TreelLine: An Update-In-Place
Key-Value Store for Modern Storage

Geoffrey X. Yu*, Markos Markakis*, Andreas Kipf*,
Per-Ake Larson, Umar Farooq Minhas, Tim Kraska

MIT

g Y DSAIL

Data Systems and Al Lab

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Photo by Richard Main on Unsplash

What this talk is about

The Opportunity and Problem

Disk-based key-value stores: usually log-structured merge trees (LSMs)
High write performance (sequential), competitive on reads

NVMe SSDs: Parallel random writes = sequential write performance

Are LSMs still the right choice?

This Work: TreelLine — Making update-in-place great again
Update-in-place design to provide stellar read performance
Our angle: Leverage workload patterns to be competitive at writes
Key results: Up to 10.95x and 7.52x over RocksDB, LeanStore on YCSB

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

The Motivation

The Motivation

Key-value stores? Skew?

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Persistent, concurrent KVSs abound

Configurations User preferences

fome > AppConfigContosa | Configuration explarer

B= AppConfigContoso | Configuration explorer

+ cCreate () Refresh

Select date Select key Select label
Loaded 4 key-values with 4 unique keys. €@ Hide values () Expand al
Key T Value Label [
TestApp SettingsBackgroundColor white (Mo tabel) 3
TestApp:Settings:FontColar black (Na label)
dit &
TestApp SettingsFontsize 24 (Na label)
TestApp:Settings:Message Data from Azure App Configuration (Mo label)
Add Key Vault reference
Update tags @
Lock.]
Histary 0]
Delete 0]

Profile metadata

m‘tpms &% Message e v eee

2,347 posts 411K followers 720 following

MIT

Education

The official account of the Massachusetts Institute of Technology, a world leader in
research, education, and innovation.

linktr.ee/mitpics

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Not all keys are created equal

Updates >> Inserts

Varying hotness

Hotness independent of key

Frequently-updated and frequently-read keys not necessarily the same.
How to handle such a workload efficiently?

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

The Motivation
The Orientation

The Orientation

From log-structured databases to storage interfaces

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

LSM-trees efficiently absorb writes

* Usual solution: Log-Structured Merge
(LSM) tree.

* Basic principles:
* Buffer writes.
* Write to disk when full.
* Periodically “compact” logarithmically.

* Read from memtables, or from cache;
fresher versions are in lower-
numbered levels.

Memtable

Immutable Memtable

Block Cache

2

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Some RUM-induced thoughts

RUM conjecture [Athanassoulis et al. 2016] — access
methods trade off:

Read performance
Update performance
Memory performance

Efficient updates: dump into memtable and flush
periodically.

LSM trees: slow reads unless hot write keys match
hot read keys.

High memory use: same key can be in many places.

Read Optimized

Write Optimized Space Optimized

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Modern storage provides new trade-offs

HDDs: sequential access unlocks

performance. o g o
Flushing memtable achieves high throughput. £ o ; > o
NVMe SSDs: random writes are also = o : e,
performant
Sequential reads Sti” better than random. D00 fesessssssssscssssssssssssssssssssssssasss

Speculative pre-fetching. v

Closer for large blocks. —— f:
Can we improve read and memory T e ¢

performance?

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

The Motivation
The Orientation
The Innovation

The Innovation

How to make an update-in-place design workable

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Key Idea A: Record Caching

Workload skew doesn’t care about layout

LSMs use block (page) cache.
One hot record in each page?
Key Idea A: use instead a record cache.
Lower memory amplification.
Higher 1/0O amplification.
Balance in our favor.
In-memory index with one key per page. Y
When page is full, allocate overflow. —
When overflow page is full, reorganize.

Overflow

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Key Idea B: Page Grouping

Small pages, large pages —why not both?

Point requests? Make pages small!
Scans? Make pages large!
Key Idea B: Page grouping.
Co-locate pages, forming segments.
For scans, read the entire segment.
Use linear models to shrink index.
Synchronization contention point.
Only index one key per segment.
Use model to navigate within segment.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Key Idea C: Insert Forecasting

Half-full pages are usually half-empty

One page for a record — if full, must
reorganize.

How much space to leave?
Too much: Bad I/O amplification.
Too little: Must reorganize often.
Key Idea C: Insert Forecasting.

Predict inserts using recent sample. — T
On reorganization, leave empty space ——

based on estimate.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

The Motivation
The Orientation
The Innovation

The Evaluation

The Evaluation

So, how well does this work?

