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ABSTRACT

As modern operating systems become more complex, under-
standing their inner workings is increasingly difficult. Dy-
namic kernel instrumentation is a well established method
of obtaining insight into the workings of an OS, with appli-
cations including debugging, profiling and monitoring, and
security auditing. To date, all dynamic instrumentation sys-
tems for operating systems follow the probe-based instru-
mentation paradigm. While efficient on fixed-length instruc-
tion set architectures, probes are extremely expensive on
variable-length ISAs such as the popular Intel x86 and AMD
x86-64. We propose using just-in-time (JIT) instrumenta-
tion to overcome this problem. While common in user space,
JIT instrumentation has not until now been attempted in
kernel space. In this work, we show the feasibility and de-
sirability of kernel-based JIT instrumentation for operating
systems with our novel prototype, implemented as a Linux
kernel module. The prototype is fully SMP capable. We
evaluate our prototype against the popular Kprobes Linux
instrumentation tool. Our prototype outperforms Kprobes,
at both micro and macro levels, by orders of magnitude when
applying medium- and fine-grained instrumentation.
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1. INTRODUCTION

Modern monolithic operating systems (OSs) are complex
evolving constructs spanning tens of millions of lines of code.
System administrators and developers frequently need to un-
derstand the inner workings of OSs for purposes such as de-
bugging [13], profiling and monitoring [5, 9], and security
auditing [10]. Kernel instrumentation is a well established
method of obtaining the necessary insight and is often done
dynamically, because it can be applied without the need for
kernel recompilation or rebooting. This is particularly im-
portant in production systems where taking a system offline
is not a viable option. In addition, dynamic instrumentation
eases the analysis of systemic problems or emergent misbe-
havior [17], which only appear after prolonged and contin-
uous system operation.

To date, all dynamic instrumentation systems for operat-
ing systems use the probe-based instrumentation paradigm.
This approach works by overwriting instructions in the orig-
inal program with trampolines to instrumentation code.
Probes can be implemented efficiently on fixed-length in-
struction set architectures (ISAs), such as Sun’s UltraSparc,
by inserting jump instructions to the relevant instrumen-
tation code at each instrumentation point; however, on
variable-length ISAs, such as the popular Intel x86 and
AMD x86-64, probes have to be implemented with trap in-
structions [25]. At each instrumentation point, execution
of the trap instruction causes an exception handler to be
dispatched. The handler must then determine what type of
instrumentation (if any) is needed at that point, typically
via a hash table lookup. The overhead of these steps makes
comprehensive and fine-grained instrumentation unaccept-
ably slow on these architectures. For example, when using
the Linux Kprobes framework, we find that recording a list
of functions invoked during a system call can slow execution
by nearly a factor of fifty.

We propose using just-in-time dynamic instrumentation
(or JIT instrumentation for short) instead. In this approach,
execution is redirected to a runtime system at the entry of a
section of code that is to be instrumented. A JIT compiler
creates a duplicate copy of each basic block of the origi-
nal code immediately before it is executed, embedding calls
to instrumentation routines within it, much as if the in-
strumentation had been added to the source code and the
source recompiled. The resulting instrumented basic blocks
are stored in a code cache, from whence they are dispatched
instead of the original code. We provide additional back-



ground on existing operating system instrumentation tech-
niques, and on JIT instrumentation in Section 2.

JIT instrumentation provides both better performance
and a better usage model than probe-based techniques for
fine-grained instrumentation. The primary performance ad-
vantage stems from the fact that instrumentation can be
inserted between instructions. This eliminates the need for
expensive trap instructions to redirect execution to instru-
mentation code on variable-length ISAs. In addition, when
using a JIT, instrumentation is only inserted into code af-
ter it is known that it will execute, thereby eliminating any
cost of instrumenting instructions that might be executed.
Furthermore, if the instrumentation code is small enough,
it can be inlined directly into the copied basic blocks to
eliminate the cost of executing function calls. Further op-
timizations may also be performed. For example, register
and condition code liveness analysis can reduce the amount
of saved processor state before each instrumentation point
in the basic block. We describe our prototype implementa-
tion of a JIT instrumentation tool for operating system code
which performs these optimizations in Section 3, and show
its performance advantages over a probe-based strategy for
fine-grained instrumentation in Section 4.

Probe-based instrumentation requires a user to specify the
exact locations in the code where instrumentation should be
inserted, which can become onerous for fine-grained instru-
mentation. In contrast, JIT instrumentation requires only
entry, and possibly exit, points to be identified. Because in-
strumentation is added as code blocks are discovered, there
is no need for a prior: identification of possible instrumen-
tation points (either by a user directly, or by a tool). In ad-
dition, making a copy of instrumented code paths makes it
easier to isolate properties of interest. For example, suppose
we wanted to know how often kmalloc () is invoked, directly
or indirectly, as a result of the execv system call. With a
JIT, the instrumented version of kmalloc() is only called as
part of execv—all other uses invoke the original, uninstru-
mented code and are therefore automatically excluded from
the count. With probe-based instrumentation, it is easy to
count entrances to kmalloc(), but a significantly more com-
plicated instrumentation routine would be needed to deter-
mine whether the call was due to execv or not. Worse, all
other uses of kmalloc() would pay the extra cost of this
check. The power and simplicity of the JIT instrumentation
user model has proven itself in a number of user space tools
such as Pin [15] and Valgrind [18].

We demonstrate the utility of the JIT model for kernel
instrumentation by showing several example plugins in Sec-
tion 5. We discuss other approaches for kernel instrumenta-
tion, contrasting them with our approach and showing where
our work is complementary, in Section 6.

Our framework is the first JIT instrumentation system
that can be applied to live operating system kernels. In
this work we show that JIT instrumentation can be imple-
mented as a self-contained kernel module that can be loaded
and unloaded as needed. We also show that it can deliver
substantial performance improvements for fine-grained in-
strumentation over existing trap-based systems.

Our contributions are:

1. A prototype Linux kernel module implementation that
shows that JIT instrumentation is possible and desir-
able in the kernel.

2. A performance comparison between our prototype and
an existing kernel probe implementation, which shows
that our approach is faster by up to two orders of mag-
nitude for fine-grained instrumentation.

3. Example plugins that show the power and flexibility
afforded by the system, yet remain simple and intuitive
to implement.

We end the paper with a discussion of areas for further
investigation and conclusions in Sections 7 and 8.

2. INSTRUMENTATION BACKGROUND

In this section we give additional background on exist-
ing operating system instrumentation strategies, both static
and dynamic, and on general JIT compilation and instru-
mentation systems.

2.1 Operating System Instrumentation

The most common strategy for instrumenting operating
systems involves changing the source code and recompiling
the kernel. The Linux Trace Toolkit [26] takes this approach
by providing patches for the Linux source code to enable a
small number of performance monitoring probe points. If
the OS source code is not available, static instrumentation
can be added by binary re-writing.

