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ABSTRACT
We present three new reader-writer lock algorithms that scale under
high read-only contention. Many previous reader-writer locks suf-
fer significant degradation when many readers attempt to acquire
the lock concurrently, even though they are all allowed to hold the
lock at the same time. In contrast, our locks scale almost perfectly
when there is only read contention on a 4-chip system with a total
of 256 hardware threads.

Two of the algorithms extend the MCS queue mutex to provide
reader-writer synchronization with low overhead, and can be used
when busy-waiting synchronization is appropriate. The third algo-
rithm is an improvement on a production-quality reader-writer lock
used in the SolarisTM kernel, which provides robust priority and
flexible fairness guarantees.

A key tool we developed to implement our reader-writer locks
is the closable scalable nonzero indicator (C-SNZI), a variation on
the SNZI object. C-SNZI objects allow us to significantly reduce
the contention among reads when many readers try to acquire the
lock concurrently, but keeps the acquisition overhead small in the
absence of read contention. We present an algorithm for C-SNZI
that achieves this goal, and show how it can be used by each of our
lock algorithms to provide scalable reader-writer locks with differ-
ent fairness guarantees.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel Programming; D.4.1 [Operating Systems]: Process Man-
agement – Synchronization; E.1 [Data Structures]: Distributed
Data Structures

General Terms
Algorithms, Performance

Keywords
reader-writer lock, scalable, synchronization, SNZI.

1. INTRODUCTION
Reader-writer locks relax the constraints of mutual exclusion

(mutex) locks by allowing multiple threads to access a shared ob-
ject concurrently as long as none of them writes to it, increas-
ing the potential for concurrency when read-only parallelism ex-
ists [3]. However, realizing this parallelism is particularly chal-
lenging with today’s reader-writer locks, which employ serializing
updates to central data structures to monitor the number of reader
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threads acquiring the lock. This serialization can prevent reader-
writer locks from scaling linearly with threads, even under read-
only workloads. As a consequence, many experts are wary of using
reader-writer locks and caution programmers to think twice before
using them [2].

While plenty of work has been aimed at improving the perfor-
mance of reader-writer locks, much of it has focused on reduc-
ing interconnect contention caused by busy-waiting on central data
structures rather than eliminating the nonscalable serializing ac-
cesses to the central data structures. For example, Mellor-Crummey
and Scott extended their MCS queue-based mutex lock to support
reader-writer exclusion [12, 11]. The MCS lock reduces cache-
coherence traffic due to busy-waiting by having each thread spin
on a separate and local cache line, with waiting threads forming a
queue and each thread notifying its successor in the queue when it
releases the lock. In the extension, a reader is allowed to acquire the
lock if its predecessor is an active reader, and requires any reader
that acquires the lock to notify its successor (if any) if that succes-
sor is a waiting reader. In addition, the lock maintains a count of
the number of active readers and the next writer in the queue (if
any) so that when the last active reader releases the lock, it can no-
tify the writer to acquire the lock. Although this algorithm reduces
cache-coherence traffic when the lock is released, every thread still
updates the tail pointer when it acquires the lock, and every reader
updates the reader count both when it acquires the lock and when
it releases it. As a result, this algorithm does not scale well under
heavy read contention.

Krieger et al. [8] present a lock algorithm (we call it the KSUH
lock, following the convention of using the inventors’ initials to
name the lock) that eliminates the fields containing the reader count
and next writer. Instead, it maintains this information implicitly in
the queue, which is implemented using a doubly linked list so that
a reader releasing the lock can splice itself out of the queue even
if its predecessor and successor are still active readers. However,
the pointer to the tail of the queue is still updated by every thread,
whether reader or writer, and so is still a significant point of con-
tention.

In practice, locks based on busy waiting are used only under spe-
cial circumstances since they waste CPU resources and are suscep-
tible to priority inversion. As a result, many reader-writer locks
found in production code employ heavier-weight strategies that de-
schedule waiting threads, waking them up according to some policy
when the lock becomes available. For example, the SolarisTM ker-
nel uses a reader-writer lock [1] that maintains a queue of waiting
threads that have been put to sleep so that they can be woken up
when they are at the front of the queue as the lock is released. The
queue is protected by a mutex so that threads can be easily ordered
according to their priorities and read/write intentions and easily in-



herit priorities from others. A separate lockword is used to guar-
antee reader-writer exclusion and contains the number of readers
that are holding the lock and a flag indicating whether any writer
holds the lock (in which case no reader can hold the lock). Like the
tail pointer of the above-mentioned locks, this lockword becomes a
significant source of unnecessary contention, even under read-only
workloads, since it must be updated by every thread every time it
acquires and releases the lock.

To eliminate such contention, Hsieh and Weihl [7] propose trad-
ing writer throughput for reader throughput by having each thread
maintain a private mutex. Under this approach, a reader need only
acquire its private mutex to acquire the lock, while a writer must ac-
quire all of them. A similar approach is taken by Dice and Shavit [4]
for specialized locks used in their transactional memory system.
While this technique provides scalability for read-only workloads,
it is feasible only for low numbers of threads as the burden placed
on writers becomes excessive at large thread counts.

In this paper, we present three new reader-writer lock algorithms,
collectively called OLL locks (again after the inventors’ initials),
which eliminate updates to central shared data when acquired for
reading. To the best of our knowledge, these locks are the first to
scale almost perfectly to hundreds of threads under heavy read con-
tention, without trading the performance of write acquisitions. The
key observation behind these algorithms is that we do not need to
know the number of active readers holding the lock at any time,
but only whether there are any such readers. A similar observation
in different contexts led to the development of scalable nonzero
indicator (SNZI) objects, which allow threads to “arrive” and “de-
part” and to determine whether there is a “surplus” of arrivals (i.e.,
there have been more arrivals than departures). To support reader-
writer synchronization, we augment the SNZI interface to allow a
SNZI object to be “closed” so that no more arrivals may occur—
corresponding to a writer blocking readers—until the object is re-
opened. The resulting object, which we call a closable SNZI (C-
SNZI), is the key that allows each of the OLL locks to scale almost
perfectly under read-only contention. We describe C-SNZI in detail
in Section 2.

