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seven deadly sins

>
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sin, n. — common simplification or
shortcut employed by researchers; may
present threat to scientific integrity and
practical applicability of research




cloud computing

D)
L(arge-scale data processing, cluster
computing, scalable web application serving.

Not in focus:

Cloud storage, NoSQL databases, network
protocols, cloud economics...



Disclaimer #1

We have committed many of these
sins ourselves in our own work.

Disclaimer #2

We are highlighting wide-spread
issues here, not judging the value
of specific research endeavours.




First sin:

Unnecessary distributed
parallelism



Hey, my algorithm for
processing lots of data
is taking a long time!

J
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You need to
parallelize!




Really?

Parallelism is not free!

It always adds overheads...

Diminishing returns

We can only scale to a limit...
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Non-determinism
Races
Synchronization

Tedious debugging
[

S %S$8§#&! But
parallelism is hard!




Messrs. Dean & Ghemawat
INTRODUCE THEIR AMAZING

MAP-REDUCE

(U.S. Pat. 7,650,331)

Stop worrying about:

- Synchronization - Failures
- Data motion - Communication
- Parallel coordination TO D AY'

Fits all parallelization problems!




A little bit of history...

”[...] the input data is usually large and the computations have to
be distributed across hundreds or thousands of machines in order
to finish in a reasonable amount of time.”

-- Dean et al.,, MapReduce paper, OSDI 2004

"Each machine had two 2GHz Intel Xeon
processors with Hyper-Threading enabled,
4GB of memory, two 160GB IDE disks, and
a gigabit Ethernet link.”

-- Dean et al., MapReduce paper, OSDI 2004



But Big Data requires

distributed parallelism! The

data sets are just sooo0
big!

J







Most “big data” isn’t that big...

Average input size observed in many
production clusters is ~10-15 GB!



Second sin:

Assumption of
performance homogeneity



“the cloud” is not homogeneous!

Schad et al.,VLDB 2010 Lietal., IMC 2010
Barker et al,, MMSys 2010  Wang et al., INFOCOM™10

Later in HotCloud:

EC2 instance heterogeneity [Ouetal.]
Variance hurts predictability [Bortnikov et al.]

Own results from 2010 follow...

... and by the way:

Neither are dedicated clusters!
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“The three R’'s”

Describe and quantify performance variability
~ -Repeated runs (at least 5-10)
RIgor Error bars and their meaning

Ensure the results are true across time and space
- Repeat runs at different times
- Different“hardware” (instance types, if EC2)

___________

- Hardware config / instance type
- Communication fabric / topology
- Dataset(s)

“three R's” due to Vitek et al., R3 — Repeatability, Reproducibility and Rigor, SIGPLAN Notices, 2012 Re



Third sin:
Picking the
low-hanging fruit
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How hard is it to beat Hadoop?

[t depends!

Do all these optimizations compose?

Of course not!



Categories of optimizations

1. in-memory (RAM) caching
2. memoization of results

3. exploitation of data locality
4. domain-specific algorithms

5. load vs. job runtime trade-off
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“CIEL is faster than Hadoop

Per-iteration time [sec]
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“CIEL has less
constant
overhead than
Hadoop
and scales
similarly well”
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But MapReduce
implementations
are much cheaper
In engineering

%ime! -
Quantify the
performance

sacrificed.




Actually, we may be okay...

Lots of new, domain-specific research
systems improve on MapReduce.

Evaluate against the best-of-breed,
not Hadoop/MapReduce!

Publish your code, if at all possible!



Here endeth the sermon ©

(but there are four more sins!)



NOoOoOulm b WN=

Unnecessary (distributed) parallelism
Assumption of resource homogeneity
Picking the low-hanging fruit

Forcing the abstraction
Unrepresentative clusters/workloads

Assumption of perfect elasticity

lgnorance towards fault tolerance

Now is the time to confess!

