The seven deadly sins
of cloud computing research

é UNIVERSITY OF Microsoft’
4P CAMBRIDGE Research

Computer Laboratory Silicon Valley

seven deadly sins

>

W/W\A/\/\/\/\/*/\/\/W/\”

sin, n. — common simplification or
shortcut employed by researchers; may
present threat to scientific integrity and
practical applicability of research

cloud computing

D)
L(arge-scale data processing, cluster
computing, scalable web application serving.

Not in focus:

Cloud storage, NoSQL databases, network
protocols, cloud economics...

Disclaimer #1

We have committed many of these
sins ourselves in our own work.

Disclaimer #2

We are highlighting wide-spread
issues here, not judging the value
of specific research endeavours.

First sin:

Unnecessary distributed
parallelism

Hey, my algorithm for
processing lots of data
is taking a long time!

J

|

You need to
parallelize!

Really?

Parallelism is not free!

It always adds overheads...

Diminishing returns

We can only scale to a limit...

4 runtime

Merge sort

O(nlog n) in serial case

y Less is better

&

Serial

— = Serial, external

Local 4x parallel
— = Local 4x parallel, external

— Distributed parallel

n

RAM size

input size

Non-determinism
Races
Synchronization

Tedious debugging
[

S %S$8§#&! But
parallelism is hard!

Messrs. Dean & Ghemawat
INTRODUCE THEIR AMAZING

MAP-REDUCE

(U.S. Pat. 7,650,331)

Stop worrying about:

- Synchronization - Failures
- Data motion - Communication
- Parallel coordination TO D AY'

Fits all parallelization problems!

A little bit of history...

”[...] the input data is usually large and the computations have to
be distributed across hundreds or thousands of machines in order
to finish in a reasonable amount of time.”

-- Dean et al.,, MapReduce paper, OSDI 2004

"Each machine had two 2GHz Intel Xeon
processors with Hyper-Threading enabled,
4GB of memory, two 160GB IDE disks, and
a gigabit Ethernet link.”

-- Dean et al., MapReduce paper, OSDI 2004

But Big Data requires

distributed parallelism! The

data sets are just sooo0
big!

J

Most “big data” isn’t that big...

Average input size observed in many
production clusters is ~10-15 GB!

Second sin:

Assumption of
performance homogeneity

“the cloud” is not homogeneous!

Schad et al.,VLDB 2010 Lietal., IMC 2010
Barker et al,, MMSys 2010 Wang et al., INFOCOM™10

Later in HotCloud:

EC2 instance heterogeneity [Ouetal.]
Variance hurts predictability [Bortnikov et al.]

Own results from 2010 follow...

... and by the way:

Neither are dedicated clusters!

Standard deviation (MB/s)

16

14

12

10

6

0

EC2 performance variance

O o Ideal
High—inconsistent
Slow—consistent
Outliers
O
O O +
O x + T+

0

20

30 40 50 60 70 80
Mean read throughput (MB/s)

90

100

Disk read performance

100 EC2 ml.small
instances

Mean and standard
deviation over 9
samples

o O O O o O O

Read throughput (MB/s)

o O

EC2 performance variance

| 30 | [
= 70 T s
= 60 Tl
= 50
40
o
= 30
2 20
= 10
0
S M L S M L
Instance type Instance type
Disk read Disk write
Colours: different instances (randomly selected)
Values: means over 4 runs of bonnie++

Error bars: +/- 10 (std. dev.) over 4 runs

I/O throughput (MB/s)

100

80

60

40

20

EC2 performance variance

I I I I
- _
1A 1B 1C 1D
Availability Zone
Values: means over 5 randomly selected instances
Error bars: +/- 10 (std. dev.)