While many binary re-writing tools exist for user space
applications (e.g., ATOM [24], Purify [12], EEL [14] and
PLTO [23]), there are few designed to modify operating sys-
tems. Flower et al. [11] point out some of the challenges
they faced in modifying the Spike executable optimizer for
kernel binaries, including the kernel’s use of self-modifying
code and assumptions about the order or location of par-
ticular basic blocks, in particular for code that is only used
during system boot.

The main advantage of static instrumentation is the abil-
ity to apply sophisticated but slow compiler optimizations
to the instrumented code. Unfortunately, whether added to
kernel source code or a binary, it can only be fully disabled
by rebooting to an uninstrumented version. The constant
overhead of this “always on” property makes fine-grained
static instrumentation unsuitable for production systems.
As a result, researchers and system users have turned to
dynamic techniques that allow instrumentation to be added
and removed as needed. K42, an object oriented research op-
erating system, offers a compromise between the two meth-
ods. Statically instrumented modules can be dynamically
hot-swapped for their original counterparts without inter-
rupting services [2].

Dynamic instrumentation of arbitrary kernel code was
first introduced by Tamches and Miller with their work on
the KernlInst project [25]. Kernlnst targets the fixed-length
instruction set RISC UltraSparc architecture, and is thus
able to safely overwrite kernel code with branch instructions
that redirect execution to instrumentation routines. These
branches can replace a majority of instructions and there-
fore almost all operating system code can be instrumented
dynamically. Since instrumentation is inserted at runtime,
it adds no overhead until enabled, which is one of the key
advantages of this approach over traditional static instru-
mentation methods.

Attempts to tailor the Kernlnst directly-inserted-branch
style of dynamic instrumentation to the popular variable-
length x86 architecture have proven unsuccessful. For this
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Figure 1: A brief look at the JIT process. Step 1 shows the initial state. Step 2 shows the result of copying
the first basic block into the code cache. Step 3 shows how the branch targets of existing cached blocks are
updated as destination blocks are brought into the code cache. Step 4 shows the final result, with all three
basic blocks now instrumented and executing from the code cache.

ISA, the smallest branch instruction is larger than the small-
est instruction, and thus patching operating system code
with new branch instructions at runtime is not safe for sev-
eral reasons. First, on preemptable kernels it is possible
that a second thread may be sleeping between two short
instructions overwritten by the branch. When the sleeping
thread awakens, the processor will try to decode a series of
bits that were not intended to be a valid instruction opcode.
Second, there is a chance that the inserted branch instruc-
tion will overwrite instructions that are not contained within
the same basic block. Here, the processor might jump into
the middle of the branch instruction with, once again, unde-
sirable results. The GILK [21] project attempts to overcome
the second of the two problems by statically analyzing the
Linux kernel binary to determine all basic block boundaries.
Unfortunately, indirect branch and call instructions limit the
accuracy of such analysis as these instructions have branch
targets that are not known until runtime.

When targeting the Intel x86 ISA, projects like Kernlnst,
Kprobes [20] and DTrace [7] insert trapping break instruc-
tions instead of branches. These instructions are also used
for inserting debugger breakpoints, and are intentionally the
shortest instructions in the ISA (1 byte). Thus, they can be
used to overwrite any instruction, thereby avoiding the two
aforementioned problems. By modifying the trap handler,
break instructions can be used to execute instrumentation.
However, if multiple types of instrumentation exist, a hash
table lookup is necessary to determine which instrumenta-
tion routine should be called. This lookup is expensive and
can seriously degrade performance [6], particularly when the
number of instrumented instructions becomes large.

A more detailed overview of related work and the com-
parison to our approach can be found in Section 6.

2.2  JIT Instrumentation

Traditionally, a trap or jump instruction is inserted at
each instrumentation point to redirect control to the ap-
propriate instrumentation. JIT instrumentation takes a dif-
ferent approach: simply rewrite the code to a new loca-
tion and thus avoid adding jumps or traps. In the process
of rewriting the code to a new location, instrumentation
is directly inserted into the rewritten code. By rewriting
instead of overwriting original code, variable-length instruc-
tions are implicitly handled, allowing efficient instrumenta-
tion on variable-length ISAs.

At the heart of any JIT instrumentation system is the JIT
compiler, or JIT for short. An instrumentation JIT works
much like a Java bytecode JIT (e.g., Sun’s HotSpot [19] or
IBM’s Jalapeno [1]), or the JIT in a dynamic binary trans-

lator (e.g., HP’s Dynamo [3] or Sun’s Walkabout [8]). Java
JITs translate bytecode to native code to improve perfor-
mance, and binary translators (e.g., QEMU [4]) typically
translate from one ISA to another for a host of reasons,
such as running legacy binaries on new hardware. The in-
strumentation JIT, in contrast, produces code in the same
ISA as its input (similar to QEMU accelerator and VM Ware
virtualization), but with additional instrumentation instruc-
tions inserted. A JIT can compile at various granularities; a
Java JIT typically compiles at a method granularity, while
user space JIT instrumentation tools and binary translators
prefer basic block or trace granularities.

Figure 1 shows the JIT instrumentation process for a sim-
ple graph of three basic blocks. Initially, in Step 1, no code
has been instrumented and the code cache is empty. When
execution reaches BB1, it is redirected into the JIT. The JIT
makes a copy of BB1, inserting the required instrumentation
and modifying the final instructions to first record the orig-
inal destination, BB2, and to then redirect execution back to
the JIT at the end of the block. The new block is then placed
into the code cache, as shown in Step 2 of Figure 1. When
control returns to the JIT after executing the instrumented
BB1, the JIT sees that the next block to execute is not in
the code cache. Therefore, the JIT copies BB2 into the code
cache, transforming it as with BB1. Additionally, the JIT
updates BB1 to branch directly to the instrumented copy of
BB2, rather than the JIT. The result is shown in Step 3 of
Figure 1. This process continues in Step 4 as BB3 is discov-
ered, instrumented, and placed in the code cache. Note that
had control flowed directly from BB1 into BB3, through the
dotted branch marked with a * in Step 4, then BB2 would
never enter the code cache at all; this is the nature of JIT
instrumentation—only executed code is instrumented.

Since the resulting instrumented code is stored and exe-
cuted from a new location, the JIT must modify all control
instructions to account for this change, as shown in the sim-
ple example of Figure 1. Direct control instructions can
be updated to point directly to their code cache equivalent
targets, if present. Indirect control instructions such as indi-
rect jumps, calls, and return instructions have targets that
cannot be resolved at JIT-time, and therefore must be trans-
lated at runtime. These instructions are modified to point
back to a runtime system, which will perform the transla-
tion, invoking the JIT if the target is not in the code cache.

JIT instrumentation can only happen if there is an entry
point from which control can be redirected to the JIT. After
that point, all further execution happens within the JIT en-
gine. User space tools use a number of methods of achieving
this. One approach, taken by Pin, is to gain control using
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ptrace. Pin injects its JIT into the address space of the ap-
plication (using the same primitives debuggers use to insert
breakpoints), and modifies the application program counter
to point to it. A final advantage of JIT instrumentation is
that it never modifies the original code. This means that
any code that makes assumptions about the original struc-
ture of the binary will continue to operate as it did before.
It also makes JIT instrumentation very easy to disable, since
only the entry point needs to be redirected to the original
code, rather than repairing every instrumentation point.