The three OLL locks provide different features and different per-
formance characteristics in the presence of writers. The first OLL
lock, called the General OLL (or GOLL) lock, is similar to the So-
laris kernel lock in that it allows a sophisticated queuing policy by
protecting the queue of waiting threads by a mutex lock. The other
two OLL locks follow Mellor-Crummey and Scott, and Krieger et
al., in extending MCS-style mutex queue locks to allow reader-
writer synchronization, but with restrictions on the queuing policy.
One implements a “fair” FIFO policy (FOLL lock), while the other
gives readers preference by allowing them to advance in front of
writers to join other waiting readers in the queue (ROLL lock). We
describe these locks in more detail in Sections 3 and 4. Finally,
we compare these algorithms with each other and with previous
reader-writer locks in Section 5 and conclude in Section 6.

2. CLOSABLE SNZI
A key tool in our reader-writer lock algorithms is a new abstract

data type we call the closable scalable nonzero indicator (C-SNZI,
pronounced “see snazzy”). As its name suggests, C-SNZI is a vari-
ant of SNZI [5]. A SNZI object supports three operations, Arrive,
Depart and Query, such that Query returns whether there is a sur-
plus of arrivals (i.e., whether there have been more Arrive than De-
part operations). Depart must not be invoked when there is no sur-
plus. A basic C-SNZI, specified in Figure 1, adds two operations,
Close and Open. Arrivals that occur while the C-SNZI is closed
“fail”: such Arrive operations return false and do not increase the

shared variables:
surplus: integer, initially 0
state: {OPEN, CLOSED}, initially OPEN

Open()
requires state = CLOSED ∧ surplus = 0
state← OPEN

Close(): boolean
if state = OPEN then

state← CLOSED
return (surplus = 0)

else
return false

Arrive(): boolean
if state = OPEN then

surplus← surplus + 1
return true

else
return false

Depart(): boolean
requires surplus > 0
surplus← surplus− 1
return ¬(surplus = 0 ∧ state = CLOSED)

Query(): (boolean, boolean)
return (surplus > 0, state = OPEN)

Figure 1: C-SNZI specification.

surplus. A Depart operation always succeeds (i.e., it always decre-
ments the surplus), and it returns true unless it decrements the sur-
plus to zero and the C-SNZI is closed (i.e., it is the “last departure”
from a closed C-SNZI). A Query operation returns both whether
there is a surplus and whether the C-SNZI is open. A C-SNZI is
initially open and Open may be invoked only when the C-SNZI is
closed and there is no surplus. Close may be invoked at any time; it
returns true if and only if the C-SNZI was open and its surplus was
(and remains) zero. Because arrivals on a closed C-SNZI fail, once
a closed C-SNZI has no surplus, its surplus remains zero until it is
opened.

As we show in this paper, C-SNZI is useful for implementing
reader-writer locks: to acquire and release the lock, readers use Ar-
rive and Depart respectively, whereas writers use Close and Open.

2.1 Variations
To implement the GOLL lock, we found it useful to extend the

C-SNZI interface slightly to provide variants to Open and Close.
The OpenWithArrivals operation opens a C-SNZI and simultane-
ously increases the surplus to an amount specified by a parameter
to the operation. It also takes a boolean flag that specifies whether
the C-SNZI should then be closed immediately afterward. Thus,
an OpenWithArrivals operation is equivalent to atomically execut-
ing Open, and then the specified number of Arrive operations, and
then, if specified, the Close operation. The CloseIfEmpty operation
is exactly like the Close operation except that it does not close the
C-SNZI if it has a surplus.

2.2 Implementation
C-SNZI is easy to implement with a counter and a boolean flag

that can be updated atomically: the counter maintains the surplus
and the boolean flag indicates whether the C-SNZI is open or closed.
However, in such an implementation, all Depart and non-failed Ar-
rive operations conflict with each other, and with every Query oper-
ation, inhibiting scalability. Such contention is unnecessary when



Arrive and Depart operations change the surplus from one nonzero
value to another.

The basic idea for implementing SNZI is to avoid much of this
contention by constructing a rooted tree of SNZI objects, where
each child is implemented using its parent [5, 9]: Arrive and Depart
operations on a child may invoke Arrive and/or Depart on its parent,
but only when the surplus at the child might change from zero to
nonzero, or vice versa, and in such a way that the root has a surplus
if and only if some node in the tree has a surplus. This property is
also maintained for every subtree of the tree.

With such a tree, threads may arrive and depart at any node of
the tree (“corresponding” arrivals and departures should occur on
the same node), and propagate upward as necessary to satisfy the
property above. Queries can be made directly at the root. Because
we require only that the surplus at the root of a subtree is nonzero if
and only if the surplus of any of the nodes in the subtree is nonzero,
a node with nonzero surplus need not propagate arrivals and depar-
tures to its parent, except for the “first arrival” and “last departure”,
which creates and eliminates the surplus.

The choice of the node to arrive at should be guided by the con-
tention on the SNZI object. When many threads are arriving and
departing concurrently, we can reduce contention by arriving and
departing at the leaves of the tree. In the absence of contention, ar-
riving and departing at the leaves is expensive because threads must
traverse and modify every node on the path from the leaf to the root,
so we arrive and depart directly at the root. In our implementation,
we adopt the simple policy of arriving at the root unless attempting
to do so has failed several times, or if there is already some surplus
due to arrivals at leaves. Note that we can avoid allocating the tree
(other than the root node) until it is needed, thus incurring the asso-
ciated space overhead only for those SNZI objects that are heavily
contended. Also, rather than remembering the node that a thread ar-
rives at within the SNZI object, it is convenient to return a pointer
to it from the Arrive operation, and pass this pointer when invok-
ing the Depart operation. (A failed Arrive operation returns a null
pointer.) This pointer should not be dereferenced or manipulated
outside the C-SNZI code, and to emphasize this, we encapsulate it
in a “ticket” data type.

Figure 2 presents pseudocode for the resulting C-SNZI algo-
rithm. The implementation is based on the algorithm of Lev et
al. [9], which is simpler than the original SNZI algorithm [5], and
has the important property that an Arrive operation that invokes Ar-
rive on the parent does not modify the child node before doing so.
Therefore, if an Arrive operation on the parent fails due to a closed
C-SNZI, no “cleanup” of the child is necessary. This property en-
ables us to extend the algorithm to support the Open and Close
functionality by simply adding a single bit to the root node indicat-
ing whether the C-SNZI object is open or closed. This extension
is mostly straightforward, with Depart, Query and most Arrive op-
erations linearized at the same points as in the underlying SNZI
algorithm, and the Open and Close operations linearized when the
new bit is modified. The only subtlety is that when a thread arrives
at a leaf of the tree, it may increment the surplus without accessing
the root if the surplus is already nonzero. In this case, it cannot
atomically determine that the C-SNZI object is open when it in-
crements the surplus. However, the thread checks that the C-SNZI
object is open before deciding to arrive at the leaf, so in this case,
we can linearize the Arrive operation to the point at which the thread
sees that the C-SNZI is open.

