
Design and Implementation of the KioskNet System
S. Guo, M.H. Falaki, E.A. Oliver, S. Ur Rahman, A. Seth, M.A. Zaharia, U. Ismail, and S. Keshav

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1
Email: {sguo, mhfalaki, eaoliver, surrahman, a3seth, mazahari, uismail, keshav}@uwaterloo.ca

Abstract— Rural Internet kiosks in developing countries can
cost-effectively provide communication and e-governance services
to the poorest sections of society. Unfortunately, a variety
of technical and non-technical issues have caused most kiosk
deployments to be unsustainable [1]. KioskNet addresses the
key technical problems underlying kiosk failure by using robust
‘mechanical backhaul’ for connectivity [2], and by using low-
cost and reliable kiosk controllers to support services delivered
from one or more recycled PCs. KioskNet also addresses related
issues such as security, user management, and log collection.
In this paper, we describe the KioskNet system and outline its
hardware, software, and security architectures. We describe a
pilot deployment, and how we used lessons from this deployment
to re-design our initial prototype.

I. INTRODUCTION

Rural Internet kiosks in developing countries provide a
variety of services such as birth, marriage, and death certifi-
cates, land records, and consulting on medical and agricultural
problems. A typical kiosk has a Windows-based PC and a
dial-up or VSAT connection to the Internet, and is operated
by a computer-literate kiosk owner who maintains the system
and assists end users. To effectively serve its users and be
profitable to its owner, a kiosk should be highly available and
should have a reliable connection to the Internet. Moreover,
it should be low-cost, so that it can be sustained with a
minimum of user fees. Unfortunately, due to limited electrical
power, pervasive dust, mechanical wear-and-tear, and com-
puter viruses, kiosk computers often fail, requiring frequent
(and expensive) repairs. Similarly, network connectivity is
often lost due to failures in the telephone system, inability
to power the VSAT station, or loss of alignment of long-
range wireless links. Faced with high costs and unreliable
service delivery, customers quickly lose interest. Due to these
factors, in addition to several other non-technical issues, kiosk
deployments are often found to be unsustainable in the long
term [1].

KioskNet attempts to make a kiosk more robust without
increasing its cost, thus addressing at least the technical
aspects that lead to lack of kiosk sustainability. It builds
on two key concepts. First, it uses a single-board-computer-
based, low-cost, low-power kiosk controller at each kiosk. The
controller can communicate wirelessly with another single-
board computer mounted on a vehicle (as was pioneered by
Daknet [3]). These vehicles carry data to and from a gateway,
where data is exchanged with the Internet. This ‘mechanical
backhaul’ [2] avoids the cost of trenches, towers, and satellite

dishes, allowing Internet access even in remote areas. In areas
where dial-up, long-range wireless or cellular phone service is
available, the kiosk controller can be additionally configured to
use these communication links in conjunction with mechanical
backhaul. Second, KioskNet allows refurbished PCs to boot
from the kiosk controller. Kiosk controllers are reasonably
tamper-proof so they offer reliable virus-free boot images and
binaries. We do not use the PC’s hard disk, thus avoiding hard
disk failures and disk-resident viruses. Moreover, refurbished
PCs are cheap and spare parts are widely available.

KioskNet has the following key features:
• The system is low-cost (see Section IV for details) and

appears to be economically viable. We estimate that
our system requires a capital expenditure of $100-
$700/kiosk, depending on the configuration1, and an
operating expenditure of $70/kiosk/month. These rough
estimates include the cost of field technicians and capital
depreciation. This is four to ten times cheaper than other
solutions.

• The solution is rapidly deployable: we successfully in-
stalled a prototype in Anandapuram village, Vishakapat-
nam district, AP, India in two days during May 2006.

• Kiosk controllers are low-power (6-8W), therefore they
can be run off a solar panel.

• Recycled PCs can run either the (Linux) binaries that are
packaged with the kiosk controller, which are guaranteed
to be virus free, or can boot into an existing operating
system (typically Windows) from their hard drive for
stand-alone computing.