JITs used for instrumentation must interface with a user-
supplied plugin that specifies what instrumentation to in-
sert. The JIT applies this instrumentation and optimizes
the resulting code, thus specializing the instrumentation for
the given context. Register re-allocation, liveness analysis
and instrumentation inlining are examples of optimizations
that can be performed. The end result is a highly optimized
instrumented version of the original code. Since the transla-
tion and optimization are one-time costs, the benefits of spe-
cialized instrumentation in frequently-executed code makes
them worthwhile.

3. DESIGN OF THE JIFL PROTOTYPE

In this section we describe the design of our JIT in-
strumentation prototype, called JIFL (JIT Instrumentation
Framework for Linux). JIFL allows users to instrument sys-
tem calls on 2.6 Linux uniprocessor and symmetric multi-
processor (SMP) kernels.

3.1 System Overview

JIFL is implemented as a self-contained loadable kernel
module. Figure 2 illustrates JIFL’s software architecture.
At the highest level, JIFL consists of a runtime engine, a
private heap, a code cache and an instrumentation API for
interfacing with JIFL plugins. JIFL plugins dictate what
instrumentation to apply, and can be started and stopped
with a user space tool. The runtime engine contains the JIT
compiler, dispatcher, and a custom memory allocator.

3.2 JIFL Plugins

JIFL plugins are simply separate kernel modules that de-
pend on the main JIFL module. They can be loaded and un-

#include "jifl.h"

syscall_t syscall;
long long count;

void add_count (long long *counter_ptr, long size);
void bb_inst(bb_t *bb, void *arg);

// Start instrumentation of clone system call
void plugin_start() {
count = 0;
syscall_init(&syscall, __NR_clone);
syscall_add_bb_instrumentation (&syscall,
bb_inst, NULL);
syscall_start_instrumenting (&syscall);

}

// Stop instrumentation of clonme system call
void plugin_stop() {
syscall_stop_instrumenting (&syscall);
printk("Clone system call executed %11ld "
"instructions\n", count);

}

// Called for every newly discovered basic block
void bb_inst(bb_t #*bb, void *arg) {
long bb_size = bb_size(bb);
bb_insert_call(bb, add_count,
ARG_VOID_PTR, &count,
ARG_INT32, bb_size,
ARG_END) ;
}

// Ezecuted for every instrumented basic block
void add_count (long long *counter_ptr, long size) {
xcounter_ptr += size;

}

Figure 3: Example plugin used to count the number
of instructions executed by the clone system call.

loaded using standard Linux commands. The JIFL starter
tool is provided to allow a user to turn off instrumentation
before attempting to unload the module. This is important
because, otherwise, the plugin may be instrumenting the
system calls being used to unload it.

Figure 3 demonstrates the JIFL instrumentation API with
a simple instrumentation plugin that counts the number of
instructions executed by the clone system call. The plu-
gin starts by specifying the clone system call with a call to
syscall_init(). It then adds the bb_inst() basic block
level callback, which will be called by JIFL every time it
discovers a previously un-executed basic block. Finally, it
calls syscall_start_instrumentation(), which redirects
all clone system calls to execute through JIFL.

During execution, the JIT calls the bb_inst() callback
for every basic block it encounters to determine what in-
strumentation it needs to insert. The callback can use a
rich JIFL API to examine the basic block instructions and
decide whether to apply any instrumentation; this is dis-
cussed in detail in Section 5. In this particular example,
all basic blocks are instrumented with a call to add_count,
with the address of a global counter and the size of the basic
block passed as parameters.

When the plugin is stopped, it directs JIFL to stop exe-
cuting clone through the code cache, and simply prints the
counter to the console.

3.3 Gaining and Releasing Control

To execute a system call through the JIFL runtime en-
gine, the JIFL dispatcher must gain control before any of
the system code is executed. JIFL achieves this by patching



the system call table to redirect execution to itself. Be-
cause JIFL has no way of knowing which of the table entries
was followed to get to it, JIFL overwrites the table entry of
any desired system calls with the address of a dynamically-
generated entry stub; each stub has the true system call ad-
dress hard-coded so it can be passed to the dispatcher. The
stubs also increment the usage count of the instrumentation
plugin module to prevent the plugin and JIFL modules from
being unloaded while they are in use. Finally, the stubs call
any system-call level instrumentation.

JIFL redirects control out of the code cache back to the
original operating system code in two places: at the end of
a system call, and at any calls to schedule(). The second
is required to prevent JIFL from executing code after a con-
text switch. JIFL must ensure that control is returned to
it once the current thread is scheduled again. To achieve
this, the JIT rewrites all calls to schedule (), with jumps to
jifl_schedule(), which saves the return address in a hash
table (which can be looked up by the current task pointer)
before calling schedule(). Upon returning, it finds the re-
turn address in the hash table and calls the dispatcher. For
system call exits, and calls to schedule() that do not return
(such as the final one in sys_exit()) JIFL inserts code to
decrement the plugin module’s reference counter.

3.4 The Dispatcher

The dispatcher is responsible for saving and restoring the
system call’s register and condition code state, as well as
locating (via a hash table) and redirecting control to the
code cache version of the next basic block to be executed.
If the basic block does not exist in the code cache, the JIT
compiler is invoked to insert it there. Because some of these
tasks are low level, parts of the dispatcher are written in
assembly.

The operation of the dispatcher, and its interaction with
the JIT compiler, are illustrated in detail in Figure 4. To
understand the figure, follow the numbered steps in parts B
and C noting that circled steps have corresponding arrows
showing either flow of control (solid arrows) static control
flow (dashed arrows) or data movement (thick solid arrows).
The following section expands on these steps.

3.5 The JIT Compiler

The JIT compiler copies the system call’s machine code
into the code cache, while instrumenting it as specified by
the JIFL plugin. JIT compilation occurs on a basic block
level to ensure that only executed code is copied into the
code cache, thus keeping the cache as small as possible. This
is important because kernel virtual memory is often limited
(unlike for user-space JIT systems).

Note that JIFL does not perform static analysis to obtain
the boundaries of basic blocks. OS machine code contains
many indirect branches, preventing accurate static analysis.
Instead, the JIT operates on dynamic basic blocks, which
are sections of code that contain exactly one control-flow
instruction positioned at the end of the section. This is
different from the typical definition of a basic block, where
branch targets define a new basic block, allowing some basic
blocks to end with a non-control-flow instruction. If, while
compiling a basic block, JIFL discovers a branch instruction
with a target pointing into the middle of an already com-
piled basic block, a new dynamic basic block is created by
copying the targeted instruction and those below it. This

approach simplifies analysis and instrumentation at the cost
of some duplication in the code cache; user space JIT instru-
mentation tools use a similar strategy [15].

