
 1

Abstract: We present GAB, a search algorithm for
hybrid P2P networks, that is, networks that search
using both flooding and a DHT. GAB uses a gossip-
style algorithm to collect global statistics about
document popularity to allow each peer to make
intelligent decisions about which search style to use for
a given query. Moreover, GAB automatically adapts
to changes in the operating environment. Synthetic
and trace-driven simulations show that compared to a
simple hybrid approach, GAB reduces the response
time by 25-50% and the average query bandwidth cost
by 45%, with no loss in recall. GAB scales well, with
only a 7% degradation in performance despite a
tripling in system size.

I. INTRODUCTION

A hybrid peer-to-peer search network combines an
unstructured flooding network with a structured
Distributed Hash Table (DHT)-based global index
[1,2]. In such networks, partial keyword queries can
either be flooded to all peers or the set of peers
storing documents corresponding to each keyword
can be looked up in the DHT with the results
intersected in-network as in [3] or at the initiator.
Which search method should a query use? Flooding
is efficient for popular (i.e well-replicated)
documents but inefficient for rare documents.
Therefore, references [1,2] propose to first flood a
query to a limited depth, and, if this returns no
results, submit the query to the DHT. This allows
cheap and fast searches for popular documents and
simultaneously reduces the flooding cost for rare
documents. However, this comes at the expense of
additional infrastructure, as well as an increase in the
response time for rare documents and wasted
bandwidth due to unfruitful floods.

We present GAB (Gossip Adaptive HyBrid), a
gossip-based approach to collect global statistics that
allows peers to predict the best search technique for
a query. GAB dynamically adapts to changes in the
operating environment, making it relatively
insensitive to tuning parameters. Its design does not
depend on the choice of the DHT or of the
unstructured flooding network: any of the solutions
described in Reference [4], for example, are
adequate.

Compared to a non-adaptive hybrid approach as
presented in [1,2], GAB achieves a 25-50% smaller
response time, and reduces mean query bandwidth
usage by 45%. GAB scales well, with only a 7%

degradation in performance despite a 3x increase in
system size.

Section II presents GAB and Section III evaluates
it using simulations. We describe related work in
Section IV and conclude in Section V.

II. ADAPTIVE SEARCH ALGORITHM SELECTION

A. The search algorithm selection problem
An ideal search algorithm should return no more

than the desired number of results, while minimizing
both the query response time and the mean
bandwidth cost per query. In a hybrid search
network, these criteria are met if a peer can, by
looking at the query keywords, decide if these
keywords match a widely replicated document or
not, using this information to either flood the query
or look up the keywords in a DHT. In past work,
observations of result size history, keyword
frequency, keyword pair frequency, or sampling of
neighboring nodes have been used to determine
documents rarity to reduce publishing costs [2].
However, this only uses local or neighbor
information. Instead, GAB collects global statistics
about document availability and keyword popularity
using gossip to make the search selection decision.

We describe GAB in the context of a Gnutella-like
network where ultrapeers index content stored at
end nodes [5]. With GAB, an ultrapeer uses
histograms of (a) the number of other ultrapeer
nodes whose indices contain a given keyword and
(b) the fraction of ultrapeer nodes that index a copy
of a given document to predict the search technique
that is best for a given query. It then compares this
prediction to an actual measurement of search
effectiveness, and uses the error to adapt future
predictions. We describe collection of global
statistics in Section II.B, use of these statistics in
Section II.C, and adaptation in Section II.D.

B. Gathering global statistics

The idea behind our approach is this: when an
ultrapeer sees a document title it hasn’t indexed
already, it tosses a coin up to k times and counts the
number of heads it sees before the first tail. It saves
this result in a value we call CT. The ultrapeer then
gossips its CT values for all titles with the other
ultrapeers. During gossip, for each title, each
ultrapeer computes the maximum value of CT, i.e.
maxCT. If a document is widely replicated, its

Gossip-based Search Selection in Hybrid Peer-to-Peer Networks

M. Zaharia and S. Keshav
School of Computer Science, University of Waterloo, Waterloo, ON, Canada

 2

expected maxCT value will be larger than the
expected maxCT value for a rare document.
Moreover, the count of the number of ultrapeers
with the document is roughly 2maxCT. Using this
intuition, each ultrapeer can get an approximate
count of the number of other ultrapeers that have
that document title (see below for details). Each
ultrapeer maintains a histogram of these counts.
Note that a gossip-based approach to collecting
global statistics is ideally suited to P2P networks
because it is decentralized, robust, and results in
every peer learning of the global state.