• We can provide private and authenticated communication
amongst kiosk users, and between a kiosk user and a
secure node in the Internet.

• Our software is shipped in the form of a LiveCD that can
be booted on any Windows or Linux PC. The CD is used
to copy OS images directly onto hard drives, which are
then installed in single-board computers.

• Our code is free under the Apache open-source license
with no patent, copyright or intellectual property restric-
tions.

In the remainder of this paper, we present an overview
of the system in Section II and its software architecture in
Section III. The security architecture is described in Section
III-B. We describe the cost structure in Section IV and our

1All figures are in US dollars.

P

P

Gateways

Proxy

Proxy
Legacy Server

Bus

Bus

Kiosks

Kiosks

Registry

.....

.....

.....

.....

.....

.....

.....

Gateways

Fig. 1. KioskNet overview.

experience with deploying the system in Section V. Section
VI discusses some changes to our initial design decisions
that reflect experiences from the pilot deployment. We present
related work in Section VII and conclude in Section VIII.

II. OVERVIEW

KioskNet consists of a set of kiosks that use mechanical
backhaul [2] as the primary means of communication to the
Internet (Figure 1). Ferries carry data to and from a kiosk
to a set of gateways that communicate with a proxy on
the Internet. The remainder of this section describes these
KioskNet components in more detail.

A. Kiosks

Each kiosk has a kiosk controller, which is a server that
provides recycled PCs with network boot, a network file
system, user management, and network connectivity by means
of dial-up, GSM/GPRS, VSAT, or mechanical backhaul. A
kiosk controller always has a WiFi NIC. In addition, for
most deployments, we expect that kiosk controllers would also
provide connectivity by other means, such as GPRS, SMS
(GSM), VSAT, or a dial-up connection. Our current prototype
uses headless and keyboard-less low-power single-board com-
puters, such as those from Soekris Corp. and Via Corp., as
kiosk controllers, although the controller functionality can be
implemented in any commodity PC.

We would like kiosks to be used by two types of users. We
expect most users to access the system from a recycled PC
(also called a ’terminal’) that boots over the network (using
RAM disk) from the kiosk controller and can then access and
execute application binaries provided by the kiosk controller
over NFS. Recycled PCs cost approximately $100 and spare
parts are widely available worldwide. Moreover, as a shared
resource, they are an order of magnitude cheaper than any
dedicated resource.

A second class of users, such as wealthier villagers, govern-
ment officials, or non-goverment organization (NGO) partners,
could access one or more kiosks, or a bus directly, using their

own devices, such as smart phones, PDAs, and laptops. Such
users could use the kiosk controller or bus essentially as a
wireless hotspot that provides store-and-forward access to the
Internet.

The set of kiosks in the same geographical area, and ad-
ministered by the same entity, comprises a KioskNet region.
Regions not only have administrative significance, in that
all entities in a region are certified by the same certificate
authority, but also have routing significance, because bundles
are flooded within a region. Figure 1 shows a system with
two regions, which could both be potentially be managed by
a single administrative entity.

B. Ferries

Although kiosk controllers can communicate with the Inter-
net using a variety of connectivity options, our focus is on the
use of mechanical backhaul. This is provided by cars, buses,
motorcycles, or trains, that pass by a kiosk and an Internet
gateway. We call such entities ferries.

A ferry has a single-board-computer that is powered from
the vehicle’s own battery. This computer has 20-40GB of
storage and a WiFi network interface. It communicates oppor-
tunistically with the kiosk controllers and Internet gateways
on its path. During an opportunistic communication session,
which may last from 20 seconds to 5 minutes, we expect 10-
150MB of data to be transferred in each direction. This data is
stored and forwarded in the form of self-identifying bundles.
Ferries upload and download bundles opportunistically to and
from an Internet gateway.

C. Gateways

A gateway is a computer that has a WiFi network interface,
storage, and an always-on connection to the Internet. Gateways
are likely to be present in cities with DSL or cable broadband
Internet access. A gateway collects data opportunistically from
a ferry and stages it in local storage before uploading it to the
Internet through the proxy. A region may have more than one
gateway.

