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Abstract: We present GAB, a search algorithm for 
hybrid P2P networks, that is, networks that search 
using both flooding and a DHT. GAB uses a gossip-
style algorithm to collect global statistics about 
document popularity to allow each peer to make 
intelligent decisions about which search style to use for 
a given query. Moreover, GAB automatically adapts 
to changes in the operating environment. Synthetic 
and trace-driven simulations show that compared to a 
simple hybrid approach, GAB reduces the response 
time by 25-50% and the average query bandwidth cost 
by 45%, with no loss in recall. GAB scales well, with 
only a 7% degradation in performance despite a 
tripling in system size.  

 
I. INTRODUCTION 

A hybrid peer-to-peer search network combines an 
unstructured flooding network with a structured 
Distributed Hash Table (DHT)-based global index 
[1,2]. In such networks, partial keyword queries can 
either be flooded to all peers or the set of peers 
storing documents corresponding to each keyword 
can be looked up in the DHT with the results 
intersected in-network as in [3] or at the initiator. 
Which search method should a query use? Flooding 
is efficient for popular (i.e well-replicated) 
documents but inefficient for rare documents. 
Therefore, references [1,2] propose to first flood a 
query to a limited depth, and, if this returns no 
results, submit the query to the DHT. This allows 
cheap and fast searches for popular documents and 
simultaneously reduces the flooding cost for rare 
documents. However, this comes at the expense of 
additional infrastructure, as well as an increase in the 
response time for rare documents and wasted 
bandwidth due to unfruitful floods.  

We present GAB (Gossip Adaptive HyBrid), a 
gossip-based approach to collect global statistics that 
allows peers to predict the best search technique for 
a query. GAB dynamically adapts to changes in the 
operating environment, making it relatively 
insensitive to tuning parameters. Its design does not 
depend on the choice of the DHT or of the 
unstructured flooding network: any of the solutions 
described in Reference [4], for example, are 
adequate.  

Compared to a non-adaptive hybrid approach as 
presented in [1,2], GAB achieves a 25-50% smaller 
response time, and reduces mean query bandwidth 
usage by 45%. GAB scales well, with only a 7% 

degradation in performance despite a 3x increase in 
system size. 

Section II presents GAB and Section III evaluates 
it using simulations. We describe related work in 
Section IV and conclude in Section V. 

 
II. ADAPTIVE SEARCH ALGORITHM SELECTION 

A. The search algorithm selection problem 
An ideal search algorithm should return no more 

than the desired number of results, while minimizing 
both the query response time and the mean 
bandwidth cost per query. In a hybrid search 
network, these criteria are met if a peer can, by 
looking at the query keywords, decide if these 
keywords match a widely replicated document or 
not, using this information to either flood the query 
or look up the keywords in a DHT. In past work, 
observations of result size history, keyword 
frequency, keyword pair frequency, or sampling of 
neighboring nodes have been used to determine 
documents rarity to reduce publishing costs [2]. 
However, this only uses local or neighbor 
information. Instead, GAB collects global statistics 
about document availability and keyword popularity 
using gossip to make the search selection decision. 

We describe GAB in the context of a Gnutella-like 
network where ultrapeers index content stored at 
end nodes [5]. With GAB, an ultrapeer uses 
histograms of (a) the number of other ultrapeer 
nodes whose indices contain a given keyword and 
(b) the fraction of ultrapeer nodes that index a copy 
of a given document to predict the search technique 
that is best for a given query. It then compares this 
prediction to an actual measurement of search 
effectiveness, and uses the error to adapt future 
predictions. We describe collection of global 
statistics in Section II.B, use of these statistics in 
Section II.C, and adaptation in Section II.D. 
 