. Read

Write

“The three R’'s”

Describe and quantify performance variability
~ -Repeated runs (at least 5-10)
RIgor Error bars and their meaning

Ensure the results are true across time and space
- Repeat runs at different times
- Different“hardware” (instance types, if EC2)

- Hardware config / instance type
- Communication fabric / topology
- Dataset(s)

“three R's” due to Vitek et al., R3 — Repeatability, Reproducibility and Rigor, SIGPLAN Notices, 2012 Re

Third sin:
Picking the
low-hanging fruit

Scarlett
iHadoop

CIEL

PACMan
HalLoop
Mesos

LATE scheduler
Sector/Sphere

Mantri

20%
25%
50%
50%
85%
2X

2X

2X

iMapReduce
Hyracks
Hadoop++
Spark

Priter
Incoop
CamDoop
DVM

5X
16X
20x
40x
50x
80x
180x
200x

3X 2O \enkataraman et al.:
OFF THE
PRESS!

Ananthanarayanan et al.:

10x
47%

How hard is it to beat Hadoop?

[t depends!

Do all these optimizations compose?

Of course not!

Categories of optimizations

1. in-memory (RAM) caching
2. memoization of results

3. exploitation of data locality
4. domain-specific algorithms

5. load vs. job runtime trade-off

Per-iteration time [sec]

 —
S
-
-

300
600
400
200

20 40 60 80 100
Number of tasks

Per-iteration time [sec]

[S—
-
-
-

800
600
400
200

20 40 60 80 100

Number of tasks

“CIEL is faster than Hadoop

Per-iteration time [sec]

[S—
-
-
-

800
600
400
200

[by 160s per iteration]”

20 40 60 80 100

Number of tasks

“CIEL has less
constant
overhead than
Hadoop
and scales
similarly well”

3500 | |

3000

2500

2000

Time [sec]

1500

1000

500

4M 10M 20M 30M

Number of input vectors
k-means

3500 |

v—% Hadoop
3000 F +—+ CIEL record I/O

2500

2000

Time [sec]

1500

1000

500

4M 10M 20M 30M

Number of input vectors
k-means

3500 | |

% Hadoop
3000+ ¥+ CIEL record /O
—x MPI

2500

2000

Time [sec]

1500

1000

500

Y LOM oM 30M

Number of input vectors
k-means

3500 | |

= Hadoop
3000 F +—+ CIEL record I/O

x—x MPI
CIEL array

2500 F
2
o 2000
£
= 1500

1000

500

AM LOM oM 30M

Number of input vectors
k-means

500

400

Time [sec]
'y
-
-

200

100

Hadoop
CIEL record 1/0
MPI
CIEL array
L.
i
——
| et _-;IL_ I I I
3M SM 16M 24M 32M

Number of input vectors

4 N\

But MapReduce
implementations
are much cheaper
In engineering

%ime! -
Quantify the
performance

sacrificed.

Actually, we may be okay...

Lots of new, domain-specific research
systems improve on MapReduce.

Evaluate against the best-of-breed,
not Hadoop/MapReduce!

Publish your code, if at all possible!

Here endeth the sermon ©

(but there are four more sins!)

NOoOoOulm b WN=

Unnecessary (distributed) parallelism
Assumption of resource homogeneity
Picking the low-hanging fruit

Forcing the abstraction
Unrepresentative clusters/workloads

Assumption of perfect elasticity

lgnorance towards fault tolerance

Now is the time to confess!

(or to shoot the messenger ©)

FURTHER SINS

[these were not part of the HotCloud
2012 presentation, but included in
other versions of this talk]

Fourth sin:
Forcing the abstraction

“Java MapReduce [... is] the assembly

language of Apache Hadoop”

-- Cloudera executive, Stanford EE380 class

Flume

Incremental
processing

Pig Latin

Databases/ |
Hive Oozie Query langs

G) L

-

>~

Eurekal!
Everything is a
MapReduce!

~

/

... really?!

Assembly languages...

... have small, fine-grained, fast,
composable instructions.

MapReduce was designed for...

... long-running, large, coarse-grained,
massively parallel workloads!