D. Proxy

We expect that most communication between a kiosk user
and the Internet would be to use existing services such as
email, financial transactions, and access to back-end systems
that provide government-to-citizen services. Legacy servers
that provide such services typically can neither deal with long
delays and disconnections, nor easily modified. Therefore,
we need a disconnection-aware proxy that hides end-user
disconnection from legacy servers. We currently assume that
there is one proxy per region.

The proxy is resident in the Internet and has two halves.
One half establishes disconnection-tolerant connection ses-
sions with applications running on the kiosk controller or
on mobile users’ devices. The other half communicates with
legacy servers on behalf of disconnected users. Data forward-
ing between the two halves can be highly application de-
pendent. To support application-specific communication with

legacy servers, we support application plugins at the proxy
that coordinate their actions with a corresponding application
at the kiosk controller or mobile device. For example, such
a plugin implements SMTP to communicate with legacy mail
servers on behalf of users at kiosks. The current release of
KioskNet includes several proxy plugins, which are outlined
in Section III-H.

When the communication sublayer at the proxy receives
application data from a plugin, the data needs to be transferred
to gateway that is in communication with the destination kiosk.
This is done using algorithms such as those described in [4].
The gateways subsequently hand off data to passing ferries for
transport and delivery to a kiosk. The kiosk passes the data
to an application specific plugin at the kiosk for delivery to
kiosk users.

In the opposite direction, when a kiosk user wants to send
data to the Internet, it is carried to a gateway, which transfers
it to a proxy. The proxy passes received data to the associated
plugin, which interfaces with legacy Internet servers. For
instance, in the case of email, the proxy plugin would forward
Internet bound emails using SMTP.

Besides serving as an application-layer gateway, a proxy
provides a central point of management. It runs a DNS-based
location register that is used for location management. It also
maintains a Whitepages database that maps from a user’s
globally unique identifier (GUID) to its X.509 public key
certificate. This database, which is replicated at each kiosk,
allows secure communication among KioskNet users.

E. Legacy servers

The last component of our architecture, the legacy servers,
are typically accessed using TCP/IP and an application-layer
protocol such as IMAP, SMTP, or HTTP by a proxy. We do
not require any changes to legacy servers.

III. SOFTWARE ARCHITECTURE

A. Communication architecture

KioskNet communication software runs on proxies, gate-
ways, ferries, kiosk controllers, and cell phones/PDAs. The
overall communication architecture is sketched in Figure 2,
which shows the software protocol architecture, and Figure 3
which shows the data path in the case where email is being
sent from the kiosk to the Internet. The communication system
allows kiosk users to exchange messages with the Internet,
other users in the same region, and with users in other regions.
It also allows users to move to other kiosks in the same
region, or kiosk in other regions, while continuing to send
and receive messages. The interested reader will find a more
detailed description in [5]: here, we only outline the overall
system.

The base communication layer is TCP/IP that runs on
wired or wireless network interfaces present at every com-
ponent in the system. All nodes except for cell phones/PDAs
run the Delay-Tolerant Networking (DTN) overlay provided
by the DTN reference implementation [6]. DTN provides
disconnection-tolerant end-to-end connectivity. We modified

the DTNRG’s DTN 2.0 reference implementation to add
flooding-based routing within each region.

Although DTN provides disconnection-tolerance, it lacks
many important services. It does not provide the ability for
a kiosk controller, cell phone, or proxy to use application-
specific policies to choose from one of many network inter-
faces, nor does it support mobility for users who may choose
to move from one kiosk to another. DTN does not provide
application-specific plugins at the proxy. Finally, DTN does
not support seamless interconnection with legacy servers on
the Internet.

Instead, these capabilities are provided by the opportunistic
connection management protocol (OCMP) [2], [7], which runs
on top of DTN and other available network connections.
OCMP can be viewed as a disconnection-tolerant and policy-
driven session layer that runs over both DTN and standard
links. Each type of available communication path is modeled
as a connection object (CO) within OCMP. For instance, the
DTN mechanical backhaul path is encapsulated as a DTN CO.
Similar COs can be created for a TCP connection bound to
each type of NIC (GPRS/EDGE, WiMAX, dial-up, etc.).