We now formalize this intuition. GAB’s gossip
algorithm has three components: (1) a synopsis
structure that approximates the true histogram of
document and keyword popularity (based on a
technique first described in [6]) (2) a synopsis fusion
algorithm that merges two synopses, and (3) a
randomized gossip algorithm to disseminate
synopses among ultrapeers [7, 8].

The synopsis generation algorithm uses the
duplicate-insensitive counting technique for
multisets pioneered by Flajolet and Martin [9].
Consider the synopsis corresponding to a histogram
of document (title) popularity. To create this
synopsis, each ultrapeer, for each unique document
in its collection, does a coin tossing experiment
CT(title, k), defined as: toss a fair coin up to k times,
and return either the index of the first time ‘heads’
occurs or k, whichever is smaller1. This is
represented by a bit vector of length k with the
CT(title, k)th bit set and k >1.5 log N, where N is the
maximum number of ultrapeers. If the first 0 bit
counting from the left in max(CT(title,k)), where the
maximum is computed over all ultrapeers, is at
position i, then the count associated with that bitvec
is, with high probability,

!

2
i"1

/0.77351 (the ‘magic
number’ in the denominator comes from the
mathematical principles described in [9]). Note that
a synopsis is approximate: the number of documents
can be estimated only to the closest power of 2, so
the estimate may have an error of up to 50%.

A complete GAB synopsis has three components: a
document title synopsis, a keyword synopsis, and a
node count synopsis. The title synopsis is a set of
tuples {(title, bitvec)}, where title is a list of
keywords that describe a document, and bitvec is a
bit vector representing a coin tossing experiment.

1 Generation of such a 32-bit vector is fast, requiring

only one multiplication and addition operation for linear
congruential random number generation [10], followed by
the x86 Bit Scan Forward instruction and a lookup in 32-
element pre-computed bit vector array.

The keyword synopsis is similar. Finally, the node
count synopsis is a bit vector counter that counts the
number of nodes represented by that complete
synopsis. The complete synopsis therefore is of the
form {node_count_bitvec, {(title, bitvec),…, (title,
bitvec)}, {(keyword, bitvec),…, (keyword,
bitvec)}}.

The synopsis fusion algorithm is: (a) If two tuples
in the combined title or keyword synopses have the
same title or keyword, then take the bitwise-OR of
the two corresponding bitvecs. This has the effect of
computing the max of the two bitvecs in an order-
insensitive manner. (b) Update the node count
synopsis using the local value of the node_count
bitvec. (c) To keep a synopsis from growing too
large, if the size of the fused synopsis exceeds a
desired limit L, discard tuples in order of increasing
bitvec value (treating the bitvec as a k-bit integer)
until the limit is reached. Note that at start time,
synopsis counts are small, and it is possible that a
popular document (with a small bitvec count) may
be accidentally pruned. To compensate, a ultrapeer
can skip the pruning step if the value of the node
counter in the union of the synopses is smaller than
some predefined threshold.

During initialization, each ultrapeer generates a
synopsis of its own document titles and keywords
and labels it as its ‘best’ synopsis. In each round of
gossip, it chooses a random neighbor and sends the
neighbor its best synopsis. When a node receives a
synopsis, it fuses this synopsis with its best synopsis
and labels the merged synopsis as its best synopsis.
As with any other gossip algorithm, this results in
every ultrapeer, with high probability, getting the
global statistics after (log N) rounds of gossip.

Note that the gossip adds a bandwidth overhead to
the system, which is the price to pay for getting
global statistics. However, this cost is paid rarely
since global statistics change rarely. Moreover, the
cost is amortized over all the queries in the system,
so, as the search load increases, the amortized cost
for gossip decreases.