Fifth sin:

Use of unrepresentative
workloads and clusters

. .1 Thethree cluster types
4] (g O RS
(usually) virtual single-purpose, single-user

single-job

The three cluster types
1 G 0 8

M M

==
=<

(usually) virtual single-purpose, single-user
single-job

X X PG

> O
physical/virtual single-purpose, multi-user
multi-job

The three cluster types
1 G 0 8

M M

==
=<

(usually) virtual single-purpose, single-user
single-job

X X PG

> O
single-purpose, multi-user
multi-job

H A
® O PALE

S
physical/virtual multi-purpose, multi-user
multi-job

The three cluster types

= l O A
(usually) virtual single-purpose, single-user
single-job

Often used by academics...
... but not representative of type 3!

Sodon‘timply itis!

We need “cluster mix” benchmarks!

Starting points:
Hadoop GridMix
Google Trace

Berkeley SPIM

Sixth sin:

Assumption of
perfect elasticity

WWWWM

[...]Jusing 1000 servers for one hour

costs no more than using one server for
1000 hours.

DA I\ A AN SANNYIANN

-- Armbrust et al., Above the clouds: A Berkeley View of Cloud Computing, 2009

WWW\/\/VWM

[Clompanies with large batch-oriented
tasks can get results as quickly as their
programs can scale, since using 1000
servers for one hour costs no more than
using one server for 1000 hours.

A I A AL AN A S AN NN

-- Armbrust et al., Above the clouds: A Berkeley View of Cloud Computing, 2009

Scalability and resources are finite
in reality!

- Unexpected bottlenecks
- Scheduling load
- Communication structure

- Increased likelihood of failures

Seventh sin:
Ignoring fault tolerance

Fault tolerance is a 15t class feature in MapReduce...

[...] we provide a fault-tolerant implementation that scales to thousands

of processors. In contrast, most [existing] parallel processing systems
[.]leave the details of handling machine failures to the programmer.

W/_/V\/\/\/»\//

-- Dean et al.,, MapReduce paper, OSDI 2004

... butitis often treated as second class!

- Rarely evaluated comprehensively
- In-memory caching often not fault tolerant

- Tricky with iterative processing on top of MapReduce

Iterative MapReduce example

ﬂ :
/
g result ap—

gesse

Iterative MapReduce example

Iterative MapReduce example

N
g result 7 4

esse

l

&)

Iterative MapReduce example

=

l

l

result

/N

; Oooops...

Why do we sin?

Sometimes because we lack data & infrastructure!

=» Industry, please help us!

- Workload traces
- Statements of real-world problems
- Access to hardware

Sometimes because we are lazy or working
last-minute for a deadline...

=» Reviewers and shepherds can enforce
standards (or we agree not to sin! ©)

How can we repent?

We agree to avoid the sins and heed the “three R”

=» Consciously design experiments

=» Justify when sins are unavoidable or
irrelevant

=» Listen to reviewers & shepherds

Allow sins to be exposed

=» Make source code available
=» Support reproduction/validation efforts

- Compare serial to parallel implementation
- Derive maximum parallel speedup
- Justify going distributed

: 2 - Repeated runs!
- Indicate performance variance

- Clearly state parameters
- EC2: ideally, multiple clusters, multiple times of day

- Do not use speedup-over-Hadoop as headline result!
- Compare to relevant optimized alternatives

- Or quantify speedup over serial (1 worker)

- Release your source code, so others can build upon it!

- Decide if MapReduce is the correct abstraction
- If not, but cheaper, quantify loss in performance

- Consider different job types, priorities and preemption!
- Benchmark cluster “job mixes”

- Clearly qualify the elasticity assumptions made
- Note (potential) scalability bottlenecks

- Clearly state fault tolerance requirements
- Clearly state characteristics and techniques used
- Evaluate them!

NOoOoOulm b WN=

Unnecessary (distributed) parallelism
Assumption of resource homogeneity
Picking the low-hanging fruit

Forcing the abstraction
Unrepresentative clusters/workloads

Assumption of perfect elasticity

lgnorance towards fault tolerance

Now is the time to confess!

(or to shoot the messenger ©)