B. Gathering global statistics 

The idea behind our approach is this: when an 
ultrapeer sees a document title it hasn’t indexed 
already, it tosses a coin up to k times and counts the 
number of heads it sees before the first tail. It saves 
this result in a value we call CT. The ultrapeer then 
gossips its CT values for all titles with the other 
ultrapeers. During gossip, for each title, each 
ultrapeer computes the maximum value of CT, i.e. 
maxCT. If a document is widely replicated, its 
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expected maxCT value will be larger than the 
expected maxCT value for a rare document. 
Moreover, the count of the number of ultrapeers 
with the document is roughly 2maxCT. Using this 
intuition, each ultrapeer can get an approximate 
count of the number of other ultrapeers that have 
that document title (see below for details). Each 
ultrapeer maintains a histogram of these counts. 
Note that a gossip-based approach to collecting 
global statistics is ideally suited to P2P networks 
because it is decentralized, robust, and results in 
every peer learning of the global state.  

We now formalize this intuition. GAB’s gossip 
algorithm has three components: (1) a synopsis 
structure that approximates the true histogram of 
document and keyword popularity (based on a 
technique first described in [6]) (2) a synopsis fusion 
algorithm that merges two synopses, and (3) a 
randomized gossip algorithm to disseminate 
synopses among ultrapeers [7, 8]. 

The synopsis generation algorithm uses the 
duplicate-insensitive counting technique for 
multisets pioneered by Flajolet and Martin [9]. 
Consider the synopsis corresponding to a histogram 
of document (title) popularity. To create this 
synopsis, each ultrapeer, for each unique document 
in its collection, does a coin tossing experiment 
CT(title, k), defined as: toss a fair coin up to k times, 
and return either the index of the first time ‘heads’ 
occurs or k, whichever is smaller1. This is 
represented by a bit vector of length k with the 
CT(title, k)th bit set and k >1.5 log N, where N is the 
maximum number of ultrapeers. If the first 0 bit 
counting from the left in max(CT(title,k)), where the 
maximum is computed over all ultrapeers, is at 
position i, then the count associated with that bitvec 
is, with high probability, 

! 

2
i"1

/0.77351 (the ‘magic 
number’ in the denominator comes from the 
mathematical principles described in [9]). Note that 
a synopsis is approximate: the number of documents 
can be estimated only to the closest power of 2, so 
the estimate may have an error of up to 50%. 

A complete GAB synopsis has three components: a 
document title synopsis, a keyword synopsis, and a 
node count synopsis. The title synopsis is a set of 
tuples {(title, bitvec)}, where title is a list of 
keywords that describe a document, and bitvec is a 
bit vector representing a coin tossing experiment. 

                                                        
1 Generation of such a 32-bit vector is fast, requiring 

only one multiplication and addition operation for linear 
congruential random number generation [10], followed by 
the x86 Bit Scan Forward instruction and a lookup in 32-
element pre-computed bit vector array. 

The keyword synopsis is similar. Finally, the node 
count synopsis is a bit vector counter that counts the 
number of nodes represented by that complete 
synopsis. The complete synopsis therefore is of the 
form {node_count_bitvec, {(title, bitvec),…, (title, 
bitvec)}, {(keyword, bitvec),…, (keyword, 
bitvec)}}. 

The synopsis fusion algorithm is: (a) If two tuples 
in the combined title or keyword synopses have the 
same title or keyword, then take the bitwise-OR of 
the two corresponding bitvecs. This has the effect of 
computing the max of the two bitvecs in an order-
insensitive manner. (b) Update the node count 
synopsis using the local value of the node_count 
bitvec. (c) To keep a synopsis from growing too 
large, if the size of the fused synopsis exceeds a 
desired limit L, discard tuples in order of increasing 
bitvec value (treating the bitvec as a k-bit integer) 
until the limit is reached. Note that at start time, 
synopsis counts are small, and it is possible that a 
popular document (with a small bitvec count) may 
be accidentally pruned. To compensate, a ultrapeer 
can skip the pruning step if the value of the node 
counter in the union of the synopses is smaller than 
some predefined threshold.  