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Experimental setup

Hardware:
20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory o g—]
1 TB Intel DC P4510 NVMe SSD

Workload: Yahoo! Cloud Serving Benchmark suite (YCSB)
Amazon reviews dataset (33 million keys), 33% fits in memory o) @

Zipfian and uniform requests

Baselines:
RocksDB (LSM)

LeanStore (Update-in-place) ROC kS DB y |eO ﬂSJ[OI’e

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

We look at throughput under parallelism

1500 {=—@— TreeLine
RocksDB /
1000

- LeanStore

500-
~]
0- . .

Throughput (kreq/s)

12 4 8 16
Threads

Treeline shines across the board

2
51500 —@— TreelLine 1500 1500 1500 1500
= RocksDB
. §1000 —- Lean 1000 1000 1000 1000
[] O I k t h h h_ S 500 500 500 500 500
niy Kee e ni 3
= 012 4 8 16 012 4 8 16 012 4 8 16 C‘12 4 8 16 012 4 8 16
I eve I t re n d S fro m h e re Threads Threads Threads Threads Threads
L]
(a) A (64 B) (b) B (64 B) (c) C (64 B) (d) D (64 B) (e) F (64 B)
. . . w
() W I I d d g150 1500 150 1 1500
e Wi Ive aeeper In Basoo ° =00 500 0
75-’1000 1000 1000 1000 1000
L L] (=%
the following slides
° e
'E 012 4 8 16 012 4 8 16 012 4 8 16 012 4 8 16 D12 4 8 16
Threads Threads Threads Threads Threads
(f) A (1024 B) (g) B (1024 B) (h) C (1024 B) (i) D (1024 B) (j) F (1024 B)
a
5100 —@— Treeline 100 100 15 15 15
=3 RocksDB 10 10 10
‘é- 50 =& Lean 50 50
£ 5 5 5
g
|‘E 0 12 4 8 16 0 12 4 8 16 0 12 4 8 16 0 12 4 8 16 0 12 4 8 16 0 12 4 8 16
Threads Threads Threads Threads Threads Threads
a) Amazon 64 B (U b) OSM 64 B ¢) Synthetic 64 B (U) (d) Amazon 1024 B (U) (e) OSM 1024 B (U) (f) Synthetic 1024 B (U
Y Yy
B 15 15 15
g 100 100 100
- 10 10 10
3
J:; 50 50 50 " 5 g
g
'-50124 8 1 C‘2 DZ 012 0124 16 l:'124'1 16
Threads Threads Threads Threads Threads Threads

(g) Amazon 64 B (Z) (h) OSM 64 B (Z)

October 20, 2022

(i) Synthetic 64 B (Z) (j) Amazon 1024 B (Z)

(k) OSM 1024 B (Z) (1) Synthetic 1024 B (Z)

TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Physical

/O drives the win over RocksDB

1500

1000

v
(=
o

Throughput (kreq/s)

o

—@— Treeline
RocksDB
~- LeanStore

1500

1000

500

1500
1000

500

1500
1000

500

1500
1000

500

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Threads Threads Threads Threads Threads
(a) A (64 B) (b) B (64 B) (¢) C (64 B) (d) D (64 B) () F (64 B)
a
51500 1500 1500 1500 1500
“-5" 1000 1000 1000 1000 1000
o
‘§1 500 500 500 500 500
=4
'E 012 4 8 16 C'12 4 8 16 012 4 8 16 l312 4 8 16 012 4 8 16
Threads Threads Threads Threads Threads
(f) A (1024 B) (g) B (1024 B) (h) C (1024 B) (i) D (1024 B) (j) F (1024 B)

Against RocksDB: 1.62x for 64 B records, 2.99x for 1024 B records.

Case study: Workload A (50% reads, 50% updates)
TreelLine writes 3.09 GiB physical data, RocksDB writes 4.27 GiB. Memtables cannot consolidate updates.
TreeLine reads 12 GiB physical data, RocksDB reads 27 GiB. RocksDB needs background compactions.
Same trend present for the rest of the point workloads.

October 20, 2022

TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Caching drives the win over LeanStore

500{—@— Treeline 1500 1500 1500 1500

S
1

g RocksDB /.

g 1000 —B- LeanStore 1000 1000 1000 1000

[=%

S 500 500 500 500 500

o

= 012 4 8 16 D12 4 8 16 012 4 8 16 D12 4 8 16 012 4 8 16
Threads Threads Threads Threads Threads

(a) A (64 B) (b) B (64 B) (c) C (64 B) (d) D (64 B) (e) F (64 B)

2

51500 1500 1500 1500 1500

“-5" 1000 1000 1000 1000 1000

o

'§1 500 500 500 500 500

g

'E 012 4 8 16 012 4 8 16 012 4 8 16 l312 4 8 16 012 4 8 16
Thread Threads Threads Threads Threads

(f) A (1024 B) (2) B (1024 B) (h) C (1024 B) (i) D (1024 B) (j) F (1024 B)

Same plots as last slide.
Against LeanStore: 2.81x for 64 B records, 1.53x for 1024 B records.
LeanStore caches pages, achieving worse cache utilization that again drives physical I/O up.