C. Search selection using global statistics
Given a synopsis and a set of query keywords, an
ultrapeer first determines if it has sufficient local
matches. If so, it is done. If not, it computes the
expected number of results for that set of keywords
as follows: it adds the approximate counts for the
titles in its ‘best’ synopsis that contain all the query
keywords. We denote by r the sum of these
approximate counts divided by the approximate
number of ultrapeers N. For a given query, r
represents the expected number of matching titles at

 3

any ultrapeer. The greater the number of titles in the
P2P network that match a particular set of keywords,
the larger the value of r. If r exceeds a threshold t,
many matches are expected, so the ultrapeer floods
the query. If the flood returns no results after a
conservative timeout, it uses the DHT to search for
each keyword, requesting an in-network join, if that
is possible.

If r < t and any keyword in the query is not in the
common keyword synopsis, the ultrapeer uses the
DHT because a join is cheap if it is initiated using
this keyword [3]. Otherwise, the document is both
rare and has common keywords, so the only option
is to flood the query. This is done, if possible, with
an indication that this query has low priority. The
idea is that flooding will need a large flood depth.
The low priority ensures that the request is handled
only if there is adequate search capacity.

D. Adaptation of flood threshold

An important parameter in our system is the
flooding threshold, t. If t is too small, then too many
documents will be flooded and vice versa. In either
case, the system will be inefficient.

Unfortunately, it is hard for a system administrator
to choose a threshold value that is optimal for all
operating environments. Worse, the threshold can
change over time depending, among other things, on
the number of end nodes, the number of documents
they store, the search load, and the available
bandwidth to each ultrapeer. Therefore, GAB adjusts
t over time, instead of using a fixed value. Adaptive
thresholding also makes GAB more robust: in case
of failure of the DHT, all queries would eventually
be flooded because t would rapidly increase.

Intuitively, an ultrapeer should choose a search
algorithm that maximizes a search’s utility. For
widely-replicated documents, where the expected
number of results per node is large, flooding
provides more utility than DHT search, and for
unpopular ones, DHT search provides more utility.
GAB adapts the flooding threshold by computing the
utility of both flooding and DHT search for a
randomly chosen set of queries. If the current
threshold is correct, then when GAB chooses to
flood, the utility from flooding that query should be
greater than the utility of using a DHT and vice
versa. Otherwise, the threshold should be modified
so that future queries make the right choice.

Adapting the threshold therefore requires us to
define a utility function quantitatively. We base our
measure of utility on four considerations. First,
getting at least one result is a lot better than getting
none. So, the first term represents the benefit from

this. Second, because there is little use in finding
thousands of results if a user is just searching for one
particular document, the marginal utility per extra
utility should decrease sharply beyond some point.
We approximate this by choosing some maximum
number of results requires, Rmax, beyond which each
further result contributes zero utility. Therefore, the
utility of receiving R results is proportional to min
(R, Rmax). Third, since only the first Rmax results are
useful to the user, the utility should be proportional
to the response time T of the min(R, Rmax)’th result,
which we call the last response time. Finally, the
cost of a query should include its bandwidth cost B.
Assuming linearity, we denote the utility function U:

U = (R > 0?1:0) + w1*min(R, Rmax) – w2*T – w3* B

where w1-3 are normalized weights chosen by a

user. We choose to add and subtract the components
of utility instead of multiplying or dividing them to
prevent large fluctuations when one of the numbers
is very small or very large. Note that R, Rmax, T and
B can be computed for each search if B is carried
with each search request and reply.

The optimal value for t is the point of indifference,
where flooding and DHT search provide equal
utility. This motivates the following algorithm:

1. For each query, compute r, the expected number

of results per ultrapeer. Because we expect
variations in t to be small, we obtain more
measurements around the current operating point
by choosing p, the probability that this query
will be used for adaptation, to be a linear
function of |r – t|.

