April 17th, 2013

Omega: flexible, scalable schedulers
for large compute clusters

GO gle Malte Schwarzkopf (University of Cambridge Computer Lab)
Andy Konwinski (UC Berkeley)
Michael Abd-El-Malek (Google)
John Wilkes (Google)

Google the scheduling problem

U

Machines

Google trends observed

‘ .. A Diverse workloads

Increasing cluster sizes

/\/\/ Growing job arrival rates

Google why is this a problem?

Arriving jobs and @ [] A\
tasks (1 ,OOOS){ @ - ®

_—_60+ seconds!

Cluster scheduler — @ & w

B 15 (= [I IS I
I 1) Y))
B [I 1) I I I
. |1l 1]i]

Cluster machines
(10,000s)

Hence:

Break up into independent schedulers.

But: How do we arbitrate resources
between schedulers?

Google" existing approaches

monolithic scheduler

SCHEDULER

e hard to diversify
e code growth
e scalability bottleneck

static partitioning

o
o/ [[=
NN

e poor utilization
e inflexible

Google

two-level

999

RESOURCE MANAGER

\

e hoarding
e information hiding

e.g. UCB Mesos [NSDI 2011]

existing approaches

shared state

68 @

CLUSTER STATE

sEEReE
EEEEEE
pEEe N
EeEEERE

Google" how does omega work?

@

Ll
&

how does omega work?

™

Google how does omega work?

Google" how does omega work?

Conflict!

Google" how does omega work?

.

failure! *

.
B

(©) success! 4

o)

I ||
J
IIIIIIII

~

Google overview

1) intro & motivation

2) workload characterization ﬁ

)
)
3) comparison of approaches
4) trace-based simulation

)

5) flexibility case study

Google workload: batch/service split

Batch Service

1.0
0.8
0.6
0.4
0.2
0.0

Google workload: batch/service split

Cluster A Cluster B Cluster C

Medium size . Large size . Medium (12k mach.
Medium utilization : Medium utilization : High utilization

Public trace

Service

(X 3 3
X . .
..
o . .
o
n X . . -
o
X . .
0 - -
5% *
% . .
X XXX . % .
*) .‘.”.. - ..".’0.‘.‘ -
- L/ * OO0 OO0 -
L) OO0 - OO0 -
* 0 L) #) * 0 OO
OO otele S
OO oS . 5 .
otetes XS
otetelelelel & . .
CXRXHNN 09)
OO o .' - -
* 0 L - -
OO &
L OO o] . . —
otetele 25
OO o
25 oo . .
55 X . .
‘.0'.
..". . .

9 O N
QP

Jobs/tasks: counts
CPU/RAM: resource seconds [i.e. resource job runtime in sec.]

1.0
0.8
0.6
0.4
0.2
0.0

Google

workload: batch/service split

TAKEAWAY

Most jobs are batch, but most resources are

consumed by service jobs.

Jobs/tasks:
CPU/RAM:

B L e EEl Batch

.0
Pe%e% %

*

S
%!

*

o,

*

*

*
'0%e%s!
O
.0

.0

*
*

*

.0
050

2585
555

*
Q)

*

*
*

*
55¢55¢5HCS

*
»,

*
*
.0

O
*
fo?

*
’0

O
.0000
*

*,

oTe%e e’

0%0%0%%0% 4% %%
*

*
*

0.0 *

*
*

*
OO0

OO0
025¢52S

counts
resource seconds [i.e. resource job runtime in sec.]

Service

OOOOOOO

0. 00000
O

2000000 %% 0%

OOOO000

o

o

55
0
|

O
O
O
O
O
O
O
O
O
O

Google

Batch jobs

workload: batch/service split

Service jobs

80th %ile runtime

12-20 min.

29 days

80th %ile inter-arrival time

4-7 sec.

2-15 min.

Google overview

1
2

intro & motivation

workload characterization

)
)
3) comparison of approaches -
4) trace-based simulation

)

5) flexibility case study

Google methodology: simulation

simulation using

empirical workload
parameters distributions

A

/_

>

Code [soon to be] available:

http://code.google.com/p/cluster-scheduler-simulator

-0 816 parameters

Scheduler decision time

A
decision time

___ agt PEI-task

! (usually 0.005s
tjob: constant« per task)

(usually 0.1s \ »
per job) n: num. tasks

Google

Experiment 1:

How do does the shared-state design
compare with other architectures?