Notice how it outperforms RocksDB for 1024 B records, when the record size approaches
the 4 KiB page size.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Update-in-place helps scans

@ A
.';UJ—I()U —8— Treeline 100 100 15 15 15
j‘:, RocksDB 10 10 10
2 =0 ~~ LeanStore 50 50
5 5 5 5
g
£ U124, 8 16 0124 8 16 0124 8 16 0124 8 % 0124 8 16 01241 8 16
Threads Threads Threads Threads Threads Threads
(a) Amazon 64 B (U) (b) OSM 64 B (U) (c) Synthetic 64 B (U) (d) Amazon 1024 B (U) (e) OSM 1024 B (U) (f) Synthetic 1024 B (U)
= 15 15
£100 100 100
= 10 10
2 s0 50 50
5 5 5
3
-g 0 0 0 0 0
= 6 12 4 8 16 12 4 12 4 8 16 12 4 16
Threads Threads Threads Threads Threads Threads
(g) Amazon 64 B (Z) (h) OSM 64 B (Z) (i) Synthetic 64 B (Z) (j) Amazon 1024 B (Z) (k) OSM 1024 B (Z) (l) Synthetic 1024 B (Z)

Treeline only stores one version of each record on disk.

Config. Phys. Reads Phys. Read Thpt. Req. Thpt.

No need to merge results from different levels. TreeLine 64 B 13.4 GiB 550 MiB/s 100 kreq/s
Y RocksDB 64 B 31.1 Gib 797 MiB/s 42 kreq/s

Scan throughput (requests/second) outshines competition. et sB [706B A MBls S6kreqss
TreeLine 1024 B 75.9 GiB 1079 MiB/s 12 kreq/s

RocksDB 1024 B 47 GiB 958 MiB/ 5.4 kreq/

LeSS data to read than ROCkSDB Lz::ngtore 1024 B 716.4 GiB 155 MiB/: 1.7 krz?p’:

Better throughput than LeanStore due to page grouping.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Caching & grouping are complementary

3¢
-8-':100%*-.....l..l...........-l........l..
o0 .
gg No Page Grouping
<o o/ | No Page Grouping,
E S 50% || ===\ record Caching
2
©
ST 0%1—— m BN Sw - —
4
o A B C D E F

For point workloads (A-D, F), record caching provides most of the benefit: keeping the hot
working set in memory.

For scan-heavy workload E, page grouping doubles the throughput.
Grouping does not hurt point workload performance.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Forecasting inserts gives an extra boost

- 1 thread 8 threads

ISy , 100 |

@ 0 No Forecasting --
X 20 || mmm Forecasting ‘

3 B Perfect 50 -

o \

o

-

e RRRE
c 0- 0-

- 64 B 512 B 64 B 512 B

Dataset: NYC taxi pickups (key is inlined location)

64B case: Closes more than half of the gap to perfect.

64B case: Reorganizations reduced by 63% on average (not plotted).

512B case: Not enough granularity on 4KiB page.

Overall, improves base by 1.22x and reduces reorganizations by 41% on average.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Coarse-grained epoch tuning is enough

5 10-

Qn

'%Ei === Perfect

5; 5 - @)~ Forecasting

= No Forecasting
100 102 104 50000 100000 150000 200000

Epoch length (insert ops)

Epoch length affects throughput.
Small epochs: Can capture trends at small timescales, but lots of background work.

Long epochs: Can get a more representative sample, but might “average out” some trends.

Still, even an epoch length 1/10 or 2x of what we used in the paper would be an
improvement over no forecasting.

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Key takeaways

NVMe SSDs: Parallel random writes = sequential write performance

Opportunity to revisit KVS design

Treeline: Update-in-place with three key ideas
Record caching: Efficient memory use for skewed read/write workloads
Page grouping: Large physical reads for scans, single-page reads for point lookups
Insert forecasting: Proactively "leave space" for inserts

Key results (YCSB throughput)
Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore

Up to 10.95x and 7.52x over RocksDB, LeanStore overall

Paper: tinyurl.com/treeline-paper

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