Lev et al. describe an additional optimization that is required to
reduce the contention on the root node of the SNZI tree that can
occur when multiple threads attempt to arrive at the SNZI when the
surplus is zero. For simplicity, we omit this optimization from the

pseudocode, but we use it in the implementation. This optimization
does not add any additional CompareAndSwap operations to any of
the C-SNZI operations.

3. GENERAL READER-WRITER LOCK
In this section, we introduce a general OLL reader-writer lock

(GOLL lock) that is modeled after the Solaris reader-writer lock,
which we first describe. Like the Solaris lock, it can be easily mod-
ified to provide different fairness guarantees.

3.1 Solaris Lock
The Solaris kernel lock enforces reader-writer exclusion using a

single central lockword and uses the Solaris turnstile mechanism
to queue up threads waiting on a contended lock. Turnstiles are
mutex-protected priority queues that control the order with which
threads are allowed to acquire a resource. The lockword is com-
posed of a count of active readers, a writeLocked bit, a writeWanted
bit, and a hasWaiters bit. The lock is acquired for reading when
the reader count is nonzero, and acquired for writing when the
writeLocked bit is set. In the absence of conflicting lock requests
(concurrent read/write or write/write lock requests), threads sim-
ply CompareAndSwap this lockword directly to acquire the lock by
incrementing the reader count or setting the writeLocked bit.

In the presence of conflicting lock requests, a thread wanting to
acquire the lock sets the hasWaiters bit (and the writeWanted bit if
it is a writer), and enqueues itself into the lock’s turnstile. Setting
the bits and enqueuing the thread must appear atomic so that any
thread put to sleep in the turnstile is guaranteed to be woken up
by a releasing thread. Thus, the thread acquires the turnstile mutex
before performing a CompareAndSwap operation on the lockword
to set the appropriate bits, and releases the mutex and restarts if the
CompareAndSwap fails.

When no threads are waiting, a thread releases the lock by using
CompareAndSwap to decrement the reader count or reset the write-
Locked bit as appropriate. If a thread is waiting on the lock (i.e.,
hasWaiters is set), the last thread about to release the lock does not
release the lock, and instead hands over ownership of the lock to the
thread(s) next in line to acquire it. In this way, there is no window
of opportunity for threads to acquire the lock after it has been re-
leased but before the next-in-line thread(s) is/are able to acquire it.
A thread handing over ownership to a writer simply sets the write-
Locked bit and wakes up the writer. When handing over the lock
to a group of waiting readers, the releasing thread sets the reader
counter to the number of readers in that group and wakes them up.
Thus, threads always own the lock upon awakening.

3.2 Design
Figure 3 presents the pseudocode for the GOLL lock. Rather

than using a central lockword, the GOLL lock uses a C-SNZI ob-
ject to track readers and writers in a scalable manner in the absence
of conflicting lock requests. In the presence of conflicting lock
requests, the lock orders waiting threads using a central mutex-
protected queue. Thus, the form of the GOLL lock follows that
of the Solaris lock, except for a few changes required to keep our
C-SNZI abstraction. Like the lockword in the Solaris lock, the state
of lock is determined by the state of the C-SNZI object. The lock
is free if the C-SNZI object is open with no surplus. The lock is
acquired for writing if the C-SNZI is closed and has no surplus. If
the surplus is nonzero, then the lock is acquired for reading whether
the C-SNZI is open or closed. The latter case signifies that a writer
is waiting on the lock.

A writer can acquire a free lock by calling CloseIfEmpty on the
C-SNZI object, which will write-lock the lock if the C-SNZI is



type QueryReturn = record // Type returned by Query
nonzero : boolean
open : boolean

type Ticket = record // Type returned by Arrive
node : *SnziNode/*SnziRootNode

type CSNZI = record
root : SnziRootNode // Root node in C-SNZI tree
leafs[] : SnziNode // Array of leaf nodes in C-SNZI tree

type SnziRootNode = record // Single CASable word
count : int
state : enum {OPEN, CLOSED}

type SnziNode = record
cnt : int // Initially 0
parent : *SnziNode/*SnziRootNode // Immutable pointer

// Checks whether the C-SNZI state is OPEN, and if so,
// increments the surplus of the C-SNZI by either directly
// arriving at the root node, or calling TreeArrive on one
// of the leaf nodes. Returns a ticket pointing to the node
// that was arrived at. If the state is CLOSED, makes no
// change and returns a ticket that contains no pointer.
procedure Arrive(csnzi: *CSNZI): Ticket

while true
old := csnzi->root
if old.state != OPEN then return Ticket(null)
if !ShouldArriveAtTree() then
new := old
new.count++
if CAS(&csnzi->root, old, new) then

return Ticket(&csnzi->root)
else
leaf := &csnzi->leafs[GetLeafForThread()]
if TreeArrive(leaf) then
return Ticket(leaf)

else
return Ticket(null)

end

// Decrements the C-SNZI surplus. Returns false iff the
// resulting state is CLOSED and the surplus is zero.
// Ticket must have been returned by an arrival. Must have
// received this ticket from Arrive more times than Depart
// has been called with the ticket. (Thus, the surplus
// must be greater than zero.)
procedure Depart(csnzi: *CSNZI, ticket: Ticket): boolean

return TreeDepart(ticket->node)
end

// Increments the C-SNZI surplus and returns true if the
// C-SNZI is open or has a surplus. Calls TreeArrive
// recursively on the node’s parent if needed.
// Otherwise, returns false without making any changes.
procedure TreeArrive(node: *SnziNode): boolean

arrivedAtParent := false
repeat

x := node->cnt
if x == 0 and !arrivedAtParent then
if TreeArrive(node->parent) then

arrivedAtParent := true
else

return false
until CAS(&node->cnt, x, x + 1)
if arrivedAtParent and x != 0 then
TreeDepart(node->parent)