(or to shoot the messenger ©)



FURTHER SINS

[these were not part of the HotCloud
2012 presentation, but included in
other versions of this talk]



Fourth sin:
Forcing the abstraction



“Java MapReduce [... is] the assembly

language of Apache Hadoop”

-- Cloudera executive, Stanford EE380 class

Flume

Incremental
processing

Pig Latin

Databases/ |
Hive Oozie Query langs

G ) L
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Eurekal!
Everything is a
MapReduce!

~

/

... really?!



Assembly languages...

... have small, fine-grained, fast,
composable instructions.

MapReduce was designed for...

... long-running, large, coarse-grained,
massively parallel workloads!



Fifth sin:

Use of unrepresentative
workloads and clusters



. .1 Thethree cluster types
4] (g O RS
(usually) virtual single-purpose, single-user

single-job
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The three cluster types

= l O A
(usually) virtual single-purpose, single-user
single-job

Often used by academics...
... but not representative of type 3!

Sodon‘timply itis!




We need “cluster mix” benchmarks!

Starting points:
Hadoop GridMix
Google Trace

Berkeley SPIM



Sixth sin:

Assumption of
perfect elasticity



WWWWM

[...]Jusing 1000 servers for one hour

costs no more than using one server for
1000 hours.

DA I\ A AN SANNYIANN

-- Armbrust et al., Above the clouds: A Berkeley View of Cloud Computing, 2009



WWW\/\/VWM

[Clompanies with large batch-oriented
tasks can get results as quickly as their
programs can scale, since using 1000
servers for one hour costs no more than
using one server for 1000 hours.

A I A AL AN A S AN NN

-- Armbrust et al., Above the clouds: A Berkeley View of Cloud Computing, 2009



Scalability and resources are finite
in reality!

- Unexpected bottlenecks
- Scheduling load
- Communication structure

- Increased likelihood of failures



Seventh sin:
Ignoring fault tolerance



Fault tolerance is a 15t class feature in MapReduce...

[...] we provide a fault-tolerant implementation that scales to thousands

of processors. In contrast, most [existing] parallel processing systems
[ .]leave the details of handling machine failures to the programmer.

W/_/V\/\/\/»\//

-- Dean et al.,, MapReduce paper, OSDI 2004

... butitis often treated as second class!

- Rarely evaluated comprehensively
- In-memory caching often not fault tolerant

- Tricky with iterative processing on top of MapReduce



Iterative MapReduce example
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Iterative MapReduce example




Iterative MapReduce example
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Iterative MapReduce example
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; Oooops...




Why do we sin?

Sometimes because we lack data & infrastructure!

=» Industry, please help us!

- Workload traces
- Statements of real-world problems
- Access to hardware

Sometimes because we are lazy or working
last-minute for a deadline...

=» Reviewers and shepherds can enforce
standards (or we agree not to sin! ©)



How can we repent?

We agree to avoid the sins and heed the “three R”

=» Consciously design experiments

=» Justify when sins are unavoidable or
irrelevant

=» Listen to reviewers & shepherds

Allow sins to be exposed

=» Make source code available
=» Support reproduction/validation efforts



- Compare serial to parallel implementation
- Derive maximum parallel speedup
- Justify going distributed

: 2 - Repeated runs!
- Indicate performance variance

- Clearly state parameters
- EC2: ideally, multiple clusters, multiple times of day

- Do not use speedup-over-Hadoop as headline result!
- Compare to relevant optimized alternatives

- Or quantify speedup over serial (1 worker)

- Release your source code, so others can build upon it!



- Decide if MapReduce is the correct abstraction
- If not, but cheaper, quantify loss in performance

- Consider different job types, priorities and preemption!
- Benchmark cluster “job mixes”

- Clearly qualify the elasticity assumptions made
- Note (potential) scalability bottlenecks

- Clearly state fault tolerance requirements
- Clearly state characteristics and techniques used
- Evaluate them!



NOoOoOulm b WN=

Unnecessary (distributed) parallelism
Assumption of resource homogeneity
Picking the low-hanging fruit

Forcing the abstraction
Unrepresentative clusters/workloads

Assumption of perfect elasticity

lgnorance towards fault tolerance

Now is the time to confess!

(or to shoot the messenger ©)



