Automatically Extracting and Annotating Models From Scientific Publications and Code

Markos Markakis, Chunwei Liu, Peter Baile Chen, Michael Cafarella

...

"Standing on the Shoulders of Giants" is Becoming Harder

Non-Markovian SIR epidemic spreading mod	lel of
COVID-19	Adaptive SIR model for propagation of SARS-CoV-2
Lasko Basnarkov ¹² , Igor Tomovski ² , Trifce Sandev ²³⁴ , Ljupco Kocarev ¹²	in Brazil
A SIR-type model describing the successive w	I F F Dos Santos ¹ , G M A Almeida ¹ , F A B F de Moura ¹
COVID-19	Modified SIR model for COVID-19 transmission
	dynamics: Simulation with case study of UK, US and
Gustavo A Muñoz-Fernández ', Jesús M Seoane ² , Juan B Seoane-Sepúlveda '	India
Fuzzy-SIRD model: Forecasting COVID-19 dea considering governments intervention	Pranati Rakshit ¹ , Soumen Kumar ² , Samad Noeiaghdam ^{3 4} , Unai Fernandez-Gamiz ⁵ , Mohamed Altanji ⁶ , Shyam Sundar Santra ^{7 8}
Amir Arslan Haghrah ¹ , Sehraneh Ghaemi ² , Mohammad Ali Badamchizadeh ³	Infinite subharmonic bifurcation in an SEIR epidemic
Age-structured homogeneous epidemic syste	model
application to the MSEIR epidemic model	I B Schwartz, H L Smith
Hisashi Inaba ¹	Novel fractional order SIDARTHE mathematical
	model of COVID-19 pandemic
	M Higazy ¹ ²

I'm conscious that lots of people would like to see and run the pandemic simulation code we are using to model control measures against COVID-19. To explain the background - I wrote the code (thousands of lines of undocumented C) 13+ years ago to model flu pandemics...

5:13 PM · Mar 22, 2020

- Dozens of new models in publications each year. Difficult to:
 - Remain well-informed as a researcher.
 - Educate the general public.
 - Constructively build upon existing work.
- Models are not like long-lasting software products:
 - Partially described by papers, results and other artifacts.
 - Code might not even exist.
 - Definitely not implemented with extensibility in mind.
- Early days of the COVID-19 pandemic: top-level policy decisions based on old undocumented code.

DARPA's Automating Scientific Knowledge Extraction and Modeling (ASKEM) project [1]

 Develop "tools will enable experts to maintain, reuse, and adapt large collections of heterogeneous data, knowledge and models".

Entity Annotation is a Basic Building Block

Code Self-Documentation is Often Lacking

- In order to reuse/extend a model, scientists must understand it.
- Annotations in the code itself might be insufficient.
- But the knowledge exists in the original model description.
- Task 1: Can we annotate code elements with their descriptions from text/equations?

Different Papers, Different Terms

- Terminology might not be standardized across works, making model comparison harder.
- Task 2: Can we map model terms to a single source, like a Domain Knowledge Graph (DKG)?

Models Without Data are Unusable

- To evaluate a model, data must be provided for each variable.
- The data schema might not match the variable definitions.
- Task 3: Can we find the most appropriate data for each variable?

Paper Text [2]

Datasets

2021-03-07 AK

The total population is partitioned into eight stages of disease: S, susceptible (uninfected); I, infected (asymptomatic or pauci-symptomatic infected, undetected); D, diagnosed (asymptomatic infected, detected); A, ailing (symptomatic infected, undetected); R, recognized (symptomatic infected, detected); T, threatened (infected with life-threatening symptoms, detected); H, healed (recovered); E, extinct (dead). The interactions among

positive probableCases negative pending totalTestResultsSource totalTestResults hospitalizedCurre

Code

Equations [2]

$\frac{1}{4} \text{ define SIDARTHE_model}$ $\frac{1}{2} \sqrt{\frac{1}{2}} \text{ def SIDARTHE_model(y, t, alpha, beta, gamma, delta, epsilon, mu, zeta, lamda, eta, rho, theta, kappa, nu, xi, sigma, tau):}{3} (s, I, D, A, R, T, H, E = y)$ $\frac{1}{4} \frac{1}{4} \frac{1}$

Large Language Models to the Rescue!

Close Enough for Humans? Close Enough for GPT-3 [4]!

- Even though terminology for the same variable might differ across sources, the terms used are usually semantically similar enough for a human.
- Models like GPT-3 are also able to pick up on this similarity!
- After appropriate prompt engineering, we can use GPT-3 for the three tasks above.

Giving Downstream Users an Editable Model

- Our API can extract a graph description of a model from code.
- It can then annotate each variable with text descriptions, equations, datasets and/or DKG terms, whenever available.
- Downstream ASKEM teams can then visualize this model.
- Users can leverage the associated annotations to understand the model and evolve it as needed.

Joshua Elliott. Automating Scientific Knowledge Extraction and Modeling (ASKEM), 2022. https://www.darpa.mil/program/automating-scientific-knowledge-extraction-and-modeling.
Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, Colaneri M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med. 2020 Jun;26(6):855-860. doi: 10.1038/s41591-020-0883-7. Epub 2020 Apr 22. PMID: 32322102; PMCID: PMC7175834.
INDRA Lab in the Harvard Program in Therapeutic Science (HiTS). MIRA DKG Source Code. https://github.com/indralab/mira.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.