2. With probability p, use both flooding and DHT
for the query and carry out steps 3 and 4.

3. Compute the utilities of each type of search.
4. Each query results in the computation of two

data points (r, uf) and (r, ud), where uf is the
utility from flooding, and ud is the utility from a
DHT search (refer to Figure 1). If r > t, we
expect uf > ud, otherwise, uf < ud

Figure 1: Adapting the flood threshold

 4

5. After Q queries, we need to update t. Intuitively,
to first order, we can approximate the utility
from flooding and from a DHT as lines, so that
their intersection is a reasonable estimator for t.
Exponential averaging of this estimate allows us
to deal with noisy estimates. Thus, for every two
pairs of points {(r1, uf

1), (r1, ud
1)} and {(r2, uf

2),
(r2, ud

2)} such that r1 < t < r2 let x be the X
coordinate of the intersection of the line passing
through (r1, uf

1) and (r2, uf
2) and (r1, ud

1) and (r2,
ud

2). We set the new estimate of t to be the
median x value from these pairs and use this to
update t using an exponential averager with a
forgetting factor of 0.05.

6. Optionally, the value of t computed at each
ultrapeer can be gossiped so that every node is
aware of the average value of t and uses this in
its prediction.

III. EVALUATION

We wrote a custom simulator in Java to compare
GAB with other well-known search techniques.
Details about our simulator can be found in [11].
The simulator accurately models end-node lifetimes
and link capacities [12,13] as well as a flooding
network and a Chord-like DHT. New end nodes join
the system at a rate of 0.75 end nodes a second,
bringing an average of 20 documents into the
system, randomly chosen from a dataset of 20,000
unique documents, when they register with an
ultrapeer. These documents are then are indexed by
the DHT. End nodes emit queries on average once
every 300 seconds, requesting at most 25 results.
Documents and keywords are assumed to have a
Zipfian popularity distribution with a Zipf parameter
of 1.0.
When an end node leaves, we model the deletion of
its index both from ultrapeers as well as from the
DHT. By modeling end node churn, which is an
important factor in real peer-to-peer systems, we
capture the costs of DHT and ultrapeer updates both
on node arrival and on departure. Note that the
because node lifetimes are chosen from a fixed
distribution, we can increase the number of
documents in the system, the total node population,
and the number of simultaneously active node
simply by modifying the node arrival rate.

We simulated about 1.7 million queries over a 22
hour period. We observed that a stable online
population of about 10,000 active end nodes and 500
ultrapeers was achieved after about 20,000 simulated
seconds (~6 hours). Therefore, results are presented
only the queries made between 40,000 and 80,000
seconds. With these parameters, the total population

over the simulation lifetime was about 91,000 end
nodes. Although these numbers are still about an
order of magnitude smaller than a real system, we
believe that it is large enough for us to get
meaningful comparisons between various search
approaches. In a realistic system, the response times
and bandwidth costs will be about ten times larger.
However, we expect the relative costs and benefits
to be roughly the same as in our simulations.

We generated queries and document/keyword sets
in two different ways. First, we generated random
exact search requests according to the fetch-at-most-
once model in [13] (for results in III.A-III.C). We
only generated exact queries, since it is difficult to
generate realistic partial queries. Second, we played
back partial keyword searches from the Gnutella
data set in [2] (for results in III.D). We compared
GAB with the following algorithms:

Pure DHT All queries looked up in a DHT using the

in-network adaptive join method of [3]
Simple
Hybrid

Models [2]: queries are first flooded to
depth 2, then looked up in a DHT if fewer
than 25 results are received from the flood
after 2s.

Central
Server

An ideal central server with zero request
service time.

We compare the results for each approach using the
following metrics:

Recall Percentage of queries that found a matching

document, given that there exists at least one
available document that matches the query

FRT Mean first response time for successful
queries (seconds)

LRT Mean last response time i.e response time for
Rmaxth, query for successful queries (seconds)

BWC Bandwidth cost in kilobytes per query; the
cost of publishing and gossiping is also
included in this cost (Kilobytes/query)

To save space, we only report means, and for ease

of comparison, we present normalized results for
FRT, LRT, and BWC. Standard deviations, which
are all well under 5% of the mean value, are reported
in an extended version of this paper [11]
A. Search approaches compared

System Recall FRT LRT BWC
Pure DHT 99.9% 1.18 0.62 1.63
Simple
Hybrid 99.9% 1.00 1.00 1.00
GAB 99.9% 0.70 0.57 0.51
Central
Server 100.0% 0.41 0.21 0.22

 5

The pure DHT approach has poor (and almost
identical, though this is not apparent from the table)
first and last response times because it cannot exploit
document popularity to reduce response times. It
also has the highest bandwidth cost. The hybrid
approach of [1,2] when compared to a pure DHT,
reduces the first response time by about 20%. It also
uses far less bandwidth because it avoids DHT
lookups for popular documents. Unfortunately, it has
a higher average last response time because rare
documents must be both flooded and looked up.

