Sawmill: From Logs to Causal Diagnosis of Large Systems

Markos Markakis, Brit Youngmann, Trinity Gao, Ziyu Zhang, Rana Shahout, Peter Baile Chen, Chunwei Liu, Ibrahim Sabek, Michael Cafarella

Causal Analysis on Logs Faces 3 Key Challenges

20:24:44 INFO u0 q34 Running CREATE INDEX midx ON metrics (id); 20:32:25 INFO u0 q35 Running SELECT * FROM metrics WHERE id=562; 20:32:26 INFO u0 q35 Ran in 607.31ms 20:32:28 INFO u0 q36 Running SELECT * FROM metrics WHERE id=555; 20:33:28 INFO u0 q36 Query timed out

User	M: Free	I:Index	L:Latency	D: Data	T: Timeouts				
	Memory	Presence	Mean (ms)	Size (GB)	per day				
U_0	67.80 %	1	637.02	64.41	56852				
U_1	80.96 %	0	372.60	38.07	29164				
				•••					

Causal Analysis Can Help System Understanding

- Failures are a daily phenomenon when operating large complex systems.
- Diagnosing system problems quickly and correctly is crucial for operators.
- Causal reasoning [1] has helped scientists across domains pose, discuss and test hypotheses.

Applying Causality to Log Data is Challenging

- Pearl's framework [1] requires tabular data and a causal graph for the problem.
- However, operators often only have access to textual logs.
- Three key challenges:
 - Challenge A Deriving the Schema: Logs can be parsed, but this can lead to hundreds of unlabeled variables that are hard for a human to manually label.
 - Challenge B Distilling the Data: Logs contain a lot of fine-grained data. What is the best
 way to summarize it along the units the user cares about (e.g. machines)?
 - Challenge C Obtaining the Causal Graph: The scale and dependencies in log data make automatic causal discovery [2,3] challenging. Can we tap the user's expertise intelligently?

Sawmill Provides Solutions for Each Challenge

Challenge B: Aggregate Data to Maximize Entropy

- Log information can be too granular for meaningful analysis.
- Users can define **causal units** over which to aggregate log information, depending on the context (e.g. machines, users etc.).
- The best aggregate to pick for each variable can be unclear a priori.
- We pick the aggregate that maximizes empirical entropy between the causal units, in order to maximize downstream usefulness.

Challenge C: Leverage Exploration-based Causal Discovery

- Algorithmic causal discovery faces challenges due to dependencies.
- Hand-crafting a full causal model is also daunting, but only part of it is needed.
 - Use a human in the loop:
 - User provides a variable of interest.
 - Sawmill suggests candidate causes.
 - User evaluates them and revises graph.
 - The process repeats while increasing the exploration score.