return true
end

// Decrements the C-SNZI surplus, calling TreeDepart
// recursively on the node’s parent if needed. Returns
// false iff the resulting state of the C-SNZI is CLOSED
// and the surplus is zero. Otherwise, returns true.
procedure TreeDepart(node: *SnziNode): boolean

repeat
x := node->cnt

until CAS(&node->cnt, x, x - 1)
if x == 1 then

return TreeDepart(node->parent)
else
return true

end

// Base case for TreeArrive, when we reach the root node.
procedure TreeArrive(root: *SnziRootNode): boolean
repeat
old := *root
if old == SnziRootNode(0, CLOSED) then return false
new := SnziRootNode(old.count + 1, old.state)

until CAS(root, old, new)
return true

end

// Base case for TreeDepart, when we reach the root node.
procedure TreeDepart(root: *SnziRootNode): boolean
repeat
old := *root
new := SnziRootNode(old.count - 1, old.state)

until CAS(root, old, new)
return new != SnziRootNode(0, CLOSED)

end

// Opens a C-SNZI object. Requires C-SNZI state to be
// CLOSED and the surplus to be zero.
procedure Open(csnzi: *CSNZI)
csnzi->root := SnziRootNode(0, OPEN)

end

// Opens a C-SNZI object while atomically performing cnt
// arrivals. Requires C-SNZI state to be CLOSED and
// the surplus to be zero.
procedure OpenWithArrivals(csnzi: *CSNZI, cnt: int,

close: boolean)
if close then
csnzi->root := SnziRootNode(cnt, CLOSED)

else
csnzi->root := SnziRootNode(cnt, OPEN)

end

// Closes a C-SNZI object. Returns true iff the C-SNZI
// state changed from OPEN to CLOSED and the surplus is
// zero.
procedure Close(csnzi: *CSNZI): boolean
repeat
old := csnzi->root
if old.state != OPEN then return false
new := SnziRootNode(old.count, CLOSED)

until CAS(&csnzi->root, old, new)
return new == SnziRootNode(0, CLOSED)

end

// Closes a C-SNZI if its surplus is zero. Otherwise, does
// nothing. Returns true iff C-SNZI state changed from
// OPEN to CLOSED.
procedure CloseIfEmpty(csnzi: *CSNZI): boolean
repeat
old := csnzi->root
if old != SnziRootNode(0, OPEN) then return false
new := SnziRootNode(0, CLOSED)

until CAS(&csnzi->root, old, new)
return true

end

// Returns whether the C-SNZI has a nonzero surplus and
// whether the C-SNZI is open.
procedure Query(csnzi: *CSNZI): QueryReturn
root := csnzi->root
return QueryReturn(root.count > 0, root.state == OPEN)

end

// Returns whether the Arrive operation that returned
// the ticket succeeded.
procedure Arrived(t: Ticket): boolean
return t.node != null

end

// Constructs and returns a ticket that can be used to
// depart from the root node.
procedure DirectTicket(csnzi: *CSZNI): Ticket
return Ticket(&csnzi->root)

end

Figure 2: C-SNZI pseudocode.



type RWlock = record
csnzi : *CSNZI
queue : WaitQueue
metalock : Mutex

type Local = record
ticket : Ticket

type Waiters = record
kind : enum {READER, WRITER}
count : int
spin : bool
cv : ConditionVariable
lock : Mutex

procedure WriterLock(lock : *RWlock)
if CloseIfEmpty(lock->csnzi) then return
Lock(lock->metalock)
if Close(lock->csnzi) then
Unlock(lock->metalock)

else
waiter := Enqueue(lock->queue, WRITER)
Unlock(lock->metalock)
Wait(waiter)

end

procedure WriterUnlock(lock : *RWlock)
Lock(lock->metalock)
waiters := Dequeue(lock->queue)
if waiters == null then
Open(lock->csnzi)
Unlock(lock->metalock)

else
if waiters->kind == READER then
OpenWithArrivals(lock->csnzi, waiters->count,

lock->queue.numWriters != 0)
Unlock(lock->metalock)
Signal(waiters)

end

procedure ReaderLock(lock : *RWlock, local : *Local)
while true

local->ticket := Arrive(lock->csnzi)
if Arrived(local->ticket) then return
Lock(lock->metalock)
if Query(lock->csnzi).open then
Unlock(lock->metalock)
continue;

waiter := Enqueue(lock->queue, READER)
Unlock(lock->metalock)
// Thread releasing the lock will pre-arrive directly
// for us.
local->ticket := DirectTicket(&lock->csnzi)
Wait(waiter)
return

end

procedure ReaderUnlock(lock : *RWlock, local : *Local)
if Depart(lock->csnzi, local->ticket) then return
Lock(lock->metalock)
waiters := Dequeue(lock->queue)
// Policy may let readers overtake a waiting writer,
// which closed the C-SNZI. So if readers are next,
// re-open the C-SNZI directly into the CLOSED state.
if waiters->kind := READER then
OpenWithArrivals(lock->csnzi, waiters->count, true)

Unlock(lock->metalock)
Signal(waiters)

end

Figure 3: GOLL lock pseudocode.

open and has no surplus (i.e., if the lock is free). If the lock is
already acquired for either reading or writing, the writer’s call to
CloseIfEmpty will fail. In this case, the writer atomically closes
the C-SNZI object and inserts itself into the wait queue by acquir-
ing the queue mutex and then calling the Close operation on the
C-SNZI object. If Close returns true (i.e., the C-SNZI was open
with no surplus), then the lock was no longer held, and the Close
operation has successfully acquired it for writing. Thus, the writer

simply releases the mutex and returns. Otherwise (i.e., Close re-
turns false), the writer enqueues itself in the wait queue and goes to
sleep (by waiting on a waiter object that uses a condition variable
to put the thread to sleep), knowing that one or more threads have
not yet released the lock, and that one of them will wake the writer
up when it releases the lock (recall that the Close operation returns
true if and only if the C-SNZI is open and with a surplus of zero.
i.e., if the lock is free).