GAB performs much better than Simple Hybrid. Its
first and last response times are both lower than
Simple Hybrid (and Pure DHT) because queries for
known rare documents are sent directly to the DHT
rather than being “tested” using a flood. Moreover,
bandwidth costs are nearly halved because GAB
saves doing a flood for queries that are sent directly
to the DHT. This validates the gain in performance
by the use of global statistics.

A central server has perfect recall, 55% lower FRT
and 70% lower LRT than even GAB. Moreover, the
bandwidth cost is also 57% lower. We conclude that
the price to pay for decentralization is roughly a
doubling of every performance metric.

B. Adaptive thresholding

Figure 2 shows the times series of flooding threshold
values t at two ultrapeers for a particular simulation
run. For this environment, the optimal value of t is
around 1.0E-4. The nodes chose initial values of
1.0E-3 and 1.0E-5. Over time, both converge to the
optimal value, illustrating GAB’s adaptive behavior.

C. Scalability

Intuitively, GAB should scale well with increases
in end node population because DHT and gossip
costs increase logarithmically with system size, and
flooding costs, for a fixed flood depth and node

degree, are constant. We validated this intuition by
choosing three different values for the mean end
node inter-arrival time: 1.0s, 0.4s, and 0.3s. As
described earlier, this changes the mean number of
end nodes in the system. The approximate stable
active populations were, respectively, 7000 end
nodes, 17,500 end nodes, and 23,300 end nodes,
corresponding to end node populations of roughly
ten times this size. The results below are normalized.

Active Population FRT LRT BWC
7000 1.00 1.00 1.00
17,500 1.00 0.85 1.06
23,300 1.03 0.80 1.07

We observe that as the population more than

triples, the first response times increase by 3% due
to the need to consult larger DHT indices for rare
items. However, the DHT is used only about 20% of
the time, so its effect on the overall average is
negligible. Note that LRT actually decreases slightly
with increase in population size because, with more
nodes, sufficient numbers of results are found with
shallower floods. Bandwidth costs increase by about
7%, again mostly due to larger DHTs but also
because as the number of users increases while
keeping node degree and flood depth constant, the
fraction of non-back edges increases and a flood is
more widely propagated.

D. Trace-based simulations

To validate the conclusions from synthetic-
workload based simulation, we ran our experiments
on a trace-based workload. The traces use the
Planetlab-based monitoring infrastructure described
in [2], and were obtained by simultaneously
monitoring the queries and the results of these
queries at 50 ultrapeers for 3 hours on Sunday
October 12, 2003. This represents 230,966 distinct
queries, 199,516 distinct keywords and 672,295
distinct documents.

System Recall FRT LRT BWC

Simple
Hybrid

87.0% 1.00 1.00 1.00

GAB 87.3% 0.59 0.45 0.67

For this more realistic workload, preliminary results
show that GAB has a 41% lower FRT than a simple
hybrid (compared to 30% in simulations); 55%
lower LRT (43% in simulations), and 33% lower
bandwidth cost (49% in simulations). Both systems
have a lower recall than in simulations. We attribute
these discrepancies to the fact that trace-based

Figure 2: Threshold value t vs. time

 6

queries are partial-keyword queries, and therefore
require fewer lookups than the full-keyword queries
in the simulations, reducing the response time. The
recall is lower because the number of distinct
documents is much larger than with our simulations.
Nevertheless, overall trends in synthetic and trace-
based simulations agree.

IV. RELATED WORK

Numerous DHT-based search systems have been
proposed in the literature; an overview of these can
be found in [4]. Extensions to DHTs to allow
searches using only a subset of document title’s
keywords have been proposed in [3] and [14],
among others. Hybrid systems combining DHT and
flooding networks are described in [1,2]. GAB
builds on and extends this work by proposing
gossip-based algorithms for search selection.

