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What this talk is about
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• Disk-based key-value stores: usually log-structured merge trees (LSMs)

• High write performance (sequential), competitive on reads

• NVMe SSDs: Parallel random writes ≈ sequential write performance

• Are LSMs still the right choice?

The Opportunity and Problem

• Update-in-place design to provide stellar read performance

• Our angle: Leverage workload patterns to be competitive at writes

• Key results: Up to 10.95x and 7.52x over RocksDB, LeanStore on YCSB

This Work: TreeLine – Making update-in-place great again

TreeLine: An Update-In-Place Key-Value Store for Modern Storage



The Motivation
Key-value stores? Skew? 

The Motivation
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Persistent, concurrent KVSs abound
Configurations

Profile metadata

User preferences
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Not all keys are created equal
• Updates >> Inserts

• Varying hotness

• Hotness independent of key

• Frequently-updated and frequently-read keys not necessarily the same.

• How to handle such a workload efficiently?
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The Orientation
From log-structured databases to storage interfaces

The Motivation
The Orientation
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LSM-trees efficiently absorb writes
• Usual solution: Log-Structured Merge 

(LSM) tree.

• Basic principles:

• Buffer writes.

• Write to disk when full.

• Periodically “compact” logarithmically.

• Read from memtables, or from cache; 
fresher versions are in lower-
numbered levels.

In memory
On disk

Block Cache

Memtable

L1 L1

L2

L0 L0 L0 L0

MemtableImmutable Memtable
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Some RUM-induced thoughts
• RUM conjecture [Athanassoulis et al. 2016] – access 

methods trade off:

• Read performance

• Update performance

• Memory performance

• Efficient updates: dump into memtable and flush 
periodically.

• LSM trees: slow reads unless hot write keys match 
hot read keys.

• High memory use: same key can be in many places.
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Modern storage provides new trade-offs
• HDDs: sequential access unlocks 

performance.

• Flushing memtable achieves high throughput.

• NVMe SSDs: random writes are also 
performant

• Sequential reads still better than random. 

• Speculative pre-fetching.

• Closer for large blocks.

• Can we improve read and memory 
performance?
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The Innovation
How to make an update-in-place design workable

The Motivation
The Orientation
The Innovation
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Workload skew doesn’t care about layout
• LSMs use block (page) cache.

• One hot record in each page?

• Key Idea A: use instead a record cache.

• Lower memory amplification.

• Higher I/O amplification.

• Balance in our favor.

• In-memory index with one key per page.

• When page is full, allocate overflow.

• When overflow page is full, reorganize.

Key Idea A: Record Caching
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Small pages, large pages – why not both?

Key Idea B: Page Grouping

• Point requests? Make pages small!

• Scans? Make pages large!

• Key Idea B: Page grouping.

• Co-locate pages, forming segments.

• For scans, read the entire segment.

• Use linear models to shrink index.

• Synchronization contention point.

• Only index one key per segment.

• Use model to navigate within segment.
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Half-full pages are usually half-empty

Key Idea C: Insert Forecasting

• One page for a record – if full, must 
reorganize.

• How much space to leave?

• Too much: Bad I/O amplification.

• Too little: Must reorganize often.

• Key Idea C: Insert Forecasting.

• Predict inserts using recent sample.

• On reorganization, leave empty space 
based on estimate.
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The Evaluation
So, how well  does this work?

The Motivation
The Orientation
The Innovation
The Evaluation
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Experimental setup
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• Hardware:

• 20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory

• 1 TB Intel DC P4510 NVMe SSD

• Workload: Yahoo! Cloud Serving Benchmark suite (YCSB)

• Amazon reviews dataset (33 million keys), 33% fits in memory

• Zipfian and uniform requests

• Baselines:

• RocksDB (LSM)

• LeanStore (Update-in-place)



We look at throughput under parallelism
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TreeLine shines across the board

• Only keep the high-
level trends from here.

• We will dive deeper in 
the following slides.



Physical I/O drives the win over RocksDB
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• Against RocksDB: 1.62x for 64 B records, 2.99x for 1024 B records.

• Case study: Workload A (50% reads, 50% updates)

• TreeLine writes 3.09 GiB physical data, RocksDB writes 4.27 GiB. Memtables cannot consolidate updates.

• TreeLine reads 12 GiB physical data, RocksDB reads 27 GiB. RocksDB needs background compactions.

• Same trend present for the rest of the point workloads.



Caching drives the win over LeanStore
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• Same plots as last slide.

• Against LeanStore: 2.81x for 64 B records, 1.53x for 1024 B records.

• LeanStore caches pages, achieving worse cache utilization that again drives physical I/O up.

• Notice how it outperforms RocksDB for 1024 B records, when the record size approaches 
the 4 KiB page size.



Update-in-place helps scans
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• TreeLine only stores one version of each record on disk.

• No need to merge results from different levels.

• Scan throughput (requests/second) outshines competition.

• Less data to read than RocksDB.

• Better throughput than LeanStore due to page grouping.



Caching & grouping are complementary
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• For point workloads (A-D, F), record caching provides most of the benefit: keeping the hot 
working set in memory.

• For scan-heavy workload E, page grouping doubles the throughput.

• Grouping does not hurt point workload performance.



Forecasting inserts gives an extra boost

• Dataset: NYC taxi pickups (key is inlined location)

• 64B case: Closes more than half of the gap to perfect.

• 64B case: Reorganizations reduced by 63% on average (not plotted).

• 512B case: Not enough granularity on 4KiB page. 

• Overall, improves base by 1.22x and reduces reorganizations by 41% on average.

1 thread 8 threads
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Coarse-grained epoch tuning is enough

• Epoch length affects throughput.

• Small epochs: Can capture trends at small timescales, but lots of background work.

• Long epochs: Can get a more representative sample, but might “average out” some trends.

• Still, even an epoch length 1/10 or 2x of what we used in the paper would be an 
improvement over no forecasting.
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Key takeaways
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• NVMe SSDs: Parallel random writes ≈ sequential write performance

• Opportunity to revisit KVS design

• TreeLine: Update-in-place with three key ideas

• Record caching: Efficient memory use for skewed read/write workloads

• Page grouping: Large physical reads for scans, single-page reads for point lookups

• Insert forecasting: Proactively "leave space" for inserts

• Key results (YCSB throughput)

• Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average

• Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore

• Up to 10.95x and 7.52x over RocksDB, LeanStore overall
Paper: tinyurl.com/treeline-paper

TreeLine: An Update-In-Place Key-Value Store for Modern Storage


