familiar environment

Existing tools

\ /--' Large base images

Slow to spawn

® .
e Death by generality

= Layering

[and yet, the programming models are often restrictive!]

Flumelava Hive Pig

MapReduce
BEREEEE AR
All the
other

layers

Time [sec]

400

300

200

100

v—~ Hadoop
+—+ CIEL MR A4 CIEL fast in-mem
*—%#% (CIEL MR in-mem »—x MPI

CIEL fast

I I 3500 II | I | II

3000
| 2500
2000

i
30M]

[OM 20M

3.2M

SM [6M

[nput vectors

24M 32M

Experiment from D. Murray,

A distributed execution engine supporting
data-dependent control flow.

PhD thesis, University of Cambridge,
2011.

What do we really need?

Batch

Input data Output data
objects objects

“Magic box”

l.e. some algorithm

9./

Serving

Virtualize custom pVMs

Back to the Eighties!

Redis example

25000
20000
15000 i
@ Xen stubdom
M Linux VM
O native
10000 - - - - - - - - -
5000 — — — — — — — - - - e
077 I I I I I I I I I
D
S M LTSRS RSE S
Q O S IS QN S Q N Q N N %5 ™ QS
D N < 9) S < S S S S
& v V& &
O R AN
S S UGS
R F F F P
A A A AV

Numbers and experiment by Séren Bleikertz: http.//openfoo.org/blog/redis-native-xen.html

http://openfoo.org/blog/redis-native-xen.html�

Mantra:

Make the OS do exactly (and just)
what is needed.

Resource

Process mgmt , ,
multiplexing

/O mgmt Isolation

Pr%tion Mul%ding Co%ncy L}(g
prfMmities
File><em }(StaMibs

Execution control

Resource management

|solation

Data access

Execution control

Non-preemptive scheduling

Dedicated cores

Centralize I/0 mgmt

Statically link all user binaries

Resource Management & Isolation

Principle of OS buffer mgmt: request/commit

Request/commit interface

Backpressure for fairness

Embrace hardware heterogeneity

Resource Management & Isolation

AMD Opteron
6168

Intel i7-2600K

mempipe-spin-unsafe Bl shmempipe-unsafe
mempipe-spin-safe Bl :hmempipe-safe
mempipe-futex-unsafe I vmsplice-coop
mempipe-futex-safe [pipe

Core Otocorel

a4 4096 65536

Same NUMA node

Core O to core 1

100

a0

&0

40

20

a4 4096 65536

Different phys. core

Il unix-sock
[tcp-nodelay
N tep

Core 0 to core 42

20 - B

15 B

10 -

a4 4096 65536

Different NUMA node

Core 0 to core 4

100 - T T T i

a0

&l

40

20

G4 4096 65536

Hyperthread

Ads by-Geegte-Cambridge Computer Lab

Benchmark your HW heterogeneity

Learn things about your architecture
that you never knew!

http://fable.io

Data access

“Data object” abstraction

Global, deterministic naming

Transparent DO & buffer mgmt

[N.B. binaries are just DOs, too!]

Output UUID

Data access

task UUID | sequence num. | version

.....

. Capabilities

» Consistency levels

“People should not need to know about OS-level
stuff in order to program the cloud!”

| hear your cries...

“This is going to be a nightmatre to program!”

Compiler support

New, bespoke toolchain

Simple interfaces

“Everything is a task”

Take-away:

How about we push the good things about
MapReduce into the OS?

Take-away:

How about we restrict the OS to have
simplicity and predictable performance?

	A down-to-earth look at the cloud host OS
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 31
	Slide Number 32

