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Google the scheduling problem
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Google trends observed

‘ .. A Diverse workloads

Increasing cluster sizes

/\/\/ Growing job arrival rates




Google why is this a problem?
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Hence:

Break up into independent schedulers.

But: How do we arbitrate resources
between schedulers?




Google" existing approaches

monolithic scheduler

SCHEDULER

e hard to diversify
e code growth
e scalability bottleneck

static partitioning
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e poor utilization
e inflexible




Google

two-level

999

RESOURCE MANAGER
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e hoarding
e information hiding

e.g. UCB Mesos [NSDI 2011]

existing approaches

shared state
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Google" how does omega work?
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how does omega work?
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Google how does omega work?




Google" how does omega work?

Conflict!



Google" how does omega work?
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Google overview

1) intro & motivation

2) workload characterization ﬁ

)
)
3) comparison of approaches
4) trace-based simulation

)

5) flexibility case study



Google workload: batch/service split

Batch Service
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Google workload: batch/service split

Cluster A Cluster B  Cluster C

Medium size . Large size . Medium (12k mach.
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Google

workload: batch/service split

TAKEAWAY

Most jobs are batch, but most resources are

consumed by service jobs.

Jobs/tasks:
CPU/RAM:
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Google

Batch jobs

workload: batch/service split

Service jobs

80th %ile runtime

12-20 min.

29 days

80th %ile inter-arrival time

4-7 sec.

2-15 min.



Google overview

1
2

intro & motivation

workload characterization

)
)
3) comparison of approaches -
4) trace-based simulation

)

5) flexibility case study



Google methodology: simulation

simulation using

empirical workload
parameters distributions

A

/\_

>

Code [soon to be] available:

http://code.google.com/p/cluster-scheduler-simulator




-0 816 parameters

Scheduler decision time

A
decision time

_________________________________________________________________________________ agt PEI-task

! (usually 0.005s
tjob: constant« per task)

(usually 0.1s \ »
per job) n: num. tasks




Google

Experiment 1:

How do does the shared-state design
compare with other architectures?



Google monolithic, uniform decision time (single logic)
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time spent scheduling . .
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Google monolithic, fast-path batch decision time

scheduler
busyness

head-of-line
blocking




Google mesos v0.9 (of May 2012)

scheduler
busyness




Google mesos

“ @ () 1. Green receives offer of

all available resources.
q g 2. Blue's task finishes.

[ RESOURCE MANAGER

3. Blue receives tiny offer.

-\_ 4. Blue cannot use it.

[repeat many times]

5. Green finishes scheduling.

6. Blue receives large offer.

By now, it has given up.




Google omega, no optimizations

scheduler
busyness




Google omega, optimized

scheduler
busyness




omega, optimized

Google

TAKEAWAY

state model performs as

well as a (complex) monolithic multi-path

The Omega shared

scheduler.

Mesos Omega

Monolithic



Google

Experiment 2:

Does the shared-state design
scale to many schedulers?



Google scaling to many schedulers

Avg. scheduler busyness

1X  2X 4x 6X 8X 10x
Relative batch job arrival rate



Google overview

1
2

intro & motivation

workload characterization

)
)
3) comparison of approaches
4) trace-based simulation ¢
)

5) flexibility case study



Google

simulator comparison

lightweight high-fidelity

simulator simulator

machines homogeneous real-world

: empirical workload
Job parameters distribution trace

constraints not supported supported
scheduling : : Google

algorithm random first fit algorithm

runtime fast (24h = Smin) slow (24h = 2h)




Google

Experiment 3:

How much scheduler interference do
we see with real Google workloads?



Google scheduler busyness
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Google

scheduler busyness

TAKEAWAY

Interference is higher for real-world

settings.

Utilization

L, overhead

/ due to

conflicts
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Google optimizations

1. Fine-grained conflict detection
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2. Incremental commits
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Google

Experiment 4:

How do the optimizations affect
performance?



Go:gle‘ impact on scheduler utilization

Scheduler decision time vs. scheduler busyness
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Go;;gle‘ practical implications - scheduler utilization
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practical implications - scheduler utilization

Google

TAKEAWAY

We can make simple improvements that
significantly improve scalability.
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Google

Case study

MapReduce scheduler with
opportunistic extra resources



200 workers in MR jobs
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Google case study: a MapReduce scheduler
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Go gle case study: a MapReduce scheduler

TAKEAWAY

The Omega approach gives us the flexibility
to easily support custom policies.
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Google conclusion

TAKEAWAYS

Flexibility and scale require parallelism,

parallel scheduling works if you do it right,
and

using shared state is the way to do it right!




BACKUP SLIDES




Google scheduling policies

Why might scheduling take 60 seconds?
. Large jobs (1,000s of tasks)

. Optimization algorithms (constraint
solving, bin packing)

. Very picky jobs in a full cluster
(preemption consequences)

. Monte Carlo simulations (fault tolerance)



Google methodology: simulation

Experiment Initial empirical
configuration cluster distribution

state | N
\L/

Workload

Batch Event-driven

simulator
Service
Cluster O
MapReduce state

Code [soon to be] available:

http://code.google.com/p/cluster-scheduler-simulator




Google workload: job runtime distributions
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Go gle workload: job runtime distributions

1.0

0.8

r less than X

TAKEAWAY

Service jobs, once scheduled, run for much
longer than batch jobs do.
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Goc gle workload: inter-arrival time distributions
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Go gle workload: inter-arrival time distributions
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Service jobs arrive much less frequently
than batch jobs do.
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Google the omega approach

Shared state Qme ga

® ®
Brave New Borg

e Deltas against shared state

e Easy to develop & maintain

e Heterogeneous scheduling logic CLUSTER STATE
e III I
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Optimistic concurrency

e No explicit coordination required

e Post-hoc interference resolution

e Scales well



Google conflict fraction

Scheduler processing time vs. conflicts per TX
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Go:gle‘ impact on conflict fraction
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Google case study: a MapReduce scheduler
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Go gle caveats, or when this won't work well

Possible problems...

e aggressive, systematically adverse
workloads or schedulers

e small clusters with high overcommit

m) deal with using out-of-band or post-
facto enforcement mechanisms