As with the Solaris lock, a writer releasing the lock hands over
ownership of the lock to a waiting writer or group of readers, if
any exists. To do so, a releasing writer acquires the mutex to check
whether any threads are waiting on the lock. If not, the lock is
released by simply opening the C-SNZI object and releasing the
mutex. If a writer thread is next in line, it is sufficient to release the
mutex and wake it up to complete the hand-over, since the lock is
already in a write-locked state. If the lock is to be handed over to a
group of readers, the writer converts the lock to the read-acquired
state by performing an OpenWithArrivals operation on the C-SNZI,
which sets the C-SNZI surplus to the number of waiting readers,
and, if there are no writers waiting on the lock, changes its state to
open. Next it releases the mutex and wakes up the readers.

In the absence of conflicting lock requests, readers can acquire
the lock by performing an Arrive operation on the C-SNZI object,
which returns a ticket that specifies the node at which the arrival
took place. Since arrivals always succeed when the C-SNZI ob-
ject is open, the mutex is never accessed for read-only workloads.
If the C-SNZI is closed, either because the lock is write-locked or
because it is read-locked but with a writer waiting, the Arrive op-
eration will fail and the reader must enqueue itself into the mutex-
protected queue. To guarantee that it will be woken up after it goes
to sleep, a reader ensures that the C-SNZI remains in a closed state
after it has acquired the queue mutex. Finally, the reader creates a
ticket for itself which indicates that it should depart from the root
node. Recall that a writer releasing the lock performs an Open-
WithArrivals operation on the root node on behalf of any waiting
readers.

A reader releasing the lock starts by calling the Depart opera-
tion on the C-SNZI, passing the ticket it received when acquiring
the lock. If no threads are waiting on the lock (i.e., the C-SNZI
is open) or the reader is not the last to depart the C-SNZI, the De-
part operation returns true and the reader is done. Otherwise (i.e.,
Depart returns false), the C-SNZI is closed and the thread was the
last to depart. Thus, the reader must hand the lock over to the wait-
ing thread. The reader first acquires the mutex to dequeue the next
thread(s) waiting to acquire the lock. If a writer is next in line,
the reader can simply release the mutex and wake it up, since the
final Depart operation already placed the lock into a write-locked
state (closed C-SNZI with no surplus). Otherwise, the lock is to
be handed over to a group of readers,1 so the reader hands the lock
over by calling OpenWithArrivals to place the lock back into a read-
locked state.

3.2.1 Supporting Write Upgrade
Many production reader-writer locks, including the Solaris lock,

support a write-upgrade operation: a thread that holds the lock for
reading can upgrade its read-ownership to write-ownership if it is
the only thread holding the lock (if not, the write-upgrade operation
fails and the thread keeps holding the lock for reading). Unfortu-
nately, although checking whether a reader is the sole thread hold-
ing the lock is trivial when using a counter that tracks the number
of readers holding the lock, doing so using a C-SNZI object is less
1The scheduling policy employed in the wait queue may have cho-
sen to let readers overtake a waiting writer due to thread priorities.



easy since the C-SNZI object indicates only whether some readers
are holding the lock, and not how many.

We can add write-upgrade support to the GOLL lock by splitting
the counter at the root node into two counters: one that is updated
by the Arrive and Depart operations that are invoked directly on the
root (a direct counter), and a second that is updated by the Arrive
and Depart operations that are invoked on the root by operations on
its children. Using these counters, a thread can check whether it is
the only reader holding the lock as follows:

• If the thread acquired the lock for reading by arriving directly
at the root, then it is the only thread holding the lock if and
only if the direct counter is one, and the other counter is zero.

• Otherwise, the thread executes an Arrive operation on the root
node, and then a Depart operation on the node it has origi-
nally arrived at. After this point, the thread is the only one
holding lock if and only if the direct counter is one, and the
other counter is zero.

In other words, because the direct counter shows the exact surplus
of Arrive operations invoked directly on the root, the thread simply
“trades” its arrival at the tree with a direct arrival at the root, and
then checks the counters to see whether the surplus of direct arrivals
is greater than one, or whether the surplus of arrivals at nonroot
nodes is nonzero.

4. DISTRIBUTED QUEUE LOCKS
In this section, we present two distributed queue-based OLL

reader-writer locks that offer higher performance with simpler fair-
ness criteria. Like the reader-writer locks by Mellor-Crummey and
Scott [11] and by Krieger et al. [8], we extend the MCS mutex
lock [10] to support reader-writer synchronization. Like those al-
gorithms, our new algorithms improve performance when a lock is
contended by reducing the number of writes to central shared data
that a thread needs to perform to enqueue itself into a wait queue.
Unlike those algorithms, however, successive readers in our algo-
rithms do not use separate nodes in the queue. Instead, they use
C-SNZI to share a single node in the queue. We first provide back-
ground on the MCS mutex lock algorithm, then present our FOLL
algorithm, which guarantees first-in first-out (FIFO) fairness, and
finally describe how to modify it to achieve the ROLL lock, which
guarantees reader-preference FIFO fairness.

4.1 The MCS Mutex Lock
The idea behind the MCS mutex lock [10] is to maintain an im-

plicit queue of nodes belonging to waiting threads. Every thread
has its own node, which it enqueues every time it wants to acquire
the lock. Each node has a spin flag and a qNext pointer, and the
lock consists of a single pointer pointing to the tail of the implicit
queue of waiters (null if the queue is empty).

To acquire the lock, a thread uses a FetchAndStore operation to
store its node, with spin = false and qNext = null, to the tail
of the queue. If the previous tail (returned by the FetchAndStore
operation) was null, then the thread immediately enters its critical
section. Otherwise, it sets its spin flag to true, changes the previous
tail’s qNext pointer to point to its node, and waits until its spin flag
is false, after which it enters its critical section.

A thread leaving the critical section checks if it has a successor
(i.e., its node’s qNext pointer is not null). If so, then it sets its
successor’s spin flag to false. Otherwise, it uses CompareAndSwap
to change the tail from its node to null. If this succeeds, then no
thread is waiting for the lock, so it is done. If the CompareAndSwap
fails, then some other thread put a pointer to its node into the tail,

so the exiting thread waits until its qNext pointer is updated by the
other thread, at which point it sets its successor’s spin flag to false.

4.2 FOLL Reader-Writer Lock
As mentioned above, the FOLL lock uses a C-SNZI object to al-

low successive readers to share a single node. Such readers, after
the first, avoid writing the tail pointer, and instead simply arrive at
and depart from the C-SNZI object. Writers close the C-SNZI ob-
ject and insert their own node to form a queue as in the MCS mutex
lock. A reader following a writer also adds a node to the queue,
but readers immediately following it can join its node using the C-
SNZI object of that node. Thus, read-only workloads avoid writing
the tail pointer entirely, eliminating a major source of contention
on the lock.