OCMP allows a policy manager to arbitrarily assign bundles
to transmission opportunities on COs, as described in more
detail in [8]. This scheduling problem is complex, because it
has to manage many competing interests: reducing end-to-end
delay, while not incurring excessive costs, and maximizing
transmission reliability. We do not know of an adequate
solution to the general problem. Therefore, in the current
implementation, we merely send application-specified ‘urgent’
data on an always-on connection (if that is available) and
other data on the mechanical backhaul CO. The design of
our system, however, allows the use of more sophisticated
scheduling policies without changing the rest of the system.
OCMP works in conjunction with the TCA-Admin component,
which is responsible for mobility management.

Note that identical Java-based OCMP protocol stacks run
on cell phones and kiosk controllers. The only difference is
that the DTN protocol stack runs only on kiosk controllers,
and not on cell phones. This is because the DTNRG reference
implementation, which is written in C++, cannot run on a cell
phone. If a Java-based DTN implementation becomes available
for cell phones, the cell phone protocol stack can be made the
same as on the kiosk controller.

An interesting aspect of KioskNet’s communication stack is
its support for an ‘SMS NIC’, which allows communication
over GSM cellular networks. Note that SMS is provided
natively by the GSM voice subsystem and does not require
a user to subscribe to (typically expensive) data services.
Messages passed to the SMS CO are fragmented into small
(approximately 155 byte) pieces and sent as SMS messages
to another SMS-enabled KioskNet component (which could
be another kiosk controller, a ferry, or the proxy). The re-
ceiving component then collects the SMSs and reassembles
the original message. Although SMS is slow and limited
in message size, it provides a low-bandwidth and low-delay
control channel. Additional details can be found in [5].

DTN

TCA
Admin

TCP/IP

Wireless NIC

Application
proxy

Per-user per-
application directory

Directory watcher

OCMP

DTN
CO

TCP/IP

DNS
Name
Server

PROXY

1. GUID= tca://user.<kioskname>.<region>.<orgn>.kiosknet.org
2. Application proxy determines a user's GUID
3. GUID = DTN EID = OCMP ID

DTN

TCA
Admin

TCP/IP

GATEWAY

Application

Per-user per-
application directory

Directory watcher

OCMP

DTN

TCA
Admin

TCP/IP

KIOSK CONTROLLER BUS

Wireless WiredWireless NICs

1. Legacy application data placed in a communication directory is sent to Proxy DTN EID
2. Legacy application data incoming to proxy is placed in the communication directory corresponding to the user
3. DTN routing table at the proxy has the EID of every attached gateway and the corresponding IP address

GPRS CO

Wired

DTN
CO

CELL PHONE

DTN
COGPRS

CO

Application

Per-user per-
application directory

Directory watcher

OCMP

DTN CO

TCP/IP

GPRS CO

Wireless

Scheduler

Location: {MX UserUID CustodianGUID}
Topology: A ProxyGUID IP
Topology: {TXT RegionGUID ProxyGUID}

Bus schedules

Fig. 2. Software architecture.

ProxyKiosk controller

Email client
running on
terminal

Email client OCMP SMTP plugin

OCMP daemon

DTN agent
on bus

DTN agent

OCMP SMTP
plugin

OCMP daemon

HELO

FROM: SRC

TO: DST

QUIT

250 OK

1. ID_SRC =
MD5(SRC)
2. ID_DST =
MD5(DST)
3. AppData: SMTP,
DST, SRC

4. BulkData

Data
DTN agent

DTN
bundles

Delivery
Acks

Persistent
storage

Gateway

DTN agent
at gateway

Legacy
email
server

DTN
bundles

Bulk
Data

Persistent
storage

Reassemble

App
Data

HELO

Create SMTP
plugin: SRC,
DST

QUIT

250 OK
Delivery
Ack

Internet
Bus

Delivery Acks

Delivery Acks

Fig. 3. KioskNet data path when used to send email from a kiosk to the Internet.