Google monolithic, uniform decision time (single logic)

red =>
, , unscheduled
time spent scheduling . .
total time]ObS remained
1.0
A
| 0.8
scheduler
busyness 1 0.6
blue => all
0.4 > jobs were

scheduled
0.2

0.0[

100

Google monolithic, fast-path batch decision time

scheduler
busyness

head-of-line
blocking

Google mesos v0.9 (of May 2012)

scheduler
busyness

Google mesos

“ @ () 1. Green receives offer of

all available resources.
q g 2. Blue's task finishes.

[RESOURCE MANAGER

3. Blue receives tiny offer.

-_ 4. Blue cannot use it.

[repeat many times]

5. Green finishes scheduling.

6. Blue receives large offer.

By now, it has given up.

Google omega, no optimizations

scheduler
busyness

Google omega, optimized

scheduler
busyness

omega, optimized

Google

TAKEAWAY

state model performs as

well as a (complex) monolithic multi-path

The Omega shared

scheduler.

Mesos Omega

Monolithic

Google

Experiment 2:

Does the shared-state design
scale to many schedulers?

Google scaling to many schedulers

Avg. scheduler busyness

1X 2X 4x 6X 8X 10x
Relative batch job arrival rate

Google overview

1
2

intro & motivation

workload characterization

)
)
3) comparison of approaches
4) trace-based simulation ¢
)

5) flexibility case study

Google

simulator comparison

lightweight high-fidelity

simulator simulator

machines homogeneous real-world

: empirical workload
Job parameters distribution trace

constraints not supported supported
scheduling : : Google

algorithm random first fit algorithm

runtime fast (24h = Smin) slow (24h = 2h)

Google

Experiment 3:

How much scheduler interference do
we see with real Google workloads?

Google scheduler busyness

1.0 —_— - ,
»— Batch
< Service
+--+ no conflict approx.
0.8} :
0
7]
o
S,
(g 0.61 1, overhead
0 due to
EJ conflicts
3 il
© |
O 04} ? l
c .
) |
v I
0.2 L’
- HH g
i 35 B E S
OI%ms ~ 0.1s - is 10s ~ 100s

Service one-off decision time (Cy)

Google

scheduler busyness

TAKEAWAY

Interference is higher for real-world

settings.

Utilization

L, overhead

/ due to

conflicts

0.6 |
0.4}
0.2}
F—t
Ol%ms 0.115

1s 10s
Service one-off decision time (Cy)

Google optimizations

1. Fine-grained conflict detection

9 ‘
396936

% |
— ° o
o

2. Incremental commits

st BOIOBON - m—) 0)(00

i @ ©® ©® ©

Google

Experiment 4:

How do the optimizations affect
performance?

Go:gle‘ impact on scheduler utilization

Scheduler decision time vs. scheduler busyness

1.0 .
== (Coarse/Gang

== Coarse/Incr.
== Fine/Incr.

T
1

0.8

0.6

T
1

0.4

T
1

Scheduler busyness

0.2

I
i VI ¥

095 ~ 10s — 100s
Service scheduler per-job decision time

Go;;gle‘ practical implications - scheduler utilization

1.0 — . . . , l
~— Batch
~ Service
+--+ no conflict approx.

0.8 R

(7))

n

(]

S,

0 0.6} -

-

o)

| -

Q@

-

©

O 04+F i

c

(@]

n overhead
due to
conflicts

0.2
L L L I L T LILLL L L
T T S S S o 5 T
Ol%ms ‘ 0.1s - 1s 10s “ 1005

Service one-off decision time (Cy)

practical implications - scheduler utilization

Google

TAKEAWAY

We can make simple improvements that
significantly improve scalability.

U.0 |
c
o
4+
©
N
E
-]
0.4+
overhead
due to
Y conflicts
0.2
[I 1 L T L ILILLL
[T T A S A o o 5
1%ms 0.1s 1s

Service one-off decision time (Cy)

Google

Case study

MapReduce scheduler with
opportunistic extra resources

200 workers in MR jobs

11 l
CRE TR 1000

O

@)
el

S

800D

!

