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What this talk is about

The Opportunity and Problem

Disk-based key-value stores: usually log-structured merge trees (LSMs)
High write performance (sequential), competitive on reads

NVMe SSDs: Parallel random writes = sequential write performance

Are LSMs still the right choice?

This Work: TreelLine — Making update-in-place great again
Update-in-place design to provide stellar read performance
Our angle: Leverage workload patterns to be competitive at writes
Key results: Up to 10.95x and 7.52x over RocksDB, LeanStore on YCSB
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The Motivation

The Motivation

Key-value stores? Skew?
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Persistent, concurrent KVSs abound
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Not all keys are created equal

Updates >> Inserts

Varying hotness

Hotness independent of key

Frequently-updated and frequently-read keys not necessarily the same.
How to handle such a workload efficiently?
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The Motivation
The Orientation

The Orientation

From log-structured databases to storage interfaces
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LSM-trees efficiently absorb writes

* Usual solution: Log-Structured Merge
(LSM) tree.

* Basic principles:
* Buffer writes.
* Write to disk when full.
* Periodically “compact” logarithmically.

* Read from memtables, or from cache;
fresher versions are in lower-
numbered levels.

Memtable

Immutable Memtable

Block Cache

2
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Some RUM-induced thoughts

RUM conjecture [Athanassoulis et al. 2016] — access
methods trade off:

Read performance
Update performance
Memory performance

Efficient updates: dump into memtable and flush
periodically.

LSM trees: slow reads unless hot write keys match
hot read keys.

High memory use: same key can be in many places.

Read Optimized

Write Optimized Space Optimized
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Modern storage provides new trade-offs

HDDs: sequential access unlocks

performance. o g o
Flushing memtable achieves high throughput. £ o ; > o
NVMe SSDs: random writes are also = o : e,
performant
Sequential reads Sti” better than random. D00 fesessssssssscssssssssssssssssssssssssasss

Speculative pre-fetching. v

Closer for large blocks. —— f:
Can we improve read and memory T e ¢

performance?
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The Motivation
The Orientation
The Innovation

The Innovation

How to make an update-in-place design workable

October 20, 2022 TreeLine: An Update-In-Place Key-Value Store for Modern Storage



Key Idea A: Record Caching

Workload skew doesn’t care about layout

LSMs use block (page) cache.
One hot record in each page?
Key Idea A: use instead a record cache.
Lower memory amplification.
Higher 1/0O amplification.
Balance in our favor.
In-memory index with one key per page. Y
When page is full, allocate overflow. —
When overflow page is full, reorganize.

Overflow
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Key Idea B: Page Grouping

Small pages, large pages —why not both?

Point requests? Make pages small!
Scans? Make pages large!
Key Idea B: Page grouping.
Co-locate pages, forming segments.
For scans, read the entire segment.
Use linear models to shrink index.
Synchronization contention point.
Only index one key per segment.
Use model to navigate within segment.
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Key Idea C: Insert Forecasting

Half-full pages are usually half-empty

One page for a record — if full, must
reorganize.

How much space to leave?
Too much: Bad I/O amplification.
Too little: Must reorganize often.
Key Idea C: Insert Forecasting.

Predict inserts using recent sample. — T
On reorganization, leave empty space ——

based on estimate.
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The Motivation
The Orientation
The Innovation

The Evaluation

The Evaluation

So, how well does this work?
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Experimental setup

Hardware:
20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory o g—]
1 TB Intel DC P4510 NVMe SSD

Workload: Yahoo! Cloud Serving Benchmark suite (YCSB)
Amazon reviews dataset (33 million keys), 33% fits in memory o) @

Zipfian and uniform requests

Baselines:
RocksDB (LSM)

LeanStore (Update-in-place) ROC kS DB y |eO ﬂSJ[OI’e
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We look at throughput under parallelism
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Treeline shines across the board
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Physical

/O drives the win over RocksDB
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Against RocksDB: 1.62x for 64 B records, 2.99x for 1024 B records.

Case study: Workload A (50% reads, 50% updates)
TreelLine writes 3.09 GiB physical data, RocksDB writes 4.27 GiB. Memtables cannot consolidate updates.
TreeLine reads 12 GiB physical data, RocksDB reads 27 GiB. RocksDB needs background compactions.
Same trend present for the rest of the point workloads.
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Caching drives the win over LeanStore
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Same plots as last slide.
Against LeanStore: 2.81x for 64 B records, 1.53x for 1024 B records.
LeanStore caches pages, achieving worse cache utilization that again drives physical I/O up.

Notice how it outperforms RocksDB for 1024 B records, when the record size approaches
the 4 KiB page size.
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Update-in-place helps scans
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Treeline only stores one version of each record on disk.

Config. Phys. Reads Phys. Read Thpt. Req. Thpt.

No need to merge results from different levels. TreeLine 64 B 13.4 GiB 550 MiB/s 100 kreq/s
Y RocksDB 64 B 31.1 Gib 797 MiB/s 42 kreq/s

Scan throughput (requests/second) outshines competition. et sB [706B A MBls  S6kreqss
TreeLine 1024 B 75.9 GiB 1079 MiB/s 12 kreq/s

RocksDB 1024 B 47 GiB 958 MiB/ 5.4 kreq/

LeSS data to read than ROCkSDB Lz::ngtore 1024 B 716.4 GiB 155 MiB/: 1.7 krz?p’:

Better throughput than LeanStore due to page grouping.
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Caching & grouping are complementary
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For point workloads (A-D, F), record caching provides most of the benefit: keeping the hot
working set in memory.

For scan-heavy workload E, page grouping doubles the throughput.
Grouping does not hurt point workload performance.
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Forecasting inserts gives an extra boost
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Dataset: NYC taxi pickups (key is inlined location)

64B case: Closes more than half of the gap to perfect.

64B case: Reorganizations reduced by 63% on average (not plotted).

512B case: Not enough granularity on 4KiB page.

Overall, improves base by 1.22x and reduces reorganizations by 41% on average.
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Coarse-grained epoch tuning is enough
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Epoch length (insert ops)

Epoch length affects throughput.
Small epochs: Can capture trends at small timescales, but lots of background work.

Long epochs: Can get a more representative sample, but might “average out” some trends.

Still, even an epoch length 1/10 or 2x of what we used in the paper would be an
improvement over no forecasting.
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Key takeaways

NVMe SSDs: Parallel random writes = sequential write performance

Opportunity to revisit KVS design

Treeline: Update-in-place with three key ideas
Record caching: Efficient memory use for skewed read/write workloads
Page grouping: Large physical reads for scans, single-page reads for point lookups
Insert forecasting: Proactively "leave space" for inserts

Key results (YCSB throughput)
Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore

Up to 10.95x and 7.52x over RocksDB, LeanStore overall

Paper: tinyurl.com/treeline-paper
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