During initialization, each ultrapeer generates a 
synopsis of its own document titles and keywords 
and labels it as its ‘best’ synopsis. In each round of 
gossip, it chooses a random neighbor and sends the 
neighbor its best synopsis. When a node receives a 
synopsis, it fuses this synopsis with its best synopsis 
and labels the merged synopsis as its best synopsis. 
As with any other gossip algorithm, this results in 
every ultrapeer, with high probability, getting the 
global statistics after (log N) rounds of gossip.  

Note that the gossip adds a bandwidth overhead to 
the system, which is the price to pay for getting 
global statistics. However, this cost is paid rarely 
since global statistics change rarely. Moreover, the 
cost is amortized over all the queries in the system, 
so, as the search load increases, the amortized cost 
for gossip decreases. 

 
C. Search selection using global statistics 
Given a synopsis and a set of query keywords, an 
ultrapeer first determines if it has sufficient local 
matches. If so, it is done. If not, it computes the 
expected number of results for that set of keywords 
as follows: it adds the approximate counts for the 
titles in its ‘best’ synopsis that contain all the query 
keywords. We denote by r the sum of these 
approximate counts divided by the approximate 
number of ultrapeers N. For a given query, r 
represents the expected number of matching titles at 
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any ultrapeer. The greater the number of titles in the 
P2P network that match a particular set of keywords, 
the larger the value of r. If r exceeds a threshold t, 
many matches are expected, so the ultrapeer floods 
the query. If the flood returns no results after a 
conservative timeout, it uses the DHT to search for 
each keyword, requesting an in-network join, if that 
is possible. 

If r < t and any keyword in the query is not in the 
common keyword synopsis, the ultrapeer uses the 
DHT because a join is cheap if it is initiated using 
this keyword [3]. Otherwise, the document is both 
rare and has common keywords, so the only option 
is to flood the query. This is done, if possible, with 
an indication that this query has low priority. The 
idea is that flooding will need a large flood depth. 
The low priority ensures that the request is handled 
only if there is adequate search capacity.  
 
D. Adaptation of flood threshold 

An important parameter in our system is the 
flooding threshold, t. If t is too small, then too many 
documents will be flooded and vice versa. In either 
case, the system will be inefficient.  

Unfortunately, it is hard for a system administrator 
to choose a threshold value that is optimal for all 
operating environments. Worse, the threshold can 
change over time depending, among other things, on 
the number of end nodes, the number of documents 
they store, the search load, and the available 
bandwidth to each ultrapeer. Therefore, GAB adjusts 
t over time, instead of using a fixed value. Adaptive 
thresholding also makes GAB more robust: in case 
of failure of the DHT, all queries would eventually 
be flooded because t would rapidly increase. 

Intuitively, an ultrapeer should choose a search 
algorithm that maximizes a search’s utility. For 
widely-replicated documents, where the expected 
number of results per node is large, flooding 
provides more utility than DHT search, and for 
unpopular ones, DHT search provides more utility. 
GAB adapts the flooding threshold by computing the 
utility of both flooding and DHT search for a 
randomly chosen set of queries. If the current 
threshold is correct, then when GAB chooses to 
flood, the utility from flooding that query should be 
greater than the utility of using a DHT and vice 
versa. Otherwise, the threshold should be modified 
so that future queries make the right choice. 

Adapting the threshold therefore requires us to 
define a utility function quantitatively. We base our 
measure of utility on four considerations. First, 
getting at least one result is a lot better than getting 
none. So, the first term represents the benefit from 

this. Second, because there is little use in finding 
thousands of results if a user is just searching for one 
particular document, the marginal utility per extra 
utility should decrease sharply beyond some point. 
We approximate this by choosing some maximum 
number of results requires, Rmax, beyond which each 
further result contributes zero utility. Therefore, the 
utility of receiving R results is proportional to min 
(R, Rmax). Third, since only the first Rmax results are 
useful to the user, the utility should be proportional 
to the response time T of the min(R, Rmax)’th result, 
which we call the last response time. Finally, the 
cost of a query should include its bandwidth cost B. 
Assuming linearity, we denote the utility function U: 

  
U = (R > 0?1:0) + w1*min(R, Rmax) – w2*T – w3* B 
 
where w1-3 are normalized weights chosen by a 

user. We choose to add and subtract the components 
of utility instead of multiplying or dividing them to 
prevent large fluctuations when one of the numbers 
is very small or very large. Note that R, Rmax, T and 
B can be computed for each search if B is carried 
with each search request and reply. 