In the FOLL lock, we have two kinds of nodes, one for readers
and the other for writers. Writer nodes are essentially the same as
the nodes of the MCS mutex lock; each thread has its own writer
node. Reader nodes have three extra fields, one of which points to
a C-SNZI object. The other two fields are used to recycle reader
nodes as discussed at the end of this section.

A writing thread acquires and releases the lock in almost exactly
the same way as it would with an MCS mutex lock. The only dif-
ference is that if its predecessor is a reader node, then after setting
its predecessor’s qNext pointer, it closes its predecessor’s C-SNZI
object, preventing other readers from arriving at that C-SNZI. If
the Close operation returns true, which means that the C-SNZI is
empty (i.e., has no surplus) when it is closed, then there are no
readers to signal the writer (i.e., set its spin flag to false), so the
writer spins instead on the spin flag of its predecessor. Also, due to
the node recycling algorithm we discuss later, the C-SNZI object
of reader node may not be open when a writer attempts to close it,
in which case the writer simply waits until the C-SNZI is opened
before proceeding as described above.

When a reader wants to acquire the lock, it first examines the
tail. If it points to a reader node, then the thread simply attempts
to arrive at the C-SNZI of that node. If it succeeds, then it waits
for the spin flag of that node to be false (it may already be so),
and then enters the critical section. If it fails to arrive, then some
writer must have closed the C-SNZI after enqueuing behind that
node (that is the only operation that closes C-SNZI objects), so the
tail must have changed, and we simply retry the operation.

If tail is null then the reader gets an unused reader node, which,
when just allocated, has a closed C-SNZI with no surplus and qNext =
null. The reader sets the node’s spin flag to false, and attempts to
enqueue the node using CompareAndSwap to change the tail from
null to point to the node. If it succeeds, then it opens the C-SNZI
of the node it just enqueued, and then we are back to the previ-
ous case, where the tail is a reader node. If it fails, the tail pointer
must have changed, indicating that some other thread must have
enqueued another node, thus again, we retry the operation.

Similarly, if the tail is a writer node, the reader tries to enqueue
an unused reader node after the writer node. However, in this case,
it first sets the spin flag of the node to be enqueued to true (as the
reader must wait for the writer to release the lock), and after it
enqueues the node, it changes the predecessor’s qNext pointer to
point to the newly enqueued node.

Note that we do not open the C-SNZI object of a node until the
node has been enqueued. This is important to prevent readers from
arriving at a C-SNZI of a node that is not in the queue, which could
otherwise happen because of node recycling, as discussed below. In
FOLL, a C-SNZI is opened only immediately after it is enqueued
by a reader, and it is not removed from the queue and recycled until
it is closed (by a writer that enqueues behind it) and has no surplus.



type RWlock = record
tail : *Node
rNodes : *Node // Head of reader node

type Node = record
kind : enum {READER, WRITER} // Immutable
qNext : *Node
spin : boolean
// The following fields are used only by READER nodes
csnzi : *CSNZI
allocState : enum {FREE, IN_USE}
next : *Node

type Local = record
rNode : *Node // Default read node. Immutable
wNode : *Node // Write node. Immutable.
departFrom : *Node // List node we last arrived at.
ticket : Ticket // C-SNZI ticket

// Allocates a new reader node.
procedure AllocReaderNode(local : *Local)

currNode := local->rNode
while true

if currNode->allocState == FREE then
if CAS(&currNode->allocState, FREE, IN_USE) then

return currNode
currNode := currNode->next

end

// Frees a reader node. Requires that its allocState
// is IN_USE.
procedure FreeReaderNode(N : *Node)
N->allocState := FREE

end

procedure WriterLock(lock : *RWlock, local : *Local)
oldTail := FetchAndStore(&lock->tail, local->wNode)
if oldTail != null then

local->wNode->spin := true
oldTail->qNext := local->wNode
if oldTail->kind == WRITER then
repeat until !(local->wNode->spin)

else
// Wait until node is properly recycled
repeat until Query(oldTail->csnzi).open
// Close C-SNZI of previous reader node.
// If there are no readers to signal us, spin on
// previous node and free it before entering
// critical section.
if Close(oldTail->csnzi) then

repeat until !(oldTail->spin)
FreeReaderNode(oldTail)

else
repeat until !(local->wNode->spin)

end

procedure WriterUnlock(lock : *RWlock, local : *Local)
if local->wNode->qNext == null then
if CAS(&lock->tail, local->wNode, null) then
return

else
repeat until local->wNode->qNext != null

local->wNode->qNext->spin := false
local->wNode->qNext := null // Clean up

end

procedure ReaderLock(lock : *RWlock, local : *Local)
rNode := null

while true
tail := lock->tail

// If no nodes are in the queue
if tail == null then
if rNode == null then

rNode := AllocReaderNode(local)
rNode->spin := false
if CAS(&lock->tail, null, rNode) then

Open(rNode->csnzi)
local->ticket := Arrive(rNode->csnzi)
if Arrived(local->ticket) then
local->departFrom := rNode
return

rNode := null // Avoid reusing inserted node

// Otherwise, there is a node in the queue
else
// Is last node a writer node?
if tail->kind == WRITER then

if rNode == null then
rNode := AllocReaderNode(local)

rNode->spin := true
if CAS(&lock->tail, tail, rNode) then

tail->qNext := rNode

local->ticket := Arrive(rNode->csnzi)
if Arrived(local->ticket) then
local->departFrom := rNode
repeat until !(rNode->spin)
return

rNode := null // Avoid reusing inserted node

// Otherwise, last node is a reader node.
// (tail->kind == READER)
else
local->ticket := Arrive(tail->csnzi)
if Arrived(local->ticket) then
if rNode != null then FreeReaderNode(rNode)
local->departFrom := tail
repeat until !(tail->spin)
return

end

procedure ReaderUnlock(lock : *RWlock, local : *Local)
if Depart(local->departFrom->csnzi, local->ticket) then
return

local->departFrom->qNext->spin := false
local->departFrom->qNext := null // Clean up
FreeReaderNode(local->departFrom)

end

Figure 4: FOLL lock pseudocode.