When compiling a basic block, all but the final control
instructions are simply copied into the code cache version.
Direct branches, such as the x86 jcc, loopcc, and jmp in-
structions, are modified so that all control flow is redirected
back to the dispatcher. Call instructions are converted to
push and jmp instructions. To preserve the contents of the
stack, the original non-code cache return address is pushed
to the stack. This serves two purposes. First, it enables
JIFL to detach itself at any time (in the event of an error)
by returning control to the original non-instrumented code.
Second, it ensures that any code that depends on the value
of this return address will continue to function correctly. For
example, call instructions can be used to push the value of
the program counter to the stack so that it can be read. Any
code depending on this method for retrieving the contents
of the program counter will continue to function correctly
since the original return address is still pushed to the stack.
Indirect jmp and call instructions are modified in a similar
fashion to their direct counterparts, however the address of
the next basic block passed to the dispatcher is no longer a
constant but rather calculated at runtime. Return instruc-
tions are handled like indirect jumps. Their branch targets
are also runtime dependent and are obtained by popping the
return address off of the stack.

As an optimization, the JIT attempts to link compiled
basic blocks directly whenever possible. This is achieved by
first checking if the branch or fall-through target of the con-
trol instruction is already in the code cache. If so, a jmp
instruction which jumps to this basic block is inserted into
the stub code. This can be seen in Step 13 of Figure 4.
The JIT also patches all basic blocks in the code cache that
have branch/fall-through targets pointing to the current ba-
sic block being compiled so that their subsequent invocations
also avoid the dispatcher. Since the branch target of indi-
rect calls, jumps, and returns is not known at JIT compile
time, basic blocks ending with such instructions cannot be
linked as easily. We apply the same predicated-linking tech-
nique described by Luk et al.[15] to link common indirect
targets. A chain of comparison stub code is built incremen-
tally at runtime. Each node in the chain checks the target
address of the indirect branch instruction to a value seen
in the past. If the comparison succeeds, the code jumps to
the instrumented version of the target, otherwise, it jumps
to the next node. If all comparisons fail, the dispatcher is
called to perform a hash table lookup on the address. The
dispatcher also inserts a new node in the chain for this ad-
dress until a maximum chain size is reached.

While performing compilation, the JIT also adds any de-
sired instrumentation. Since the compiled dynamic basic
block will only be executed from the start, adding instru-
mentation is essentially as easy as inserting call instructions
anywhere in the basic block. However, instrumentation rou-
tines may modify the state of the processor, and therefore,
instructions that save and restore register and condition
code states have to be inserted as well. The JIT performs
register and eflags (x86’s condition code flags) liveness anal-
ysis to reduce the number of these instructions that need to
be inserted. Further, if the instrumentation routine is small
enough, the JIT will attempt to inline it into the basic block.
The following sections describe these optimizations in detail.
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and code cache BB2.

JIFL Core

Dispatcher

Check if next basic block

is in code cache; it's not,
so invoke JIT for address
0xc0000BB2

Jump into code cache

JIT Compiler
@Add user instrumentation.

Add original basic block

and patch any instructions

which need to be modified.
13. Patch CC_BB1 branch to go
straight to CC_BB2.

push %ebp
push %edi

sub $10, %edx

nop

movl $0x04, %eax

: mov OxcOOOOBB3,next_bb
jmp DISPATCHER

addl $4, counter_ low
adcl $0, counter hig

push %ebp BB2
push %edi
movl $0x04, %eax

mov $0xcOO0OBB3 b

,next_
imp DISPATCHER ——— |

(15) Like before, the final instruction
of the new basic block (BB2)
causes the dispatcher to take
control after BB2 finishes
executing. The process repeats
until program termination or
instrumentation is removed.

User Instrumentation

Again, notice that the number of
instructions in BB2 is inlined into
the instrumentation code directly.

Replaced with the instructions below to
save the branch target into next_bb, which
the dispatcher will use to invoke the JIT
compiler. Finally, jump back into the
dispatcher.

@ counter_low
$T\ counter_high

Figure 4: A detailed look at JIFL instrumentation in action. The numbered text describes the sequence of
tasks performed by JIFL. Solid arrows depict the flow of control, while dashed lines show static control flow.
Thick arrows represent data copying. Steps with circled numbers next to their text also have a matching
circled number on the arrow corresponding to the step. The instrumentation inserted is the add_count function
shown in Figure 3 after inlining.



void inc_count (long long *counter_ptr)
{
(*counter_ptr)++;

}

Figure 5: Example 64-bit increment function

movl 4(%hesp) , heax
addl $0x01, (%eax)
adcl $0x00, 4(%eax)
ret

Figure 6: gcc-generated assembly code for Fig. 5

3.5.1 Register and Eflags Liveness Analysis

To eliminate redundant state saving instructions, liveness
analysis is performed on the instrumentation routine and
original OS code to determine the minimum set of condi-
tion code flags (eflags) and registers that need to be saved.
Liveness analysis proceeds by disassembling instructions fol-
lowing the desired position of instrumentation and checking
whether registers or eflags are overwritten (i.e., killed) be-
fore being used as input. Those that are used before being
killed are live, and are considered vulnerable if the instru-
mentation modifies them. If a direct control instruction is
encountered, its target basic block is analyzed in the same
fashion. Repeated analysis of the same basic block is avoided
by entering the address of an already-analyzed basic block
in a dedicated hash table. Indirect control instructions are
treated conservatively and assumed to lead to a basic block
that uses all registers and eflags. The set of vulnerable reg-
isters (including the eflags register) must be saved before,
and restored after, the instrumentation routine.

When performing instrumentation with basic block gran-
ularity, the JIT is free to insert instrumentation anywhere
in the basic block. In this case, the JIT will use the liveness
analysis results to find the position where the least amount
of state needs to be saved.

3.5.2 Instrumentation Inlining

JIFL achieves a large portion of its performance by inlin-
ing small instrumentation routines directly into the dupli-
cated operating system code. During inlining, JIFL can also
specialize the instrumentation for any parameters that will
not change at runtime. For example, when instrumenting
the direction of individual branches, the per branch counter
address passed to an instrumentation routine (such as the
one shown in Figures 5 and 6) will remain constant for all
invocations of each branch and can therefore be propagated
into the inlined routine.

To achieve these optimizations, standard compiler opti-
mizations such as constant propagation, constant folding,
copy propagation and dead-code elimination are also ap-
plied. To reduce the complexity of the compiler code, we
take the approach of Pin by using architecture-specific op-
timizations that operate directly on machine code. This
is in contrast to the traditional approach of converting all
machine code into an architecture-independent intermedi-
ate language, optimizing, and converting back. Such an ap-
proach is taken by Valgrind; however, we believe that the
added complexity and high performance cost is not suitable
in kernel space. Furthermore, Pin demonstrates that using
their approach, a fair amount of the JIT source code can
remain architecture-independent [15].

addl $0x01, 0xCC123400(,0)
adcl $0x00, 0xCC123404(,0)

Figure 7: Fully specialized version of Figure 6 ready
for inlining; the address of the counter is now an im-
mediate operand and no longer passed on the stack.

