TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Geoffrey X. Yu*, **Markos Markakis***, Andreas Kipf*, Per-Åke Larson, Umar Farooq Minhas, Tim Kraska

Code: github.com/mitdbg/treeline **Paper:** tinyurl.com/treeline-paper

Photo by Richard Main on Unsplash

What this talk is about

The Opportunity and Problem

- Disk-based key-value stores: usually log-structured merge trees (LSMs)
 - High write performance (sequential), competitive on reads
- NVMe SSDs: Parallel random writes ≈ sequential write performance
- Are LSMs still the right choice?

This Work: TreeLine – Making update-in-place great again

- Update-in-place design to provide stellar read performance
- Our angle: Leverage workload patterns to be competitive at writes
- Key results: Up to 10.95x and 7.52x over RocksDB, LeanStore on YCSB

The Motivation

The Motivation

Key-value stores? Skew?

Persistent, concurrent KVSs abound

Configurations

+ Create 💍 Refresh				
Select date Select key (Select label			
Loaded 4 key-values with 4 unique key	s. 🧠 Hide values 📀 Expan	d all		
Key	$\uparrow \downarrow$ Value	Label		L C
TestApp:Settings:BackgroundCo	olor white	(No label)		з.
TestApp:Settings:FontColor	black	(No label)	E-di+	0
TestApp:Settings:FontColor TestApp:Settings:FontSize	black 24	(No label) (No label)	Edit Add value	0
		(No label)	Add value	0
TestApp:Settings:FontSize	24	(No label)		+
TestApp:Settings:FontSize	24	(No label)	Add value Add Key Vault reference	 ℓ + +
TestApp:Settings:FontSize	24	(No label)	Add value Add Key Vault reference Update tags	 + + ⊗

User preferences

Profile metadata

Not all keys are created equal

- Updates >> Inserts
- Varying hotness
- Hotness independent of key
- Frequently-updated and frequently-read keys not necessarily the same.
- How to handle such a workload efficiently?

The Motivation The Orientation

The Orientation

From log-structured databases to storage interfaces

LSM-trees efficiently absorb writes

 Usual solution: Log-Structured Merge (LSM) tree.

- Basic principles:
 - Buffer writes.
 - Write to disk when full.
 - Periodically "compact" logarithmically.
 - Read from memtables, or from cache; fresher versions are in lowernumbered levels.

Some RUM-induced thoughts

- RUM conjecture [Athanassoulis et al. 2016] access methods trade off:
 - Read performance
 - Update performance
 - Memory performance
- Efficient **updates**: dump into memtable and flush periodically.
- LSM trees: slow reads unless hot write keys match hot read keys.
- High **memory** use: same key can be in many places.

Modern storage provides new trade-offs

- HDDs: sequential access unlocks performance.
- Flushing memtable achieves high throughput.
- NVMe SSDs: random writes are also performant
- Sequential *reads* still better than random.
 - Speculative pre-fetching.
 - Closer for large blocks.
- Can we improve read and memory performance?

The Motivation The Orientation **The Innovation**

The Innovation

How to make an update-in-place design workable

Key Idea A: Record Caching

Workload skew doesn't care about layout

- LSMs use *block* (page) cache.
- One hot record in each page?
- Key Idea A: use instead a *record* cache.
 - Lower memory amplification.
 - Higher I/O amplification.
 - Balance in our favor.
- In-memory index with one key per page.
- When page is full, allocate overflow.
- When overflow page is full, reorganize.

Key Idea B: Page Grouping

Small pages, large pages – why not both?

- Point requests? Make pages small!
- Scans? Make pages large!
- Key Idea B: Page grouping.
 - Co-locate pages, forming segments.
 - For scans, read the entire segment.
- Use linear models to shrink index.
 - Synchronization contention point.
 - Only index one key per *segment*.
 - Use model to navigate within segment.