A reader leaving its critical section simply departs from the C-
SNZI at which it arrived. If it is the last to depart from a closed C-
SNZI (i.e., if the Depart operation returns false), then it also signals
its successor (the writer that closed the C-SNZI) by setting its spin
flag to false, and recycles the reader node so that it can be reused.

Pseudocode for the FOLL lock is given in Figure 4.

4.2.1 Node Recycling
In the MCS mutex algorithm and the MCS and KSUH reader-

writer extensions, each thread always uses exactly one queue node,
which it enqueues when trying to acquire the lock, whether for

reading or for writing, and dequeues when releasing the lock. This
is also true for the writer nodes of the FOLL lock. However, it is
not true for the reader nodes because many readers may share the
same node while waiting in the queue (or executing their critical
section). The thread that enqueued the node may not be the last to
depart from it; moreover, the last thread to depart from the node
may do so after the thread that enqueued that node wants to acquire
the lock for reading again, and thus requires another reader node.

Therefore, the FOLL lock algorithm maintains a pool of reader
nodes to be used by threads that acquire the lock for reading. We
provide two auxiliary procedures to manage this pool of reader



nodes: AllocReaderNode returns a reader node that is not being
used, and FreeReaderNode takes a node that was returned by Al-
locReaderNode and makes it available for future calls of AllocRead-
erNode. AllocReaderNode is called by ReaderLock when it needs to
enqueue a new node onto the lock queue. FreeReaderNode is called
when the node is removed from the queue, either by the last reader
that departs from a closed C-SNZI (which signals the writer that
closed the C-SNZI to enter its critical section) as part of ReaderUn-
lock, or by a writer that closes the C-SNZI of a node that has no
readers when it is closed as part of WriterLock. It is also called by
a ReaderLock operation that allocates a new node that it never ac-
tually puts in the queue (because some other reader added a reader
node first).

It is thus easy to see that an allocated node is never freed twice
before it is reallocated: either it is never placed on the queue (and
therefore its C-SNZI is never opened since it was allocated), in
which case it is freed by the thread that allocated it but did not
insert it into the queue, or it is placed in the queue and its C-SNZI
is opened, in which case it is freed when it is removed from the
queue by the thread that made its C-SNZI both closed and with no
surplus (i.e., the thread that invoked either Depart or Close and got
false in return). There is at most one of the latter kind of thread
because once a C-SNZI is closed with no surplus, it remains that
way until it is opened again, which is done only by threads that
allocate the associated node and insert it into the queue.

It is also easy to see that an allocated reader node will always
be freed provided that all operations terminate and that the node
does not remain in the queue: a node that is allocated and not put in
the queue is freed by the ReaderLock that allocated it, and a node
removed from the queue is freed by the operation that removes it.

As mentioned above, it is important that the C-SNZI of a node
be closed if it is not in the queue. Otherwise, a reader may see a
node at the tail of the queue, and then get delayed before arriving
at the node’s C-SNZI. Since the thread has yet to modify the state
of the C-SNZI, a writer can close the C-SNZI object and the node
can be subsequently dequeued and recycled once all other readers
depart. If the C-SNZI object were opened before its node is put
back into the queue, the sleeping reader may awaken and arrive
at the C-SNZI without noticing that the node is not in the queue.
Since the node may never be placed back into the queue, the thread
may never be able to enter the critical section. Worse yet, if the spin
flag of the node is false, the delayed thread may enter the critical
section prematurely, possibly while a writer has the lock, violating
reader-writer exclusion.

To implement the pool, we use a ring of nodes, with each node
containing a pointer to the next node in the ring and an allocState
field indicating whether the node is free or in use. To reduce con-
tention, we assign each thread a distinct default node, from which
it starts to traverse the ring (following next pointers) looking for a
free node. We then use CompareAndSwap to atomically change the
node from a free node to an in-use node. To free a node, we sim-
ply change its allocState field to indicate it is free; we need not use
CompareAndSwap because, as argued above, at most one thread
will attempt to free it until it is reallocated.

Finally, we show that whenever a thread requests a reader node
(i.e., calls AllocReaderNode), there is one available. Because each
thread has a distinct default node, there are N reader nodes that
may be allocated, where N is the number of threads. We show that
this is sufficient by associating a distinct thread with each node in
use (i.e., not free) at any time. For a reader node that has been re-
moved from the queue but is not yet free, we associate the thread
that removed it, which must still be executing ReaderUnlock (a
writer that removes a reader node from the queue frees it imme-

diately). For a node that has been allocated but not yet since been
inserted into the queue, we associate the thread that allocated it
(which must still be executing ReaderLock). For a reader node in
the queue but not at the tail, we associate the writer that owns the
immediately following node (which must be a writer node because
reader nodes cannot be adjacent in the queue). Finally, for a reader
node at the end of the queue, we associate the thread that allocated
it, which cannot be any of the aforementioned threads because that
node has been at the tail of the queue since the thread inserted it (so
the thread will not request another reader node).

4.3 ROLL Reader-Writer Lock
When strict FIFO ordering is not required, the FOLL Lock can

be improved by allowing readers to overtake waiting writers to join
a collection of waiting readers that have yet to acquire the lock. We
call such a lock a reader-preference OLL lock, or ROLL lock.

A key requirement of the ROLL lock is the ability to find a reader
node in the queue. In the FOLL lock, as in the MCS locks, nodes
have pointers to the next node in the queue, but threads cannot tra-
verse back up the queue. We make the FOLL lock into a ROLL
lock by converting the wait queue into a doubly linked list. When
a reader attempts to acquire the lock, it traverses from the tail to-
wards the head in search of a reader node. If it finds such a node,
then it checks the spin flag to see if the readers using that node
are still waiting to acquire the lock (i.e., if spin = true). Because
all readers follow this procedure, there can be at most one such
reader node. If the flag is true, the reader arrives at the C-SNZI of
that node, joining the other readers waiting at that node and begins
busy-waiting on the spin flag. If the spin flag is already false, or if
no such node is found, then the thread creates a new reader node
and enqueues it at the end of the queue, as in the FOLL lock.

As an optimization, we also maintain in the lock object a pointer
to the last known reader node with threads still busy-waiting. The
pointer is updated whenever a thread finds such a node, and is set
to null whenever a thread fails to join the node. The optimization
reduces the number of searches that need to be performed to find
the last reader node.

