The seven deadly sins of cloud computing research

Malte Schwarzkopf ¹ Derek G. Murray ² Steven Hand ¹

The seven deadly sins of cloud computing research

sin, n. – common simplification or shortcut employed by researchers; may present threat to scientific integrity and practical applicability of research

The seven deadly sins of cloud computing research

Large-scale data processing, cluster computing, scalable web application serving.

Not in focus:

Cloud storage, NoSQL databases, network protocols, cloud economics...

Disclaimer #1

We have committed many of these sins ourselves in our own work.

Disclaimer #2

We are highlighting wide-spread issues here, not judging the value of specific research endeavours.

First sin:

Unnecessary distributed parallelism

Hey, my algorithm for processing lots of data is taking a long time!

is taking a long time!

You need to parallelize!

Really?

Parallelism is not free!

It always adds overheads...

Diminishing returns

We can only scale to a limit...

Messrs. Dean & Ghemawat

INTRODUCE THEIR AMAZING

MAP-REDUCE

(U.S. Pat. 7,650,331)

Stop worrying about:

- Synchronization
- Data motion
- Parallel coordination

- Failures
- Communication

TODAY!

Fits all parallelization problems!

A little bit of history...

"[...] **the input data is usually large** and the computations have to be distributed across **hundreds** or **thousands of machines** in order to finish in a reasonable amount of time."

-- Dean et al., MapReduce paper, OSDI 2004

"Each machine had **two 2GHz Intel Xeon processors** with Hyper-Threading enabled, **4GB of memory**, two 160GB IDE disks, and
a gigabit Ethernet link."

-- Dean et al., MapReduce paper, OSDI 2004

But Big Data requires distributed parallelism! The data sets are just soooo big!

Most "big data" isn't that big...

Average input size observed in many production clusters is ~10–15 GB!

Second sin:

Assumption of performance homogeneity

"the cloud" is not homogeneous!

Schad et al., VLDB 2010

Li *et al.*, IMC 2010

Barker et al., MMSys 2010

Wang et al., INFOCOM'10

Later in HotCloud:

EC2 instance heterogeneity [Ou et al.]

Variance hurts predictability [Bortnikov et al.]

Own results from 2010 follow...

... and by the way:

Neither are dedicated clusters!

EC2 performance variance

Disk read performance

100 EC2 m1.small instances

Mean and standard deviation over 9 samples

EC2 performance variance

Colours: different instances (randomly selected)

Values: means over 4 runs of bonnie++

Error bars: $+/-1\sigma$ (std. dev.) over 4 runs

EC2 performance variance

Values: means over 5 randomly selected instances

Error bars: $+/-1\sigma$ (std. dev.)

"The three R's"

Describe and quantify performance variability

- Repeated runs (at least 5-10)

Rigor Error bars and their meaning

Ensure the results are true across time and space

- Repeat runs at different times
- Different "hardware" (instance types, if EC2)

Repeatability tinformation to repeat the experiment

- Hardware config / instance type
- Communication fabric / topology
- Dataset(s)

Third sin:

Picking the low-hanging fruit

Scarlett	20%	iMapReduce		5x	
iHadoop	25%	Hyracks		16x	
CIEL	50%	Hadoop++ Spark Priter Incoop CamDoop DVM		20x	
PACMan	50%			40x	
HaLoop	85%			50x	
Mesos	2x			80x	
LATE scheduler	2x			180x	
Sector/Sphere	2x			200x	
Mantri	3x	HOT→ OFF THE PRESS!	FF THE		10x 47%

How hard is it to beat Hadoop?

It depends!

Do all these optimizations compose?

Of course not!

Categories of optimizations

- 1. in-memory (RAM) caching
- 2. memoization of results
- 3. exploitation of data locality
- 4. domain-specific algorithms
- 5. load vs. job runtime trade-off

Number of tasks

"CIEL is faster than Hadoop [by 160s per iteration]"

"CIEL has less constant overhead than Hadoop and scales similarly well."

Number of tasks

But MapReduce implementations are much cheaper in engineering time!

Actually, we may be okay...

Lots of new, domain-specific research systems improve on MapReduce.

Evaluate against the best-of-breed, not Hadoop/MapReduce!

Publish your code, if at all possible!

Here endeth the sermon ©

(but there are four more sins!)