The optimal value for t is the point of indifference, 
where flooding and DHT search provide equal 
utility. This motivates the following algorithm: 

 
1. For each query, compute r, the expected number 

of results per ultrapeer. Because we expect 
variations in t to be small, we obtain more 
measurements around the current operating point 
by choosing p, the probability that this query 
will be used for adaptation, to be a linear 
function of |r – t|. 

2. With probability p, use both flooding and DHT 
for the query and carry out steps 3 and 4. 

3. Compute the utilities of each type of search. 
4. Each query results in the computation of two 

data points (r, uf) and (r, ud), where uf is the 
utility from flooding, and ud is the utility from a 
DHT search (refer to Figure 1). If r > t, we 
expect uf > ud, otherwise, uf < ud 

 

Figure 1: Adapting the flood threshold 
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5. After Q queries, we need to update t. Intuitively, 
to first order, we can approximate the utility 
from flooding and from a DHT as lines, so that 
their intersection is a reasonable estimator for t. 
Exponential averaging of this estimate allows us 
to deal with noisy estimates. Thus, for every two 
pairs of points {(r1, uf

1), (r1, ud
1)} and {(r2, uf

2), 
(r2, ud

2)} such that r1 < t < r2 let x be the X 
coordinate of the intersection of the line passing 
through (r1, uf

1) and (r2, uf
2) and (r1, ud

1) and (r2, 
ud

2). We set the new estimate of t to be the 
median x value from these pairs and use this to 
update t using an exponential averager with a 
forgetting factor of 0.05.  

6. Optionally, the value of t computed at each 
ultrapeer can be gossiped so that every node is 
aware of the average value of t and uses this in 
its prediction. 

 
III. EVALUATION 

We wrote a custom simulator in Java to compare 
GAB with other well-known search techniques. 
Details about our simulator can be found in [11]. 
The simulator accurately models end-node lifetimes 
and link capacities [12,13] as well as a flooding 
network and a Chord-like DHT. New end nodes join 
the system at a rate of 0.75 end nodes a second, 
bringing an average of 20 documents into the 
system, randomly chosen from a dataset of 20,000 
unique documents, when they register with an 
ultrapeer. These documents are then are indexed by 
the DHT. End nodes emit queries on average once 
every 300 seconds, requesting at most 25 results. 
Documents and keywords are assumed to have a 
Zipfian popularity distribution with a Zipf parameter 
of 1.0.  
When an end node leaves, we model the deletion of 
its index both from ultrapeers as well as from the 
DHT. By modeling end node churn, which is an 
important factor in real peer-to-peer systems, we 
capture the costs of DHT and ultrapeer updates both 
on node arrival and on departure. Note that the 
because node lifetimes are chosen from a fixed 
distribution, we can increase the number of 
documents in the system, the total node population, 
and the number of simultaneously active node 
simply by modifying the node arrival rate. 

We simulated about 1.7 million queries over a 22 
hour period. We observed that a stable online 
population of about 10,000 active end nodes and 500 
ultrapeers was achieved after about 20,000 simulated 
seconds (~6 hours). Therefore, results are presented 
only the queries made between 40,000 and 80,000 
seconds.  With these parameters, the total population 

over the simulation lifetime was about 91,000 end 
nodes. Although these numbers are still about an 
order of magnitude smaller than a real system, we 
believe that it is large enough for us to get 
meaningful comparisons between various search 
approaches. In a realistic system, the response times 
and bandwidth costs will be about ten times larger. 
However, we expect the relative costs and benefits 
to be roughly the same as in our simulations.  