With a Handful of User Interactions, Sawmill Uncovers Highly Accurate Effects

	Dataset			True	Sawmil	l Regr	ession	AskGPT			Dataset					Sawmi	ll Re	gress	ion	Ask	GPT	
	. <u> </u>				ATE	A	TE	ATE			Duraber				1	MRR		MRR		MRR		
	Proprietary	F=0.5	$p_{f}=1.0$	258.43	257.47	27	3.01	0.00			POSTORESOL				-	0 566'	7	0.0476		0.4815		
			$p_{f} = 0.5$	114.86	112.66	11	8.04	112.66			PROPRIET	F=0.5		$p_{c=1}$		1 0000		$ \begin{array}{r} $		0.4313		
			$p_f = 0.2$	_28.71	27.28	25	5.94	27.28	-	_	T KOF KIL I	1-0.5		$p_{f}=1$ $p_{f}=0$	5	1.0000						
		F = 0.1	$p_{f}=1.0$	258.43	258.64	25	6.01	0.00						$p_f = 0.$ $p_f = 0.$	$\frac{3}{2}$	1.0000	Ď					
D2		- F=0.01	$p_{f} = 0.5$	114.86	121.45	11	9.38	0.00	,e			$\overline{F} = \overline{0.1}$		$p_{f=1}$	<u>-</u> -	1.000	<u> </u>			$-\frac{1}{0.0}$	000 -	
			$_{p_{f}=0.2}$	_ 28.71	33.98	35	5.30	0.00	2	רח 🛛		1 -0.1		$\mathcal{D}_f = 0.$	5	1.0000	D I	1.0000	0	0.0	000	
			$p_{f} = 1.0$	258.43	258.57	26	4.50	258.57		UZΨ				$\mathcal{D}_f = 0.$	2	1.0000	0	$\begin{array}{c} 1.0000 \\ -1.0000 \\ 0.0667 \\ 0.0667 \end{array}$		0.0	000	
			$p_{f}=0.5$	114.86	85.66	84	.79	0.0				$\overline{F} = \overline{0.0}$	<u> </u>	$p_f = 1$.	$\overline{0} \vdash$	1.0000	<u>_</u> -			$\overline{0.0'}$	714 -	
			$p_f = 0.2$	2 28.71 2.00	42.64	45	5.18	0.0						$p_{f} = 0.$	5	1.0000	0			0.0	000	
	XYZ		R=1		2.00	2	.00							$p_{f} = 0.$	2	1.0000	0			0.0	00	
		$\overline{V} = \overline{100}$	R=5	2.00	2.11	2.	.10	2.11		-	XYZ	V=10		R=1		0.6667	7	0.6662	7	0.4007		
			R=10	$-\left -\frac{2.00}{2.00}\right + \frac{1.97}{1.96}$		$\frac{1}{1}$.98	1.97						R=5		0.6111	ι	0.5556		0.6667		
			R=1			1	.95	2.36						<i>R</i> =10		0.6662	7	0.5833	3	0.0	664	
D3 🛛			R=5	2.00	1.60	1	.58	0.00	r de la centra de la	D3]	$\overline{V} = \overline{100}$	<u> </u>	$\overline{R}=\overline{1}$	- -	0.6662	7 -	0.5470	$\overline{76}^{-1}$	0.5	000 -	
			$-\frac{R=10}{R=1}$ -	$-\frac{2.00}{-2.00}$	$-\frac{0.87}{1-2}$	$- + - \frac{0}{2}$.86	0.97						<i>R</i> =5		0.6662	7	0.537		0.0	000	
				2.00	1.78	0	3/	0.00						R=10		0.3889)	0.666	<u>57</u>	0.50	000	
			R=5	2.00	0.62	-1	.61	0.62				V=100	0 $R=1$			0.6662	7	0.0000	0	0.10	567	
			R=10	2.00	0.12		.35	0.00						R=5		0.6667	7	0.0000	0	0.8	333	
	Mean % Erro	or on Prop	RIETARY	1	11.72%	14.	64%	67.44%					R=10 0.6667		7	0.0000		0.1667				
	Mean % Erro	or on XYZ			28.83%	47.	88%	8% 49.50% Mean on Proprietary						1.0000	000 0.7926			0.1561				
	Mean % Erro	or			20.27%	31.	26%	58.47%		-	Mean on	XYZ				0.6290	0.3952		2	0.3667		
									-	Mean					0.8018	8	0.565	1	0.2	730		
										-												
						NDI (S)	(s)	MiE														
					(s)	CAI	me	le c (s/l														
				(s)	RE	RE(Li.	Tin Ze														
				RSE	EPA	PLO	tal	s Si														
	Dataset			PAI	Pri	EXI DAT	To	Log														
D1				37.65	4 4 1	4.85	46.91	2 39														
DI	PROPRIETARY	F=0.5	$p_{c=1.0}$	189.19	48 58	2.62	240.30	9 1.06					1			I I	ŝ	1		1	s	
0	T ROT RELIAR	1 -0.5	$p_f = 0.5$	100,10 10.30 2.02 210.30 189.51 48.83 3.20 241.54 195.58 49.32 3.18 248.08	4 1.07							E		USE				OSE				
			$p_{f} = 0.2$		49.32	3.18	248.08	8 1.10			nset Sys				ALUNI		CAI				CAI	
		- <u>F</u> =0.1	$-\frac{p_{f}}{p_{f}=1.0}$	-194.50	49.11	$- \overline{3.22}$	246.8	$\overline{3} + \overline{1.09}$ -						ω			ΞE				I II	
20			$p_{f} = 0.5$	189.53 189.58	49.18	3.24	241.95 242.36 244.00 239.94 243.91	5 1.07				System	SE	AT	AUS	RE	IDA	F	IE	SSS	TDA	
UZF			$p_{f} = 0.2$		49.50	3.28		5 1.07						AR	Ų.	EPA	DIC	CEI	TA	GRI	T-F ND	tal
		$\bar{F} = 0.01$	$\bar{p}_{f} = 1.0$	190.70	49.99	3.31		$\overline{0}$ $\overline{1}$ $\overline{1.08}$ $\overline{0}$		Data			PAI	SEI	SE	PR	CA	Ac	GE	RE	CA CA	L ¹
			$p_{f} = 0.5$	187.09	49.47	3.38		4 1.06	=	Desterr		Saumill	1	1	1	1	2	2	1	0	0	10
			$p_f = 0.2$	191.18	49.30	3.43		1 1.08		FUST	GREJQL	Bagrassion			1		0					5
	XYZ	V=10	R=1	72.33 4.26 2.40 78.99	1.32	DI			AskGPT			1		0	3	1		2	10			
			R=5	80.04	5.27	2.98	88.29	1.48		PROP	RIFTARY	Sawmill		0	1	1	1	1	1	0	0	6
			$-\frac{R=10}{12}$ -	$-\begin{bmatrix} -79.69\\ 1\overline{45.67} \end{bmatrix} = \begin{bmatrix} 4.70\\ 33.2 \end{bmatrix}$	4.70	$-\frac{3.09}{5.5}$	$ \begin{array}{c} 99 \\ 59 \\ \hline 182.50 \\ \hline 181.82 \end{array} $	$\frac{1.47}{2}$ + $\frac{1.47}{207}$ -		i koi		Regression		0	1		Ô	ô	0	1	ŏ	4
		V=100	R=1 D 5		33.24	3.59		2.95	UZ			AskGPT		0	1		0	1	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	6
D3		$\overline{V} = \overline{1000}$	R=5 P=10	144.14	33.87	3.87	181.80	2.94		XY7	S F A	Sawmill	1	0	1	1	2	3	1	0	0	9
			$-\frac{R=10}{R-1}$ -	$-\frac{144.07}{853.14}$	$\frac{33.79}{326.83}$	$-\frac{3.97}{8.38}$	102.4	$\frac{5}{5} + \frac{2.95}{1800} -$	20			Regression	1	0	1		0	0	0	1	0	4
			R=5	822.43	334 47	8.91	1165.8	1 18 54	US			AskGPT	1	0	1	1	0	3	1	0	2	9
			R=10	849.08	335.59	15.09	1199.7	6 19.08													1	
	Mean			260.30	82.00	4.53	346.0	2 4 30														
	D			200.30	02.09	4.33	540.9	4.50														
	Breakdown (%)		75.03%	23.66%	1.30%																