B. Security architecture

KioskNet’s security architecture is designed to meet the
requirements of four distinct groups:

• KioskNet Franchisers: Franchisers, usually NGOs deploy-
ing KioskNet, are concerned with the integrity of their
KioskNet components and would want to detect, if not
prevent, the misuse of their infrastructure.

• KioskNet Franchisees: Franchisees (i.e. kiosk operators)
are concerned with the security of their kiosk terminals
and would want protection against malware. Franchisers
can trust franchisees to issue credentials to users (usually
in exchange for a fee), but cannot trust them with user
data. In other words, franchisers can create users, but once
created, should not be allowed to snoop on user data.

• KioskNet Users: Users are concerned with the confiden-
tiality and integrity of their data despite using untrusted
ferries and snooping kiosk operators.

• Application Service Providers: Depending on the type of
service they provide, application service providers (ASP)
may want franchisers to guarantee the integrity of their
software when deployed on a KioskNet.

We satisfy these requirements primarily by (a) using a
Public Key Infrastructure (PKI) to encrypt data and authen-
ticate users, by (b) relying on standard Unix security to
protect parts of the kiosk controller’s file system from the
franchisee, and by (c) encrypting user file systems. PKI is
often considered to be too hard to deploy in the field. However,
because every KioskNet user and role is a part of the same
system, we have a ’closed universe’ with a single trusted
root certificate authority, i.e. the University of Waterloo. This
greatly simplifies the problem. Thus, all the entities named
above are issued unique credentials including a 2048-bit RSA
private key and a corresponding public key certificate signed
by a chain of trust that originates from the University of
Waterloo.

1) Certificates: Public key certificates are issued and signed
hierarchically, forming chains in the standard fashion. That
is, a secure central root CA server at the University of
Waterloo certifies the public key of a trusted franchiser using
its own private key. This signature is stored in the form of an
X.509 certificate. Franchisers, in turn, issue certificates to their
franchisees and ASPs operating in their region. Franchisees
automatically certify users registered at their kiosks at the
time of user creation. Similarly, all KioskNet infrastructural
components, such as gateways and ferries, are issued unique
credentials by the franchisers that maintain them. Public key
certificates for users, franchisees and ASPs are periodically
broadcast throughout a franchiser’s region through the use of
a public key database maintained at the proxy and replicated
at all kiosk controllers. This allows secure messaging amongst
the components and users without the need to query a central
public key repository, which can be expensive in a discon-
nected environment. Even with 10,000 users, each with a 2
KB X.509 certificate, this only takes 20 MB, which can be
disseminated without too much trouble using KioskNet ferries.

2) Infrastructure integrity: KioskNet infrastructure compo-
nents are protected through the use of both cryptographic and
physical security mechanisms. We are mostly concerned with
attacks on kiosk controllers, because devices serving as ferries
and gateways are harder to attack, and, moreover, never see
unencrypted user data. To prevent attacks on kiosk controllers,
franchisees are not given superuser privileges on these de-
vices, preventing them from modifying or introducing any
root-owned binaries (particularly the OCMP executable) or
configuration files on these systems. Digital signatures on all
remote commands and software updates issued by franchiser
administrative personnel prevent attackers from using these
maintenance mechanisms to remotely modify the software
stack or configuration of infrastructure components. The use
of locked, tamper-evident enclosures on all infrastructure com-
ponents prevents attackers from easily removing the devices’
hard disks and accessing their private keys offline.

3) Protecting recycled PCs: Recycled PCs (or terminals)
are protected against viruses and other malware by forcing
them to boot from read-only disk images stored in tamper-
evident kiosk controllers. Because only franchiser adminis-
trative personnel are permitted to update these disk images,
franchisees can be assured of the integrity and security of the
operating system and applications running on their kiosks.

The measures taken to protect rural kiosks described above
also provide ASPs with assurance of the integrity of the plat-
form their applications are deployed on. Additional security
can be provided by ASPs issuing signed certificates for their
application binaries, allowing users and franchisees to verify
their integrity as required.