We generated queries and document/keyword sets 
in two different ways. First, we generated random 
exact search requests according to the fetch-at-most-
once model in [13] (for results in III.A-III.C). We 
only generated exact queries, since it is difficult to 
generate realistic partial queries. Second, we played 
back partial keyword searches from the Gnutella 
data set in [2] (for results in III.D). We compared 
GAB with the following algorithms: 

 
Pure DHT All queries looked up in a DHT using the 

in-network adaptive join method of [3] 
Simple 
Hybrid 

Models [2]: queries are first flooded to 
depth 2, then looked up in a DHT if fewer 
than 25 results are received from the flood 
after 2s.  

Central 
Server 

An ideal central server with zero request 
service time. 

 
We compare the results for each approach using the 
following metrics: 
 
Recall Percentage of queries that found a matching 

document, given that there exists at least one 
available document that matches the query 

FRT Mean first response time for successful 
queries (seconds) 

LRT Mean last response time i.e response time for 
Rmaxth, query for successful queries (seconds) 

BWC Bandwidth cost in kilobytes per query; the 
cost of publishing and gossiping is also 
included in this cost (Kilobytes/query) 

 
To save space, we only report means, and for ease 

of comparison, we present normalized results for 
FRT, LRT, and BWC. Standard deviations, which 
are all well under 5% of the mean value, are reported 
in an extended version of this paper [11] 
A. Search approaches compared 

 
System Recall FRT LRT BWC 
Pure DHT 99.9% 1.18 0.62 1.63 
Simple 
Hybrid  99.9% 1.00 1.00 1.00 
GAB 99.9% 0.70 0.57 0.51 
Central 
Server 100.0% 0.41 0.21 0.22 
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The pure DHT approach has poor (and almost 
identical, though this is not apparent from the table) 
first and last response times because it cannot exploit 
document popularity to reduce response times. It 
also has the highest bandwidth cost. The hybrid 
approach of [1,2] when compared to a pure DHT, 
reduces the first response time by about 20%. It also 
uses far less bandwidth because it avoids DHT 
lookups for popular documents. Unfortunately, it has 
a higher average last response time because rare 
documents must be both flooded and looked up.  

GAB performs much better than Simple Hybrid. Its 
first and last response times are both lower than 
Simple Hybrid (and Pure DHT) because queries for 
known rare documents are sent directly to the DHT 
rather than being “tested” using a flood. Moreover, 
bandwidth costs are nearly halved because GAB 
saves doing a flood for queries that are sent directly 
to the DHT. This validates the gain in performance 
by the use of global statistics.  

A central server has perfect recall, 55% lower FRT 
and 70% lower LRT than even GAB. Moreover, the 
bandwidth cost is also 57% lower. We conclude that 
the price to pay for decentralization is roughly a 
doubling of every performance metric.  
 
B. Adaptive thresholding 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows the times series of flooding threshold 
values t at two ultrapeers for a particular simulation 
run. For this environment, the optimal value of t is 
around 1.0E-4. The nodes chose initial values of 
1.0E-3 and 1.0E-5. Over time, both converge to the 
optimal value, illustrating GAB’s adaptive behavior. 
 
C. Scalability 

Intuitively, GAB should scale well with increases 
in end node population because DHT and gossip 
costs increase logarithmically with system size, and 
flooding costs, for a fixed flood depth and node 

degree, are constant. We validated this intuition by 
choosing three different values for the mean end 
node inter-arrival time: 1.0s, 0.4s, and 0.3s. As 
described earlier, this changes the mean number of 
end nodes in the system. The approximate stable 
active populations were, respectively, 7000 end 
nodes, 17,500 end nodes, and 23,300 end nodes, 
corresponding to end node populations of roughly 
ten times this size. The results below are normalized. 