Key Idea C: Insert Forecasting

Half-full pages are usually half-empty

- One page for a record if full, must reorganize.
- How much space to leave?
 - Too much: Bad I/O amplification.
 - Too little: Must reorganize often.
- Key Idea C: Insert Forecasting.
 - Predict inserts using recent sample.
 - On reorganization, leave empty space based on estimate.

The Motivation The Orientation The Innovation **The Evaluation**

The Evaluation

So, how well does this work?

Experimental setup

• Hardware:

- 20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory
- 1 TB Intel DC P4510 NVMe SSD
- Workload: Yahoo! Cloud Serving Benchmark suite (YCSB)
 - Amazon reviews dataset (33 million keys), 33% fits in memory
 - Zipfian and uniform requests
- Baselines:
 - RocksDB (LSM)
 - LeanStore (Update-in-place)

We look at throughput under parallelism

TreeLine shines across the board

- Only keep the highlevel trends from here.
- We will dive deeper in the following slides.

Physical I/O drives the win over RocksDB

- Against RocksDB: 1.62x for 64 B records, 2.99x for 1024 B records.
- Case study: Workload A (50% reads, 50% updates)
 - TreeLine writes 3.09 GiB physical data, RocksDB writes 4.27 GiB. Memtables cannot consolidate updates.
 - TreeLine reads 12 GiB physical data, RocksDB reads 27 GiB. RocksDB needs background compactions.
 - Same trend present for the rest of the point workloads.

Caching drives the win over LeanStore

- Same plots as last slide.
- Against LeanStore: 2.81x for 64 B records, 1.53x for 1024 B records.
- LeanStore caches pages, achieving worse cache utilization that again drives physical I/O up.
 - Notice how it outperforms RocksDB for 1024 B records, when the record size approaches the 4 KiB page size.

Update-in-place helps scans

- TreeLine only stores one version of each record on disk.
- No need to merge results from different levels.
- Scan throughput (requests/second) outshines competition.
 - Less data to read than RocksDB.
 - Better throughput than LeanStore due to page grouping.

Config.	Phys. Reads	Phys. Read Thpt.	Req. Thpt.
TreeLine 64 B	13.4 GiB	550 MiB/s	100 kreq/s
★ RocksDB 64 B	31.1 GiB	797 MiB/s	42 kreq/s
LeanStore 64 B	17.0 GiB	581 MiB/s	56 kreq/s
TreeLine 1024 B	75.9 GiB	1079 MiB/s	12 kreq/s
★ RocksDB 1024 B	147 GiB	958 MiB/s	5.4 kreq/s
LeanStore 1024 B	76.4 GiB	155 MiB/s	1.7 kreq/s

Caching & grouping are complementary

- For point workloads (A-D, F), record caching provides most of the benefit: keeping the hot working set in memory.
- For scan-heavy workload E, page grouping doubles the throughput.
- Grouping does not hurt point workload performance.

Forecasting inserts gives an extra boost

- Dataset: NYC taxi pickups (key is inlined location)
- 64B case: Closes more than half of the gap to perfect.
- 64B case: Reorganizations reduced by 63% on average (not plotted).
- 512B case: Not enough granularity on 4KiB page.
- Overall, improves base by 1.22x and reduces reorganizations by 41% on average.

Coarse-grained epoch tuning is enough

- Epoch length affects throughput.
- Small epochs: Can capture trends at small timescales, but lots of background work.
- Long epochs: Can get a more representative sample, but might "average out" some trends.
- Still, even an epoch length 1/10 or 2x of what we used in the paper would be an improvement over no forecasting.

Key takeaways

- NVMe SSDs: Parallel random writes ≈ sequential write performance
 - Opportunity to revisit KVS design
- TreeLine: Update-in-place with three key ideas
 - **Record caching:** Efficient memory use for skewed read/write workloads
 - Page grouping: Large physical reads for scans, single-page reads for point lookups
 - Insert forecasting: Proactively "leave space" for inserts
- Key results (YCSB throughput)
 - Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
 - Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
 - Up to 10.95x and 7.52x over RocksDB, LeanStore overall

