
Key Idea A: Record Caching
• Key-to-page mapping is expensive to change in update-in-place design.

• But variable hotness among records on the same page.

• Solution: Only cache records, to increase memory efficiency.

Key Idea B: Page Grouping
• Unlike writes, sequential reads still faster vs. random reads on modern SSDs.

• Pages must be sequential to make scans fast.

• Solution: Group pages into contiguous segments. Use linear models to index 

records within segments.

Key Idea C: Insert Forecasting
• To avoid constant reorganization, pages should have some empty space.

• But too much empty space increases I/O amplification.

• Solution: Leave empty space based on epoch-based insert forecast.
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• Modern persistent key-value stores, such as RocksDB [1] and LevelDB [2], typically use 

log-structured merge trees (LSMs) [3]. 

• Stellar write performance: large sequential writes exploit the high sequential throughput. 

• Slow read performance: need caches, Bloom filters [4,5], compaction strategies [6,7,8]—

complex and hard-to-tune. [9]

Random Writes ≈ Sequential Writes on NVMe SSDs 
• Random write throughput across (i) request sizes, and (ii) number of writing threads. 

• With high parallelism, can reach advertised peak sequential write throughput [10]. 

LSMs Leave Read Performance on the Table
• Zipfian-distributed (𝜃 = 0.79) workload of reads, updates, and scans on 64 B records. 

• Of the requests that are not updates, 10% are range scans and the rest are point reads. 

• For read-heavy, the disk-based B-tree outperforms/is competitive against RocksDB.

• TreeLine can outperform both systems all the way up to 80% updates. 

In-memory Index

Evict once cold

In memory
On disk

WAL

Request

Record Cache A Insert Forecaster

Reorganizer

C

Segments

P
g
 5

P
g
 6

P
g
 1

P
g
 2

P
g
 4

Overflow

P
g

9

P
g
 1

0

Linear Mdl

P
g
 7

P
g
 8

Lin. Mdl
B

…

Motivation

Design Overview

Point Workloads
• TreeLine outperforms RocksDB (LeanStore) by 1.62×

(2.81×) and 2.99× (1.53×) on average for 64 B/1024 B 

records.

Scans
• With 16 request threads, for uniform scans, TreeLine

outperforms RocksDB (LeanStore) by 2.21× (1.58×) and 

2.50× (2.80×) on average for 64 B/1024 B records.

• With 16 request threads, for Zipfian-distributed scans, 

TreeLine outperforms RocksDB (LeanStore) by 1.74×

(0.91×) and 1.88× (1.86×) on average for 64 B/1024 B 

records.
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