4) User data protection: User data is never stored at a
terminal. Instead, it is stored in kiosk controllers and is
secured by creating encrypted virtual volumes for each user’s
home directory keyed with a user-specific file-system key,
KFile−system. Two copies of each file-system key are main-
tained: a login key, KUser, encrypted with the user’s login
password stored in the kiosk controller’s /home directory and
a back-up, KUserback−up

, encrypted on the franchiser’s public
key and stored in /root.

Users’ encrypted virtual volumes are exported over NFS
for mounting on kiosk terminals at the corresponding direc-
tory under /home when they login with a valid password.
Linux’s Pluggable Authentication Module (PAM) automati-
cally mounts and prepares these volumes for the on-demand
decryption of files when users login, using their passwords
to decrypt KUser and obtain KFile−system. PAM reverses
the process when users log out. Users can transparently
read and write to their encrypted home directories using the
Linux DM-Crypt disk encryption module. Because user data,
including private keys, is stored in their encrypted virtual
volumes, attackers are unable to view or modify their data.
We emphasize that the user does not need to remember their
private key: instead, the user’s private key is stored in the
user’s home directory, and the directory is encrypted with a
key derived from the user’s Unix password. Thus, the user only
needs to remember his or her Unix password. This reduces the

cognitive burden on potentially semi-literate users.
Users that forget their passwords are required to prove their

identities to authorized franchiser personnel, who can then
reset their account passwords and use the franchiser’s private
key to decrypt the corresponding KUserback−up

keys to create
new KUser keys. Users would then be able to use their new
passwords to login and access their data.

5) Communication privacy and integrity: In-flight user data
that requires privacy and authenticity is encrypted and signed
at kiosk terminals before it is transferred to the kiosk controller
for forwarding to other KioskNet components along its way
to the proxy. This ensures secure user data cannot be read,
fabricated or tampered with while in transit within KioskNet.

When combined, the security measures described above
serve to protect KioskNet against a diverse set of attacks,
ranging from simple wireless packet sniffing to more sophisti-
cated attacks that involve removing an components’s hard disk
and booting it with a LiveCD to gain root access and read or
modify the data stored in it.

More details of this solution can be found in [9].

C. Routing

Routing in KioskNet is based on flooding for maximum reli-
ability. Providing guaranteed delivery of data using mechanical
backhaul is hard because ferries are subject to failures and
the trajectories of ferries are not always known beforehand.
The redundancy provided by flooding maximizes the chance
of delivery. Moreover, flooding requires less configuration at
deployment time, thereby making our system more rapidly
deployable. In KioskNet, flooding is confined in the scope of
a region for better scalability.

1) Routing for Upstream Traffic: Bundles sent from a kiosk
destined to legacy servers on the Internet are flooded to
all reachable gateways in the same region. These gateways
coordinate with each other to ensure that each bundle is sent to
the proxy by only one gateway to avoid wasting the bandwidth
between the gateways and the proxy, which we estimate is the
bottleneck of the system.

2) Routing for Downstream Traffic: Data from legacy
servers destined to kiosks is first buffered at the proxy respon-
sible for the kiosks. In light of the estimate that the bandwidth
between the gateways and the proxy is the bottleneck of the
system, the proxy chooses one gateway in the region to send
each bundle to, rather than flooding to all the gateways. If
the schedules of ferries are known to the proxy, our routing
and scheduling algorithm at the proxy can choose gateways
for bundles and decide the order in which they are sent in a
way that minimizes the overall delay. Moreover, our algorithm
can also enforce arbitrary bandwidth allocation among kiosks.
After a bundle is sent to a gateway, it is flooded to its
destination kiosk.