Battling Confounding in Real-World Logs

- Collect logs from PostgreSQL running TPC-DS.
- Vary performance-affecting parameters and bias parameter combinations to trade off work_mem and max_parallel_workers.
- Ignoring bias makes mean latency increase for more parallelism.

Discerning Subtle Semi-Synthetic Effects

- Start with **real logs from a mobile application** and generate similar logs for 1000 users. Label a varying fraction of them (1% to 50%) as **faulty.**
- Have faulty users artificially be on a different OS version and have them fail HTTP requests at varying rates (20% to 100% of the time).
- Have non-faulty users fail HTTP requests 10% of the time.

Overcoming Noisiness in Synthetic Logs

- Generate synthetic logs for each of 1000 "machines" with a varying number of variables (V in 10-1000).
- Have most of the variables take a random value between 0-100.
- Set special variables x,y,z such that **z confounds the effect of x on y.**
- Add Gaussian noise to x and y, with a varying standard deviation (1-10).

[1] Judea Pearl. 2009. Causality: Models, Reasoning and Inference. Cambridge University Press.

[2] Clark Glymour, Kun Zhang, and Peter Spirtes. 2019. Review of causal discovery methods based on graphical models. Frontiers in genetics 10 (2019), 524

[3] Peter Spirtes, Clark N Glymour, and Richard Scheines. 2000. Causation, prediction, and search. MIT press

[4] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International Conference on Web Services (ICWS). 33–40. https://doi.org/10.1109/ICWS.2017.13

[5] OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]