Count of jobs with X workers
-
-

-

10° 10 10 10° 10*
Number of workers [log,]

Snapshot over 29 days

Google case study: a MapReduce scheduler

x 1.0 7 _—
\" I
Q |
3 0.8 | i
S 60% of)|
e MapReduces|i”™ "7 :
= 0.6 | I .
S | .
3 | :
2, | |
(' 0.4 r | | .
= Vo
S :
5 02f ! :
o :
= ' 3-4x speedup!
0.0 I- S —

10° 10! 10°
Relative speedup [log] better

h_.
I

cluster C, 29 days

Go gle case study: a MapReduce scheduler

TAKEAWAY

The Omega approach gives us the flexibility
to easily support custom policies.

-ZOj | |

— | :

x 04 | ,

= | :

5 |

S 02 :

2 :

= ' 3-4x speedup!
0.0 — S P L
10~ 10° I 10! 102

Relative speedup [log] better >

Google conclusion

TAKEAWAYS

Flexibility and scale require parallelism,

parallel scheduling works if you do it right,
and

using shared state is the way to do it right!

BACKUP SLIDES

Google scheduling policies

Why might scheduling take 60 seconds?
. Large jobs (1,000s of tasks)

. Optimization algorithms (constraint
solving, bin packing)

. Very picky jobs in a full cluster
(preemption consequences)

. Monte Carlo simulations (fault tolerance)

Google methodology: simulation

Experiment Initial empirical
configuration cluster distribution

state | N
\L/

Workload

Batch Event-driven

simulator
Service
Cluster O
MapReduce state

Code [soon to be] available:

http://code.google.com/p/cluster-scheduler-simulator

Google workload: job runtime distributions

1.0 | |
X —— Batch
c | e SerVICe
S o8l ST
s S _
7))
17
8 Sl
I Y &
E e |
O) 0.6—
g
c
c
S
[-
w | il
Q04
9
Y
[e)
S
= 0.2f | |
e Y 2
CU '-'._,.. A
T .-
L s —

: o) —

s “1min L N)|

Job runtime [log,]

Go gle workload: job runtime distributions

1.0

0.8

r less than X

TAKEAWAY

Service jobs, once scheduled, run for much
longer than batch jobs do.

U.ZT

Fracti

1h 1d 29d
Job runtime [log,,]

Goc gle workload: inter-arrival time distributions

1.0

P 4
—— Service ;
----- Batch f
> :
G 0.8 ¥
< i
[72]
[72]
@
[72]
% "
T 06 .
©
>
@
o)
£ 04 .
©
C
jel
©
©
L 0.2 |
— A
— B
0.0 1ms 1s Imin 1h

Interarrival time [log,,]

Go gle workload: inter-arrival time distributions

1.0
—— Service
""" Batch
X
E 0.8}
TAKEAWAY
Service jobs arrive much less frequently
than batch jobs do.
r oz2f S
' — A
| — B
— s
: . i __ |

Interarrival time [log,,]

Google the omega approach

Shared state Qme ga

® ®
Brave New Borg

e Deltas against shared state

e Easy to develop & maintain

e Heterogeneous scheduling logic CLUSTER STATE
e III I

pEEe N
ol

Optimistic concurrency

e No explicit coordination required

e Post-hoc interference resolution

e Scales well

Google conflict fraction

Scheduler processing time vs. conflicts per TX

7.3

/x—x Batch
~ Service Ls =5m

58} .

num. conflicts
total num. transactions

)

Conflict fraction

2.9 At -

1.5

bl

%Bms 0.1s 1s 10s 100s
Service one-off decision time (Cy)

Go:gle‘ impact on conflict fraction

=~ Coarse/Gang ~— Fne/Incr.

+—~ Fine/Gang

5.0

4.0 -

w
o
T

Conflict fraction

N
o
T

1.0}

095 ~ 10s
Service constant processing time (Cy)

Google case study: a MapReduce scheduler

1.0
X
Vv
S
3 981 s50%of .
8;,_ MapReduces < | i
(V] | 1
5 06 B | : —
= | i
2 | -
@) | :
'n? 04 | ; |
S | :
Y— | :
o | i |
CC) 02r | ,
B | :
E : ' 4.5x speedup

107! 100 I 10! 102 103

Relative speedup [log,]

cluster A, 29 days

Go gle caveats, or when this won't work well

Possible problems...

e aggressive, systematically adverse
workloads or schedulers

e small clusters with high overcommit

m) deal with using out-of-band or post-
facto enforcement mechanisms