D. Terminal support

We allow recycled PCs with or without hard drives to boot
over local ethernet from a kiosk controller. The recycled PCs
are only required to have a BIOS and an ethernet card that

Installation Maintenance
Ofice Planning, Ordering, Soft-

ware installation
DTN and sync updates

Field Physical installation USB key updates

TABLE I
INSTALLATION AND MAINTENANCE TASKS FOR OFFICE AND FIELD

support PXE boot. A recycled PC downloads a Linux kernel
from the kiosk controller using PXE and TFTP, and after the
kernel is executed, mounts its root file system from the kiosk
controller via NFS. The kiosk controller only serves files; all
applications are run locally on the recycled PCs. Since all
program binaries are read-only, we can guarantee a virus-free
environment. Alternatively, if a recycled PC has an operating
system installed on its hard drive, a user can elect to boot into
that system at boot time.

E. User management

We allow kiosk owners to perform user management and
other system administration tasks through webmin, a web-
based graphical user interface for configuring Unix-like sys-
tems. With webmin, kiosk owners can manage their systems
without knowing how to use the underlying Linux OS. Web-
min also provides a simple interface for kiosk owners to
modify their systems, thereby reducing the chance of system
failure resulting from human errors.

User credentials (i.e. an RSA private key and corresponding
X.509 public key certificate signed by the local Franchiser) are
automatically created through an extension to webmin when
user is first registered at a kiosk. These credentials are stored in
the new user’s home directory, which is placed in an encrypted
virtual volume, as described earlier in Section III-B.

Once a user’s certificate is issued by the local CA client
it must be be propagated to all kiosks. We do so by first
updating a central public key database we call the Whitepages
directory. The kiosk controller generates a signed register mes-
sage containing the user’s EID and X.509 public certificate.
This message is transmitted to a gateway using mechanical
backhaul and subsequently to the Whitepages server using a
TCP connection. The server then verifies the certificate chain
and the signature. If the chain and signature are valid then
the user’s certificate is added to the whitepages directory. It
is also possible to update a stale certificate using the same
register message or to remove a certificate using an unregister
message.

To give all kiosks direct access to the whitepages directory it
is replicated on all kiosks. Updates to the central database are
periodically broadcast throughout the network to synchronize
the copies. This is described in detail in Section III-H.2.

F. Software installation

Table I summarizes KioskNet installation and maintenance
tasks to be done in the central office and the deployment
field, respectively. To minimize costs, the installation process
is designed to take place mostly centrally. In a central office,

few trained personnel can carry out the following installation
steps for a large number of kiosks:

1) Planning: Deciding the number of kiosks, vehicles, and
gateways of the system.

2) Ordering equipment
3) Software installation and configuration: Loading hard

drives with software images from our distribution.
The last step requires a PC and a USB to AT2500 IDE
connector. Regardless of the software running on the PC, it
will be rebooted, using the KioskNet distribution DVD, into a
live Linux session. The installation software copies modified
Linux images onto 2.5” hard drives through the USB inter-
face. After this copying process (approximately 12 minutes),
the installation software applies user specified configuration
parameters (e.g. IP address, and wireless channel) to the disk
image.

In the final step, non-expert field personnel physically install
the equipment in the villages and ferries. The kiosk in each
village consists of a kiosk controller, at least one recycled
disk-less PC, rechargeable batteries and solar panels.

G. Maintenance
The need to maintain disconnected and geographically

distributed KioskNet components is integral to our design.
We have designed a means to cheaply, securely, and reliably,
monitor and maintain potentially thousands of components.
To remove the need for KioskNet franchisers to travel to each
kiosk location (an obvious cost savings), we have designed
a sub-system for centralized management and maintenance.
KioskNet uses a mechanism similar to the Disruption Tolerant
Shell [10] for updating disconnected nodes.

In KioskNet terminology, an update is a zipped and signed
file that contains a controller script, recipients’ DTN EIDs,
a unique sequence number, and all other files that the script
needs for execution. When a KioskNet node receives an update
that matches its EID, it will check the signature. An authentic
update is uncompressed in a pre-specified location, and the
controller script is then run with root privilege in a forked
shell. When the shell terminates, its sequence number is
recorded along with the exit value of the controller script and
output logs are submitted to the logging sub-system.

The controller script performs the following steps:
1) Checking pre-conditions: The script may check the se-

quence number records, along with other preconditions.
2) Running the main task: In this stage the controller script

can use any of the local files besides the files shipped
with the update.