JIFL starts inlining by placing all instrumentation in-
structions into a linked list so that they can be better ma-
nipulated. Next, it generates the static control flow graph; if
any indirect jumps are encountered, inlining is aborted since
JIFL cannot determine the targets of these jumps. All mowve
instructions which read the constant stack parameters are
converted into moves that read their immediate operands
instead. While the compiler can create many other instruc-
tions that access the parameters directly, we found that most
parameters have to be dereferenced and therefore need to be
moved into a register before use. We are currently working
on handling all possible accesses to the parameters. If all
accesses to a parameter are removed, the parameter is also
removed and all stack accesses are modified to account for
the change.

Next, copy propagation is performed to eliminate any
needless moves. Dead-code elimination is used to remove the
remaining copies if all references to the copied register have
been propagated out. Since we currently lack a data-flow
solver, these two steps are only performed if the instrumen-
tation routine is composed of a single basic block. Global
copy propagation and dead-code elimination are planned for
the future.

Finally, the specialized routine is laid out as a continuous
sequence of instructions in memory. Since the sizes of ba-
sic blocks most likely will have changed, special care must
be taken to patch up the relative branch target offsets of
control instructions. Return instructions must also be ei-
ther removed, or converted to relative jumps that point to
the end of the inlined code. The resulting code is cached so
that it can be reused if subsequent instrumentation inlining
needs to be performed for the same instrumentation routine
with the same parameter values. Figure 7 shows the final
effect of our specialization passes on the code of Figure 6.

3.6 Memory Allocator

JIFL often needs to allocate dynamic memory while per-
forming JIT compilation or analyzing code. Because Linux’s
memory allocators are not reentrant, JIFL must avoid using
them as it might be operating on behalf of a thread cur-
rently executing its own memory allocation request. Doing
so could result in deadlock or a corrupt system state. In-
stead, JIFL preallocates and manages its own memory with
a custom memory allocator. We found that a simple, slightly
optimized, implicit next fit memory allocator was sufficient
for our needs. JIFL plugins must also use this memory al-
locator within their own routines.

If at anytime JIFL becomes low on preallocated mem-
ory, it sets a flag to flush its code cache and hash tables
to free up more memory the next time the dispatcher is
called. In the unlikely event that the heap is filled before
that time, JIFL recovers gracefully by restoring the current
thread’s program counter to the original operating system
code and letting it finish the system call without instru-
mentation. JIFL performs the flush the next time a system
call is entered. Once the code cache is flushed, JIFL must



re-JIT and instrument all executed basic blocks again. We
have found that a modest amount of memory (5 megabytes
per processor) is sufficient to keep the occurrence of flushing
low.

3.7 SMP Considerations

JIFL runs efficiently on SMP kernels. Each processor
maintains its own private code cache and heap. Despite
the additional memory required, private code caches are de-
sirable because they enable the JIT to specialize instrumen-
tation per processor when performing inlining, and almost
entirely avoid locks. Each processor also requires a private
dispatcher, so that it can save state to global memory with-
out needing to check what processor it is running on. There-
fore, the generated system call entry stubs must perform a
CPU check to determine which dispatcher to jump to.

Calls to schedule() require additional handling on SMP
kernels because the process can be migrated to a new pro-
cessor while sleeping. Therefore, when a system call wakes
up and returns to jifl_schedule(), JIFL checks which pro-
cessor it is executing on before calling the appropriate dis-
patcher. In addition, the hash table with return addresses
must be protected by a lock.

4. EVALUATION

This section presents performance results for JIFL, com-
paring our prototype to Kprobes, the current dynamic in-
strumentation tool of choice for the Linux kernel. We eval-
uate both micro and macro performance by using the LM-
bench [16] benchmark suite and by testing the performance
of an Apache 2 web server running with our instrumented
kernel. In each experiment, we applied instrumentation to
every system call in the kernel.

Our testbed consists of a 4-way Intel Pentium 4 Xeon (2.8
GHz) SMP equipped with 16GB of Memory and L1, L2, and
L3 cache sizes of 8KB, 512KB, and 2MB, respectively. The
base OS distribution is Debian testing with Linux 2.6.17.13.
This version of the kernel contains the most recent version
of Kprobes which includes a recent booster patch that im-
proves probe execution time by up to three times on certain
instructions'. In addition, we increased the number of buck-
ets in the Kprobes probe hash-table from the default of 64 to
1M, to reduce the number of collisions when inserting large
numbers of probes. Finally, we compiled the kernel without
debugging support to eliminate the additional overhead in-
curred by the debugger, which shares the breakpoint trap
handler with Kprobes.

4.1 Instrumentation

To evaluate the relative performance of JIFL and Kprobes,
we use three types of instrumentation, each representing a
different instrumentation granularity ranging from coarse to
fine-grained. We also show the overhead of executing system
calls through the JIFL runtime with no instrumentation.

As an example of coarse-grained instrumentation, we use
system call monitoring, in which the goal is to count how
many times a system call is invoked (per CPU). For each
system call, our JIFL plugin specifies a system call entry
callback containing the counter increment code, thus forcing

'Regrettably, we were forced to revert back to Linux
2.6.16.29 for the Kprobes basic block counting runs due to
instabilities when inserting large numbers of probe points.

all system calls to run through the code cache. This callback
is slightly more expensive than regular instrumentation as
we currently do not attempt to perform inlining or liveness
analysis on it. For Kprobes, a single probe that increments
a counter at the entry of each system call is sufficient.

To evaluate medium-grained instrumentation we use call
tracing, in which the sequence of function calls executed
during a system call for a particular CPU is recorded. We
describe our call tracing plugin in Section 5.1. The call trace
is stored in a memory buffer and can be printed at the end of
the system call. For Kprobes, call tracing is potentially te-
dious to implement, because there is no obvious automated
way to collect the appropriate probe point addresses. We
wrote a simple JIFL plugin that stores and prints out the
addresses of all functions called after running our bench-
mark. We use these probe addresses in our Kprobes call
tracing implementation.

For fine-grained instrumentation, we use basic block count-
ing, in which we count the number of dynamic basic blocks
executed by each system call. Using JIFL, we specify a ba-
sic block level callback that inserts our instrumentation into
each basic block. The instrumentation simply increments a
per system call and per CPU counter. As with call tracing,
there is no clear way to find the appropriate probe points
for counting basic blocks with Kprobes. We employ a simi-
lar technique as before, using JIFL to obtain the addresses
of all control flow instructions typically executed when run-
ning our benchmark. While the applications for basic block
counting may be limited, we found that performance is com-
parable to other more interesting instrumentations (such as
the instruction counting example in Figure 3), which are not
easily implementable with probes.

Finally, we include the performance of executing system
calls through JIFL, with no instrumentation applied. These
numbers represent the upfront cost that must be incurred
when executing through our runtime system. It is important
to remember that this will only be the case for system calls
that are actively being instrumented. When no instrumen-
tation is enabled, JIFL introduces no performance penalty.