- 1 Unnecessary (distributed) parallelism
- 2 Assumption of resource homogeneity
- **3** Picking the low-hanging fruit
- 4 Forcing the abstraction
- **5** Unrepresentative clusters/workloads
- 6 Assumption of perfect elasticity
- 7 Ignorance towards fault tolerance

Now is the time to confess! (or to shoot the messenger ©)

FURTHER SINS

[these were not part of the HotCloud 2012 presentation, but included in other versions of this talk]

Fourth sin:

Forcing the abstraction

Flume Incremental processing

Hive Oozie

processing Databases/
Query langs

MapReduce

Eureka!
Everything is a
MapReduce!

... really?!

Assembly languages...

... have small, fine-grained, fast, composable instructions.

MapReduce was designed for...

... long-running, large, coarse-grained, massively parallel workloads!

Fifth sin:

Use of unrepresentative workloads and clusters

The three cluster types

single-purpose, single-job

single-user

1

The three cluster types

single-purpose, single-job

single-user

2

physical/virtual

single-purpose, multi-job

multi-user

1

The three cluster types

single-purpose, single-job

single-user

2

physical/virtual

single-purpose, multi-job

multi-user

3

physical/virtual

multi-purpose, multi-job

multi-user

(usually) virtual

The three cluster types

single-purpose, single-job

single-user

Often used by academics...

... but not representative of type 3!

So don't imply it is!

physical/virtual

multi-purpose, multi-job

multi-user

We need "cluster mix" benchmarks!

Starting points:

Hadoop GridMix

Google Trace

Berkeley SPIM

Sixth sin:

Assumption of perfect elasticity

[...] using 1000 servers for one hour costs no more than using one server for 1000 hours.

-- Armbrust et al., Above the clouds: A Berkeley View of Cloud Computing, 2009

[C]ompanies with large batch-oriented tasks can get results as quickly as their programs can scale, since using 1000 servers for one hour costs no more than using one server for 1000 hours.

-- Armbrust et al., Above the clouds: A Berkeley View of Cloud Computing, 2009

Scalability and resources are finite in reality!

- Unexpected bottlenecks

- Scheduling load

- Communication structure

- Increased likelihood of failures

Seventh sin:

Ignoring fault tolerance

Fault tolerance is a 1st class feature in MapReduce...

[...] we provide a fault-tolerant implementation that scales to thousands of processors. In contrast, most [existing] parallel processing systems [...] leave the details of handling machine failures to the programmer.

-- Dean et al., MapReduce paper, OSDI 2004

... but it is often treated as second class!

- Rarely evaluated comprehensively
- In-memory caching often not fault tolerant
- Tricky with iterative processing on top of MapReduce

Why do we sin?

Sometimes because we lack data & infrastructure!

- → Industry, please help us!
 - Workload traces
 - Statements of real-world problems
 - Access to hardware

Sometimes because we are lazy or working last-minute for a deadline...

→ Reviewers and shepherds can enforce standards (or we agree not to sin! ②)

How can we repent?

We agree to avoid the sins and heed the "three R"

- Consciously design experiments
- → Justify when sins are unavoidable or irrelevant
- → Listen to reviewers & shepherds

Allow sins to be exposed

- → Make source code available
- **→** Support reproduction/validation efforts

- 1
- Compare serial to parallel implementation
- Derive maximum parallel speedup
- Justify going distributed
- 2
- Repeated runs!
- Indicate performance variance
- Clearly state parameters
- EC2: ideally, multiple clusters, multiple times of day
- 3
- Do not use speedup-over-Hadoop as headline result!
- Compare to relevant optimized alternatives
- Or quantify speedup over serial (1 worker)
- Release your source code, so others can build upon it!

- Decide if MapReduce is the correct abstraction
 If not, but cheaper, quantify loss in performance
- Consider different job types, priorities and preemption!
 Benchmark cluster "job mixes"
- Clearly qualify the elasticity assumptions made
 Note (potential) scalability bottlenecks

- Clearly state fault tolerance requirements
 Clearly state characteristics and techniques used
 - Evaluate them!

- 1 Unnecessary (distributed) parallelism
- 2 Assumption of resource homogeneity
- **3** Picking the low-hanging fruit
- 4 Forcing the abstraction
- 5 Unrepresentative clusters/workloads
- 6 Assumption of perfect elasticity
- 7 Ignorance towards fault tolerance

Now is the time to confess! (or to shoot the messenger ©)