 
Active Population FRT LRT BWC 
7000  1.00 1.00 1.00 
17,500 1.00 0.85 1.06 
23,300 1.03 0.80 1.07 

 
We observe that as the population more than 

triples, the first response times increase by 3% due 
to the need to consult larger DHT indices for rare 
items. However, the DHT is used only about 20% of 
the time, so its effect on the overall average is 
negligible. Note that LRT actually decreases slightly 
with increase in population size because, with more 
nodes, sufficient numbers of results are found with 
shallower floods. Bandwidth costs increase by about 
7%, again mostly due to larger DHTs but also 
because as the number of users increases while 
keeping node degree and flood depth constant, the 
fraction of non-back edges increases and a flood is 
more widely propagated. 
 
D. Trace-based simulations 

To validate the conclusions from synthetic-
workload based simulation, we ran our experiments 
on a trace-based workload. The traces use the 
Planetlab-based monitoring infrastructure described 
in [2], and were obtained by simultaneously 
monitoring the queries and the results of these 
queries at 50 ultrapeers for 3 hours on Sunday 
October 12, 2003. This represents 230,966 distinct 
queries, 199,516 distinct keywords and 672,295 
distinct documents.  

 
System Recall  FRT LRT BWC 

Simple 
Hybrid  

87.0% 1.00 1.00 1.00 

GAB 87.3% 0.59 0.45 0.67 
 
For this more realistic workload, preliminary results 
show that GAB has a 41% lower FRT than a simple 
hybrid (compared to 30% in simulations); 55% 
lower LRT (43% in simulations), and 33% lower 
bandwidth cost (49% in simulations). Both systems 
have a lower recall than in simulations. We attribute 
these discrepancies to the fact that trace-based 

 
Figure 2: Threshold value t vs. time  
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queries are partial-keyword queries, and therefore 
require fewer lookups than the full-keyword queries 
in the simulations, reducing the response time. The 
recall is lower because the number of distinct 
documents is much larger than with our simulations. 
Nevertheless, overall trends in synthetic and trace-
based simulations agree. 

 
IV. RELATED WORK 

 
Numerous DHT-based search systems have been 
proposed in the literature; an overview of these can 
be found in [4]. Extensions to DHTs to allow 
searches using only a subset of document title’s 
keywords have been proposed in [3] and [14], 
among others. Hybrid systems combining DHT and 
flooding networks are described in [1,2]. GAB 
builds on and extends this work by proposing 
gossip-based algorithms for search selection.  

Gossip systems are well known in the literature, 
where they are also called epidemic algorithms [7, 8, 
15]. We refer interested readers to [16] for an 
overview and survey of recent work in this area.  

 
V. CONCLUSIONS AND FUTURE WORK 

 
Our work makes two main contributions. First, we 
show how gossip-based computation of global 
statistics improves search efficiency, reducing both 
response time and bandwidth costs. Second, we 
show how to adapt a critical tuning parameter, the 
flood threshold, to changes in the operating 
environment. The use of a decentralized gossip-style 
state computation, combined with a DHT removes 
all centralized elements from our system, which 
permits good scalability. The adaptation process 
uses user utilities, and this allows system behavior to 
be controlled by intuitive ‘control knobs’. We 
believe that the use of gossip to compute global state 
and the explicit use of utility functions to modify 
system behavior, are applicable to any large-scale 
distributed system. 

We quantified gains from GAB using simulation 
on both synthetic and trace-based workloads. We 
found that, compared to a simple hybrid approach, 
our search algorithm can roughly halve the last 
response time and bandwidth use, with no loss in 
recall. Our algorithm scales well, with only a 7% 
degradation in performance with a 3x increase in 
system size.  

We have implemented our system by modifying 
the Phex Gnutella client to use the OpenDHT 
framework. In current and future work, we plan to 

quantify the benefits from our algorithms for more 
realistic workloads. 
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