4.2 Effect on System Call Performance

For our micro benchmark, we ran the LMbench 3.0 bench-
mark suite with each of our instrumentations. All tests are
averaged across 3 runs in addition to LMbench’s internal av-
eraging. These tests show JIFL’s performance under steady
state, i.e. all code is executed from the code cache and the
JIT compiler is no longer invoked, since LMbench performs
its own warm-up cycles [16].

Figure 8 displays the execution times of a number of key
system calls, normalized by the uninstrumented case and
displayed on a logarithmic scale. The first bar shows the
overhead of running the system call code through JIFL’s
code cache without any instrumentation. The majority of
this overhead can be attributed to the original-to-code-cache
address translation that occurs for every indirect call, indi-
rect jump, and return instruction.

The remaining bars compare the performance of JIFL
with that of Kprobes for the three types of instrumentation:
system call monitoring, function call tracing and basic block
counting. Even when simply monitoring system calls, JIFL
is faster than Kprobes for three of the microbenchmarks. In
other cases, the overhead of a single probe at the entry to
the system call is less than the overhead of running from the
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code cache. On average, the slowdown due to Kprobes, even
for very coarse-grained monitoring, is only 0.07 less than the
slowdown due to JIFL. When applying finer-grained instru-
mentation JIFL dramatically outperforms Kprobes. For call
tracing, JIFL’s slowdown is almost an order of magnitude
less than that of Kprobes, on average; the disparity grows to
close to two orders of magnitude on average for basic block
counting. The high cost of the trap and address lookup for
each instrumentation point makes probe-based instrumen-

tation techniques very inefficient on the variable-length x86 0+
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In Figure 9, we present the effects of liveness analysis and
instrumentation inlining on the performance of JIFL. Re-
sults are again normalized to the uninstrumented case. We
can see that the optimizations yield substantial gains, re-
ducing the slowdown due to instrumentation by more than
a factor of 4 in the best case, and a factor of 2.6 on aver-
age. It is interesting to note that liveness analysis accounts
for most of this improvement, which can be implemented

Figure 10: LMbench system call latencies when
flushing the code cache after every system call.

Finally, Figure 10 gives a pessimistic estimate of JIFL’s
JIT cost obtained by flushing the code cache between sys-

for probe-based instrumentation on fixed-length instruction
set architectures. However, the further gains seen by instru-
mentation inlining (reducing slowdown by nearly a factor of
2 in the best case, and a factor of 1.3 on average) cannot
be achieved with probe-based approaches on either fixed or
variable length instruction set architectures.

tem call executions. Therefore, it includes the cost of free-
ing all associated data structures in the heap, as well as the
added cost of allocating memory in a fragmented heap on
subsequent runs. While the slowdowns are substantial, JIT
overhead is typically a one-time cost which can be amortized
over a large number of invocations of the instrumented calls.
In the following section, we consider the effect of JIFL on
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Figure 11: ApacheBench2 throughput comparison.
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a macrobenchmark, which includes JIT compilation and in-
strumentation overhead in a more realistic setting.

4.3 Effect on Application Performance

We used the Apache 2.0 web server and the ApacheBench2
benchmarking tool to test macro performance. We exe-
cuted ApacheBench on a single uninstrumented client ma-
chine connected to the test machine via a gigabit Ethernet
connection, with a concurrency level of 1000. Under these
conditions we found that Apache spent roughly 25% of its
CPU time in kernel space. We ran the benchmark for 500
thousand requests®. This number was intentionally kept low
so as to loosely include JIFL’s JIT overhead.

Figures 11 and 12 present the Apache throughput and
response time results when running with different types of
kernel instrumentation. Results are normalized by the per-
formance with an uninstrumented kernel. The trends appear
to be similar in both graphs. JIFL incurs a performance
cost of approximately 2% when running with no instrumen-
tation due to JIT overhead and cost of executing from the
code cache. As noted earlier, this result is included to illus-
trate the cost of the JIFL framework—if no instrumentation
is wanted JIFL would be disabled, incurring no overhead.
The additional cost of applying either system call moni-
toring or call tracing is marginal (5%), while basic block
block counting instrumentation adds a 17% penalty. For
system call monitoring, Kprobes outperforms JIFL because
Kprobes has no constant overhead. However, with call trac-
ing and basic block counting, Kprobes incurs a one order
of magnitude degradation in performance. We believe this
level of degradation would be unacceptable for most produc-
tion systems.

Finally, in Figure 13 we show the effect of varying the
amount of code cache and heap memory available to JIFL,
on Apache’s throughput. JIFL performs consistently until
it has less than 3 MB per processor. Subsequently, the cost
of performing code cache flushes is reasonable until 2 MB.

S. EXAMPLE PLUGINS

Instrumenting system calls with JIFL is straightforward,
as illustrated by the examples in this section. Users sim-
ply create a C source file that implements the plugin_init,
plugin_exit, plugin_start and plugin_stop functions and
relevant callbacks. In plugin_init, the plugin specifies call-

2Unfortunately, we had to reduce this number to 10 thou-
sand when running the Kprobes basic block counting exper-
iment to prevent ApacheBench from timing out.
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backs for “interesting” events, such as discovering a new ba-
sic block. Typically the callback analyzes the basic block
it is passed to determine whether or where to apply in-
strumentation. By appropriately defining these functions,
instrumentation can be placed before or after instructions,
basic blocks, routines, or system calls.

In addition, the JIFL build system takes care of compiling
the code into a kernel module to simplify development. All
code needed to interface with the user space startup tool is
included in the jifl.h header file, allowing the user to focus
on their plugin rather than mundane details.

What follows is a number of examples illustrating how
easy it is to use the JIFL API to build plugins. These plu-
gins also show useful applications of fine-grained operating
system instrumentation. For clarity, we present the non-
SMP versions of the plugins. When writing instrumenta-
tion for an SMP kernel, all global data structures must be
privatized.

5.1 Call Tracing

Call tracing is a popular method for debugging, profiling
and coverage testing. The JIFL API allows construction of
a call tracing plugin. Example code to accomplish this is
listed in Figure 14. The function routine_inst () is invoked
when a new routine is encountered by the JIT; here, every
routine is unconditionally instrumented with store_call()
which stores the address of the routine into a queue. At the
exit of the system call, the plugin looks up the names of the
functions starting at the saved addresses, and prints them.



void store_call(jifl_queue_t *queue ,
routine_t* routine) {
jifl_enqueue (queue, routine);

}

// Called for every newly discovered routine
void routine_inst (routine_t *routine, void xarg) {

// Current system call number is passed
// to us by "arg".
int syscall = (int) arg;

routine_insert_call (routine, store_call,
ARG_VOID_PTR, &queues([syscalll,
ARG_VOID_PTR, routine,
ARG_END);
}

// Invoked wupon syscall exit (not performed when
// benchmarking)
void syscall_exit(int return_arg, voidx arg) {

// Current system call number is passed
// to us by "arg".

int syscall = (int) arg;

routine_t* r;

printk("call trace for process %d\n",
current ->pid);

while (jifl_dequeue (&queues[syscalll, &r)) {
char name [MAX_NAME_SIZE];
routine_name (r, name, MAX_NAME_SIZE);
printk ("%s\n", name);

Figure 14: Plugin code to print out a call trace

5.2 Checking Branch Hints

Branch hint prefixes are commonly used throughout the
Linux source code to improve performance when the likely
direction of a branch is known to the programmer. In ad-
dition, a compiler may try to infer the probable direction
of a branch and insert a hint. However, incorrectly hinted
branches can lead to performance degradation. Figure 15
presents plugin code that monitors the outcome of hinted
branches on a per system call level. The code can be used
to monitor the accuracy of branch hints, within the context
of each system call. It can be easily extended to monitor
individual branches.

