
Key Idea A: Record Caching
• Key-to-page mapping is expensive to change in update-in-place design.

• But variable hotness among records on the same page.

• Solution: Only cache records, to increase memory efficiency.

Key Idea B: Page Grouping
• Unlike writes, sequential reads still faster vs. random reads on modern SSDs.

• Pages must be sequential to make scans fast.

• Solution: Group pages into contiguous segments. Use linear models to index 

records within segments.

Key Idea C: Insert Forecasting
• To avoid constant reorganization, pages should have some empty space.

• But too much empty space increases I/O amplification.

• Solution: Leave empty space based on epoch-based insert forecast.

TreeLine: An Update-In-Place Key-Value Store for Modern Storage
Geoffrey Yu*, Markos Markakis*, Andreas Kipf*, 

Per-Åke Larson, Umar Farooq Minhas, Tim Kraska

• Modern persistent key-value stores, such as RocksDB [1] and LevelDB [2], typically use 

log-structured merge trees (LSMs) [3]. 

• Stellar write performance: large sequential writes exploit the high sequential throughput. 

• Slow read performance: need caches, Bloom filters [4,5], compaction strategies [6,7,8]—

complex and hard-to-tune. [9]

Random Writes ≈ Sequential Writes on NVMe SSDs 
• Random write throughput across (i) request sizes, and (ii) number of writing threads. 

• With high parallelism, can reach advertised peak sequential write throughput [10]. 

LSMs Leave Read Performance on the Table
• Zipfian-distributed (𝜃 = 0.79) workload of reads, updates, and scans on 64 B records. 

• Of the requests that are not updates, 10% are range scans and the rest are point reads. 

• For read-heavy, the disk-based B-tree outperforms/is competitive against RocksDB.

• TreeLine can outperform both systems all the way up to 80% updates. 

In-memory Index

Evict once cold

In memory
On disk

WAL

Request

Record Cache A Insert Forecaster

Reorganizer

C

Segments

P
g
 5

P
g
 6

P
g
 1

P
g
 2

P
g
 4

Overflow

P
g

9

P
g
 1

0

Linear Mdl

P
g
 7

P
g
 8

Lin. Mdl
B

…

Motivation

Design Overview

Point Workloads
• TreeLine outperforms RocksDB (LeanStore) by 1.62×

(2.81×) and 2.99× (1.53×) on average for 64 B/1024 B 

records.

Scans
• With 16 request threads, for uniform scans, TreeLine

outperforms RocksDB (LeanStore) by 2.21× (1.58×) and 

2.50× (2.80×) on average for 64 B/1024 B records.

• With 16 request threads, for Zipfian-distributed scans, 

TreeLine outperforms RocksDB (LeanStore) by 1.74×

(0.91×) and 1.88× (1.86×) on average for 64 B/1024 B 

records.

Evaluation

[1] Facebook, Inc. 2021. RocksDB. https://rocksdb.org.

[2] Google, Inc. 2011. LevelDB https://github.com/google/leveldb.

[3] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 

(1996), 351–385.

[4] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (jul 1970), 422–426. 

https://doi.org/10.1145/362686.362692

[5] Peter C. Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than Bloom and Xor. CoRR abs/2103.02515 (2021). 

arXiv:2103.02515 https://arxiv.org/abs/2103.02515.

[6] Mark Callaghan. 2018. Name that compaction algorithm. https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html. 

[7] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM 

International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao

Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 79–94. https://dl.acm.org/doi/10.1145/3035918.3064054. 

[8] Facebook, Inc. 2021. Universal Compaction. https://github.com/facebook/rocksdb/wiki/Universal-Compaction.

[9] Facebook, Inc. 2020. RocksDB Tuning Guide. https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide. 

[10] Intel Corporation. 2017. Intel DC P4510. https://ark.intel.com/content/www/us/en/ark/products/122573/intel-ssd-dc-p4510-series-1-0tb-2-5in-
pcie-3-1-x4-3d2-tlc.html. 

Both experiments on an Intel DC P4510 NVMe SSD.

https://rocksdb.org/
https://github.com/google/leveldb
https://doi.org/10.1145/362686.362692
https://arxiv.org/abs/2103.02515
https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html
https://dl.acm.org/doi/10.1145/3035918.3064054
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://ark.intel.com/content/www/us/en/ark/products/122573/intel-ssd-dc-p4510-series-1-0tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/122573/intel-ssd-dc-p4510-series-1-0tb-2-5in-pcie-3-1-x4-3d2-tlc.html

	Slide 1