5. EVALUATION
In this section, we present experimental results for each of our

lock algorithms, and compare them against previous reader-writer
lock algorithms.

5.1 Methodology
In addition to our lock algorithms, we implemented versions of

the KSUH lock and the Solaris kernel lock (the Solaris implementa-
tion cannot be used in user-space). The KSUH lock was the fastest
MCS-style reader-writer lock we found. To ensure a fair compar-
ison, we tuned the exponential back-offs for each lock indepen-
dently. For the GOLL lock, we used the same fairness policy used
by the Solaris lock: readers hand the lock over to writers, and writ-
ers hand the lock over to readers (unless a higher-priority writer is
waiting). For both the GOLL and Solaris-like locks, we used our
own spin-based condition variables to eliminate the cost of con-
text switching. In addition, we found that the locks performed best
across all contention levels if we maintained two counters at the
root of the C-SNZI tree (instead of the one described in Section 2):
one for arrivals that have propagated up from the tree and one for
direct arrivals to the root node. This allows the ShouldArriveAtTree
function called during the Arrive operation to favor direct arrivals
until it encounters contention or until it sees that other threads have
arrived using the tree, indicating that contention was recently ob-
served by another thread.
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Figure 5: Throughput results for reader-writer locks at various levels of read/write contention.

We evaluated the performance of each lock by making threads
repeatedly acquire and release the lock in a tight loop without per-
forming any work within the critical section. Threads decide whether
to acquire the lock for reading or writing using a per-thread private
random number generator and a target read percentage. We obtain
the average throughput of each lock by measuring the amount of
time needed for all threads to complete 100,000 lock acquisitions
(for read percentages of 50% or less, we did only 10,000 lock ac-

quisitions, to compensate for the longer run times caused by the
mutual exclusion of the writers). All threads were assigned the
same priority. We ran each experiment three times and present the
average of the results.

We performed our experiments on a 1.4 GHz Sun SPARC Enter-
prise R© T5440 server [6], which combines chip-level multithread-
ing (CMT) and symmetric multiprocessing (SMP) designs. The
T5440 server contains four UltraSPARC R© T2 Plus processors con-



nected via four UltraSPARC T2 Plus XBR coherency hubs. Each
T2 Plus processor contains a single 4 MB L2 cache shared by eight
cores, each of which supports 8 hardware threads, for a total of
64 hardware threads per chip. Thus, the machine supports up to
256 hardware threads, but inter-thread communication overhead in-
creases significantly when running more than 64 threads, at which
point not all threads can communicate via a shared L2 cache.

5.2 Experimental Results
Figure 5 presents the throughput results for each of the locks

across a wide range of thread counts and for various levels of read-
/write contention. Figure 5(a) shows the performance of the locks
for a purely read-only workload. Under this scenario, the through-
put of the Solaris-like lock gradually decreases as more threads are
added. The KSUH lock is able to offer slight performance improve-
ments up until 64 threads, after which the high cost of communi-
cation causes a 10x drop in performance. In contrast, all the OLL
locks scale linearly as more threads are added, unaffected by the
change in communication cost at 64 threads. At 256 threads, the
locks perform two orders of magnitude better than the KSUH lock.

Figure 5(b) displays the performance of the locks when 99%
of the lock acquisitions are by readers and 1% by writers. Under
this workload, the GOLL lock suffers significantly compared with
its read-only performance, scaling slowly up to 48 threads, after
which the contention on the queue mutex causes its performance
to drop. Nevertheless, the GOLL lock performs significantly better
than the Solaris-like lock for which throughput decreases steadily
after 2 threads. The KSUH lock performs marginally better than the
GOLL lock, exhibiting a similar drop in performance at 64 threads.
On the other hand, both the FOLL and ROLL locks continue to
scale linearly while communication remains on-chip, and outper-
form the KSUH lock all the way to 256 threads. With the FOLL
lock, beyond 64 threads, the increased cost of communication ex-
acerbates the cost of the serialization due to the mutual exclusion
required by the writers, causing a dramatic performance drop of al-
most 10x. However, by relaxing the FIFO guarantee offered by the
FOLL lock, the ROLL lock maintains almost all of its 64-thread
performance even with the high cost of off-chip communication.

At a 95% read rate (Figure 5(c)), both the ROLL and FOLL locks
continue to scale while executing on a single chip. In contrast, the
KSUH lock fails to scale, even while on-chip. At 64 threads, it
performs more than 2x slower than the ROLL and FOLL locks.
Beyond 64 threads, as the cost of communication goes up, both the
FOLL and the ROLL locks exhibit a similar drop in performance.
Despite this drop, both locks perform over 5x faster than the KSUH
lock at 256 threads. At this read/write ratio, and for all subsequent
read/write ratios, the GOLL lock behaves almost exactly like the
Solaris-like lock because the cost of acquiring and releasing the
queue’s mutex dominates.

At an 80% read rate (Figure 5(d)), the ROLL lock continues to
scale while on-chip, while the performance of the FOLL lock lev-
els off at 32 threads. Once off-chip, both locks begin to exhibit
performance similar to the remaining locks.

At 50% and 0% read rates (Figures 5(e) and 5(f)), all the dis-
tributed queue-based locks begin to behave the same: the locks
maintain close to constant on-chip and off-chip throughputs with
a large drop at 64 threads. Likewise, the GOLL and Solaris-like
locks are able to maintain constant throughputs when the cost of
communication is the same, though with lower throughputs than
achieved by the distributed queue locks when executing on a single
chip.

6. CONCLUSION
We presented three new reader-writer locks that provide scala-

bility to hundreds of threads running on processors in a multichip
system. A key component used by our locks is the new C-SNZI
data structure, which significantly reduces contention when many
readers attempt to acquire a lock concurrently, while keeping both
space and time overhead low when there is no contention.

We showed how to implement C-SNZI, and how it is used to
implement our scalable reader-writer locks. One of these locks im-
prove a production-quality reader-writer lock used in the Solaris
kernel, which provides a flexible mechanism for implementing ro-
bust priority and fairness policies. The other two locks are queue-
based locks that are appropriate for situations permitting busy-waiting
synchronization. We demonstrate that these locks scale almost per-
fectly in the presence of read-only contention among 256 hardware
threads running on a 4-chip multiprocessor.
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