Gossip systems are well known in the literature,
where they are also called epidemic algorithms [7, 8,
15]. We refer interested readers to [16] for an
overview and survey of recent work in this area.

V. CONCLUSIONS AND FUTURE WORK

Our work makes two main contributions. First, we
show how gossip-based computation of global
statistics improves search efficiency, reducing both
response time and bandwidth costs. Second, we
show how to adapt a critical tuning parameter, the
flood threshold, to changes in the operating
environment. The use of a decentralized gossip-style
state computation, combined with a DHT removes
all centralized elements from our system, which
permits good scalability. The adaptation process
uses user utilities, and this allows system behavior to
be controlled by intuitive ‘control knobs’. We
believe that the use of gossip to compute global state
and the explicit use of utility functions to modify
system behavior, are applicable to any large-scale
distributed system.

We quantified gains from GAB using simulation
on both synthetic and trace-based workloads. We
found that, compared to a simple hybrid approach,
our search algorithm can roughly halve the last
response time and bandwidth use, with no loss in
recall. Our algorithm scales well, with only a 7%
degradation in performance with a 3x increase in
system size.

We have implemented our system by modifying
the Phex Gnutella client to use the OpenDHT
framework. In current and future work, we plan to

quantify the benefits from our algorithms for more
realistic workloads.

VI. ACKNOWLEDGEMENT

We would like to gratefully acknowledge Boon Loo
at UC Berkeley for his traces of the Gnutella
workload.

VII. REFERENCES

[1] B.T. Loo, R. Huebsch, I. Stoica, and J.M.

Hellerstein, “The Case for a Hybrid P2P Search
Infrastructure,” Proc. IPTPS, 2004.

[2] B.T. Loo, J. M. Hellerstein, R. Huebsch, S.
Shenker and I. Stoica, “Enhancing P2P File-Sharing
with an Internet-Scale Query Processor,” Proc. 30th
VLDB Conference, 2004.

[3] P. Reynolds, and A. Vahdat, “Efficient Peer-to-
Peer Keyword Searching,” Proc. Middleware, 2003.

[4] H. Balakrishnan, M.F. Kaashoek, D. Karger, R.
Morris, and I. Stoica, “Looking Up Data in P2P
Systems,” Comm. ACM, Vol. 46, No. 2, Feb, 2003.

[5] Gnutella, http://www.gnutella.com
[6] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson,

“Synopsis Diffusion for Robust Aggregation in
Sensor Networks,” Proc. SenSys, Nov. 2004.

[7] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-
Based Computation of Aggregation Information,”
Proc. IEEE FOCS, 2003.

[8] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah,
“Gossip Algorithms: Design, Analysis, and
Applications,” Proc. INFOCOM 2005, March 2005.

[9] P. Flajolet and G.N. Martin, “Probabilistic
Counting Algorithms for Database Applications,” J.
Computer and System Sciences, Vol. 31, 1985.

[10] D. Carta, “Two fast implementations of the
"minimal standard" random number generator,”
Comm. ACM, Vol. 33, No. 1, pp.87-88, 1990.

[11] M. A. Zaharia and S. Keshav, “Efficient and
Adaptive Search in Peer to Peer Networks,” U.
Waterloo Technical Report 2004-55, 2004.

[12] S. Saroiu, K.P. Gummadi, S.D. Gribble,
“Measuring and Analyzing the Characteristics of
Napster and Gnutella Hosts,” Multimedia Systems
Journal, Vol. 9, No. 2, pp. 170-184, August 2003.

[13] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D.
Gribble, H.M. Levy, and J. Zahorjan, “Measuring,
Modeling and Analysis of a Peer-to-Peer File-
Sharing Workload,” Proc. 19th SOSP, October 2003.

[14] S. Dwarkadas, and C. Tang, “Hybrid Global-
Local Indexing for Efficient Peer-to-Peer Information
Retrieval,” Proc. NSDI, 2004.

[15] A. Demers et al “Epidemic algorithms for
replicated database maintenance,” PODC, 1987.

[16] S. Keshav, “Efficient and Approximate
Computation of Global State,” Manuscript under
submission, http://www.cs.uwaterloo.ca/~keshav

