
Challenge C: Leverage 
Exploration-based Causal 
Discovery
• Algorithmic causal discovery faces challenges 

due to dependencies.
• Hand-crafting a full causal model is also 

daunting, but only part of it is needed.
• Use a human in the loop:

• User provides a variable of interest.
• Sawmill suggests candidate causes.
• User evaluates them and revises graph.
• The process repeats while increasing the 

exploration score.

Challenge B: Aggregate Data to Maximize Entropy
• Log information can be too granular for meaningful analysis.
• Users can define causal units over which to aggregate log information, 

depending on the context (e.g. machines, users etc.).
• The best aggregate to pick for each variable can be unclear a priori.
• We pick the aggregate that maximizes empirical entropy between the 

causal units, in order to maximize downstream usefulness.
Challenge A: 
Utilize LLMs for 
Tagging 
• Use Drain [4] to 

create the unlabeled 
parsed table.

• Leverage GPT-4 [5] 
to assign human-
understandable tags 
to each variable.
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Causal Analysis Can Help System Understanding
• Failures are a daily phenomenon when operating large complex systems.
• Diagnosing system problems quickly and correctly is crucial for operators.
• Causal reasoning [1] has helped scientists across domains pose, discuss and test hypotheses.

Applying Causality to Log Data is Challenging
• Pearl’s framework [1] requires tabular data and a causal graph for the problem.
• However, operators often only have access to textual logs.
• Three key challenges:

• Challenge A – Deriving the Schema: Logs can be parsed, but this can lead to hundreds of 
unlabeled variables that are hard for a human to manually label.

• Challenge B – Distilling the Data: Logs contain a lot of fine-grained data. What is the best 
way to summarize it along the units the user cares about (e.g. machines)?

• Challenge C – Obtaining the Causal Graph: The scale and dependencies in log data make 
automatic causal discovery [2,3] challenging. Can we tap the user’s expertise intelligently?

Causal Analysis on Logs Faces 3 Key Challenges

Sawmill Provides Solutions for Each Challenge

Battling Confounding in Real-World Logs
• Collect logs from PostgreSQL running TPC-DS.
• Vary performance-affecting parameters and bias parameter combinations 

to trade off work_mem and max_parallel_workers.
• Ignoring bias makes mean latency increase for more parallelism.

Discerning Subtle Semi-Synthetic Effects
• Start with real logs from a mobile application and generate similar logs for 

1000 users. Label a varying fraction of them (1% to 50%) as faulty.
• Have faulty users artificially be on a different OS version and have them fail 

HTTP requests at varying rates (20% to 100% of the time).
• Have non-faulty users fail HTTP requests 10% of the time.

Overcoming Noisiness in Synthetic Logs
• Generate synthetic logs for each of 1000 “machines” with a varying number 

of variables (V in 10-1000).
• Have most of the variables take a random value between 0-100.
• Set special variables x,y,z such that z confounds the effect of x on y.
• Add Gaussian noise to x and y, with a varying standard deviation (1-10).

With a Handful of User Interactions, Sawmill Uncovers Highly Accurate Effects
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