In Figure 15, the basic block level callback analyzes each
basic block to determine whether it ends with a hinted branch.
If so, it inserts two calls to the increment instrumentation
function specifying the address of two counters based on the
branch hint direction. The first call (to ins_insert_bt_call)
inserts the instrumentation in the branch-taken case. JIFL
inserts branch-taken instrumentation by modifying the tar-
get of the branch to point to the instrumentation, which it
places at the end of the basic block preceding a jump to the
actual target. The second call to ins_insert_bnt_call sim-
ply tells JIFL to insert the instrumentation after the branch.

This type of instrumentation is difficult with probe-based
instrumentation because there is no single instruction where
a programmer can insert a probe to directly determine the
outcome of a desired branch. Instead, he must insert probes
at both the branch target and fall-through instructions,
which might also be reachable via a different code sequence.

We tested this plugin while running our Apache web server
benchmark. The plugin detected 33 system calls which ex-
ecuted hinted branches, and instrumented a total of 186

long long correct[NR_syscalls];
long long incorrect[NR_syscalls];

void increment (long long *counter_ptr) {
(*counter_ptr)++;

}

// Called for every newly discovered BB
void bb_inst(bb_t *bb, void x*arg) {

// Current system call number is passed
// to us by "arg".
int syscall = (int) arg;

// Branches can only be located at
// the end of a basic block.

ins_t *last = ins_last(bb);
if (ins_type(last) != ins_jcc ||
'ins_branch_hint (last))
return;

// The instrumentation depends on the
// hint direction
if (ins_bnt_prefix(last)) {
// Insert branch-taken instrumentation
ins_insert_bt_call(last, increment,
ARG_VOID_PTR, &incorrect[syscall],
ARG_END);

// Do the same for branch-not-taken

ins_insert_bnt_call(last, increment,
ARG_VOID_PTR, &correctl[syscalll,
ARG_END);

} else {

// Insert branch-taken instrumentation

ins_insert_bt_call(last, increment,
ARG_VOID_PTR, &correct[syscalll,
ARG_END);

// Do the same for branch-not-taken

ins_insert_bnt_call(last, increment,
ARG_VOID_PTR, &incorrect[syscall],
ARG_END) ;

Figure 15: Example plugin for verifying branch hint
correctness. Note: the code for plugin_stop to print
out the correct/incorrect hint counts is omitted.

hinted branches. We found that out of the 33 system calls,
10 had misprediction rates that were greater than 50%.
Of these, open, close, waitpid, stat64, and lstat64 per-
formed particularly poorly with misprediction rates ranging
from 75-99%, while accounting for over 30% of all hinted
branches executed.

We used a second plugin to examine individual hinted
branches within the context of the five poorly performing
system calls. We were able to identify the four branches
with the greatest contribution to the high misprediction
rate. Using addr2line, we were able to map the address
of these branches to their locations within the kernel source
code. Interestingly, we found that all of these branches were
hinted automatically by the compiler, and not by a program-
mer. We can override gcc’s incorrect decision by specifying
our own hint. Because JIFL can specify different instru-
mentation per system call, we were also able to observe the
effect of the current system call context on the mispredic-
tion rate of individual branches. For example, we found
that a branch in the __link path walk() function, would
always be predicted incorrectly when executing the stat64
system call, but correctly otherwise. Such branches should



mov counter, %eax

1: mov heax, %edx
add $0x1, %edx
lock cmpxchg %edx, counter
jne

Figure 16: Atomic increment assembly code

long long contention_count;

void increment(long long *counter_ptr) {
(xcounter_ptr)++;

}

// Called for every newly discovered BB
void bb_inst(bb_t *bb, void *arg) {

ins_t *last = ins_last(bb);
ins_t *second_last = ins_prev(last);
if (ins_type(last) == ins_jne &&
ins_type(second_last) == ins_cmpxchg &&
ins_lock_prefix(second_last))
{
// Insert branch-taken instrumentation
ins_insert_bt_call(last, increment,
ARG_VOID_PTR, &contention_count,
ARG_END);
}
}
Figure 17: Example of instrumenting the code

around a cmpxchg instruction

obviously not be hinted as they would benefit from a global
hardware branch predictor.

5.3 Monitoring Lock Contention

Monitoring lock contention is an often useful but difficult
task. In this section we present a plugin for monitoring
contention of atomic counter increments in the Linux ker-
nel. Figure 16 presents an example of x86 atomic fetch-and-
increment assembly code that could be used to implement a
ticket lock.® The code works by reading the current value of
the counter, incrementing it in a register, then attempting
an atomic exchange of the new counter value with the old
counter value held in memory. If the exchange fails, then the
new counter value is obtained from memory (where it must
have been modified by another processor) and the process
repeats, with the new value incremented and an exchange
attempted again.

Counting the number of times the atomic exchange fails
can give a good indication of contention. In this case, we
simply need to count the number of times that the jne
branch jumps backwards. Figure 17 presents a plugin that
searches for the atomic increment code and counts the num-
ber of times that this branch is taken.

The resulting code after instrumentation is presented in
Figure 18. Note that the JIT compiler inlined the instru-
mentation function and that the contention_count address
has been propagated into the code. The resulting low over-
head instrumentation is especially important for contention
monitoring where observation can often alter the original
behavior. This is likely not possible with Kprobes due to its
high monitoring overhead.

3This type of code sequence occurs in the Linux kernel.

mov counter, %eax
1: mov heax, hedx
add $0x1, %edx
lock cmpxchg %edx, counter
jne
jmp exit
2: add $1, O(contention_count)
adc $0, 4(contention_count)
jmp 1

exit:

Figure 18: Result of instrumentation

6. RELATED WORK
6.1 Pin

Pin [15] is a popular user space JIT instrumentation tool
from Intel. Pin injects itself into the address space of an
executing application, enabling it to take control. There-
after, Pin JIT compiles and applies instrumentation to the
application. Much of JIFL’s internals and its plugin API
are modelled after Pin.

Running in user space allows Pin to optimize aggressively.
For example, Pin instruments at a trace-level granularity to
improve opportunities for register re-allocation and reduce
JIT overhead, and uses function cloning to reduce the cost
of return instructions. Unfortunately, these optimizations
require too much memory for JIFL to use in the kernel.

6.2 Kernlnst

Kernlnst [25] is a dynamic instrumentation framework
designed for debugging, profiling, and application tuning.
Kernlnst was the first to implement probe-based dynamic
instrumentation in the kernel. Because it targeted the Ul-
traSparc RISC architecture, Kernlnst was able to safely im-
plement probes with branch instructions. Although their
paper only evaluates the UltraSparc implementation, Tam-
ches and Miller proposed trap instructions for redirecting
control on x86. The current code release includes an x86
implementation which uses this trap-based strategy.

Like JIFL, Kernlnst applied register (though not condi-
tion code) liveness analysis to reduce the number of state
saving instructions. However, unlike JIFL, Kernlnst can-
not insert instructions in existing code and therefore cannot
inline instrumentation to reduce overhead.

6.3 Kprobes

Kprobes [20] also uses the trap instruction methodology,
suggested by Kernlnst, for implementing probes on the x86
architecture. The project has been embraced by the open
source community and is now present in the main Linux
source tree.

Because execution is redirected to instrumentation rou-
tines by means of a trap and hash table lookup, instru-
mentation is heavyweight. To alleviate this, a patch called
Djprobes is currently under development, which allows over-
writing some addresses with a 5-byte jump instruction, en-
abling direct jumps to instrumentation code. However, there
are several complications surrounding preemptive kernels,
SMP support, and safety, which at the time of writing have
prevented Djprobes from being merged upstream. Kprobes
cannot use register liveness analysis (unlike Kernlnst and
JIFL) to reduce the cost of saving and restoring processor
state since the trap instruction has only one target, although
this limitation will not apply to Djprobes.



6.4 GILK

The GILK project [21] attempts to use static analysis of
OS code to determine locations that could be safely probed
with branch instructions on the x86 architecture. While this
approach is often accurate, it is never safe in the presence of
indirect instructions. Further, it cannot be used to overcome
the race conditions that arise from using branch instructions
on a variable-length ISA in a preemptable kernel.

6.5 DTrace

DTrace [7] is an instrumentation framework for the Solaris
operating system, designed for use with production systems.
DTrace makes it easy to monitor system resources, allowing
system administrators to quickly identify the causes of sys-
tem sluggishness, or to examine the otherwise unattainable
system resources used by software (e.g., the number of I/O
requests per second). DTrace is also able to dynamically
instrument both user-level and kernel-level code.

DTrace instrumentation works by inserting jump-based
trampolines on fixed-length RISC architectures, but uses the
same trap mechanism as Kernlnst or Kprobes on variable-
length ISAs. Anecdotally, DTrace runs quite fast on Sparc
architectures, however, we expect it would suffer similar
overheads as KProbes on x86. The jump-based implementa-
tion prevents instrumentation inlining, which can offer sig-
nificant speed advantages as demonstrated by JIFL.

Because DTrace is intended for use in production systems,
it guarantees that user instrumentation cannot cause addi-
tional system failures. User-supplied instrumentation code
is expressed in a C-like high-level control language which
enforces safety. While JIFL plugins are currently written in
C, it would be straightforward to add a scripting language
allowing verification in the same manner as DTrace.

6.6 SystemTap

The SystemTap project [22] is a joint effort by Red Hat,
IBM, Intel, and Hitachi to add an easy to use front end
to Kprobes with functionality similar to DTrace, including
the use of a scripting language. Instrumentation scripts can
make symbolic references to the kernel, user programs, or
included libraries (called “tapsets”). Scripts are compiled
into a kernel module and loaded to start the probes and
handlers. Although a stable version of SystemTap is not yet
released, some early adopters have found it useful. System-
Tap currently uses Kprobes for low-level instrumentation.

6.7 K42

K42, an object oriented research operating system [2], of-
fers two instrumentation strategies. The first strategy works
by modifying the target address of object invocations, allow-
ing coarse-grained instrumentation at method invocations.
The second strategy allows fine-grained instrumentation via
K42’s hot-swapping capability. With this approach, the user
directly modifies the relevant source code (for example, by
adding instrumentation), recompiles the module, and hot-
swaps it in place of the old module with no service dis-
ruption. K42’s instrumentation facilities offer high perfor-
mance, as instrumentation can be compiled into the code.
However, JIFL is more flexible by allowing decisions about
where to instrument to happen at run-time, and further-
more, allows the user to instrument cross-cutting concerns
where the item of interest occurs in many places (for exam-
ple all cmpxchg instructions); finding and manually instru-

menting all such code in the kernel would be prohibitively
time consuming.

6.8 QEMU

QEMU[4] is a multi-architecture full system emulator. It
uses dynamic binary translation, and is capable of translat-
ing from one architecture to another. When the host system
is the same architecture as the guest system (the machine
being emulated), QEMU uses a virtualization strategy which
allows most emulated code to run directly on the hardware
in a manner extremely similar to JIFL, with a demand pop-
ulated code cache, basic block linking, and more. QEMU
is a JIT for efficient emulation of a contained guest operat-
ing system, while JIFL is a JIT for efficient instrumentation
of the host operating system. While it is entirely possible
that instrumentation capabilities could be added to QEMU,
they are not currently available, and furthermore, are not
intended for the host operating system. Thus, while QEMU
and JIFL are quite similar, they fulfill different needs.

7. FUTURE WORK

There are two avenues of pursuit for improving JIFL.
First, the implementation discussed in this paper is not
preemption-safe. Preemption poses a number of concerns
when running on SMP kernels as threads executing within
a private code cache can be migrated to a different proces-
sor without switching code caches. This presents a problem
for both the private dispatchers and for any per processor
inlined user instrumentation. It is possible to correct the
issue by modifying the dispatcher, and by forcing users to
write preemption safe instrumentation; however, doing so
may inconvenience the user and may potentially degrade
performance. Another option would be to disable preemp-
tion while executing within the code cache, thus maintaining
current performance and usability, while still allowing JIFL
to be attached to a live preemptable kernel. Unfortunately,
JIFL would not be able to observe the true behaviour of the
uninstrumented kernel. Second, JIFL can be extended to
instrument kernel threads, which do not make use of system
calls. Gaining control of such threads can be achieved by
modifying their program counter while they sleep, or with a
one-time executed dynamic instrumentation probe.

Finally, we would like to quantify the performance benefits
that can be obtained by using the results gathered with our
various plugins. For example, it would be interesting to see
the performance impact of fixing the incorrect branch hints
detected by our example instrumentation.

8. CONCLUSION

JIT instrumentation provides an efficient, fine-grained ker-
nel instrumentation framework for the Intel x86 architec-
ture. We have demonstrated the viability of this approach
with a prototype for the Linux kernel, called JIFL. Exper-
imental results show JIFL outperforms the leading alterna-
tive framework for Linux (Kprobes) by nearly a factor of
50 when applied to the medium-grained task of extracting
commonly used debugging information (call traces). For
fine-grained tasks, JIFL outperforms Kprobes by one to two
orders of magnitude. The simplicity and versatility of JIFL,
as illustrated by our example plugins, make it a powerful
tool for kernel analysis.
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