3) Generating short and long logs: KioskNet requires that,
updates generate two log files. Short logs are immedi-
ately reported back to the central administration via the
SMS control channel, and long logs are treated as normal
system logs.

4) Returning a status value: The returned status value is
recorded along with the sequence number.

Updates can reach KioskNet nodes over three channels. The
DTN/OCMP channel is the preferred transmission mechanism.

When this channel does not work we can flood updates to all
KioskNet components using rsync during each opportunistic
connection between components. In rare cases when a node is
not reachable using any of these two channels, a non-technical
field staff can apply the update using a USB key.

KioskNet has been designed to be highly robust and tolerant
to failures; however, both DTN and OCMP, which are critical
software layers, are under active development. As rational
system designers, we must conceed that failure could occur.
When a failure does occur2, KioskNet Franchisers require a
means to collect and debug system logs. We have designed
a mechanism that floods logs across a disconnected network
to the Internet using opportunistic connections. We call this
application log-flood. When enabled, log-flood periodically
compresses the contents of /var/log/ and truncates each log
file on each KioskNet component. The compressed archive
of logs is then timestamped and signed with a sequence
number. Log-flood periodically sends a broadcast ping to
detect neighbouring KioskNet components. When a neighbour
is detected they exchange log archives opportunistically using
rsync. For secure transfer, we tunnel rsync over ssh using
an ssh key installed by the Franchinser when configuring the
KioskNet component.

KioskNet components flood log archives to each other until
the files reach a gateway. To prevent redundant flooding, the
gateway does not flood logs to neighbouring ferries. The
gateway simply forwards log archives to the proxy on the
Internet. The proxy subsequently acknowledges the delivery of
each log archive and forwards an acknowledgement file to the
gateway. Acknowledgement files are then transferred from the
gateway to neighbouring ferries, and flooded back across the
disconnected network. When a KioskNet component receives
an acknowledgement file, it deletes the originating log archive.
Acknowledgement files eventually expire on each component.

H. KioskNet Applications

As mentioned in section II-D, applications communicate
with legacy servers on the Internet on behalf of disconnected
users. Applications are primarily located on the proxy compo-
nent, with a (typically) small helper application running on the
kiosk controller. Application may be written in any language,
including shell scripts. Architecturally, applications run on top
of the OCMP layer. They pass application data to and from
the OCMP layer using a directory based API.

Directory API: The Directory API is a branch of the file
system where applications place data for OCMP to process.
Each KioskNet user has its own directory within the Directory
API, and each application has its own branch within each user
directory. Each application directory has an upload and down-
load directory to hold data going to and coming from the proxy
respectively. When data arrives in a kiosk download directory
or a proxy upload directory, OCMP invokes a preconfigured
application callback to handle the newly received application
data. We rely on another application, the Directory Watcher, to

2We assume the OS remains stable.

periodically scan the Directory API to check for newly added
files. Newly detected files are then passed by the Directory
Watcher to OCMP over a loop-back socket. Further details
of the Directory API and Directory Watcher can be found
in [7]. Although the use of a directory based API is slightly
less efficient than passing data to OCMP directly, we found
that it greatly eased application integration. The added delay
incurred by polling for updates is negligible compared to the
time required to transport data over a mechanical backhaul.

Secure Directory API: Built upon the Directory API, the
Secure Directory API provides end-to-end secure communi-
cation. For every upload and download directory used in the
Directory API there is a corresponding “secure upload” and
“secure download” directory. Any files created in the secure
upload directory are encrypted, signed and then copied to
the upload directory. The sender’s certificate is also appended
to the data to ensure that only authentic KioskNet users are
able to send bundles. The file will be transmitted using the
Directory API and will appear in the download directory of
recipient(s). Any delivered files that are are marked secured
will be decrypted and copied to secure download directory
in plain-text form. The secure directories are stored within
the user’s encrypted home directory. The secure data is also
authenticated using the sender’s certificate chain and the digital
signature contained in each secured bundle.

While designing the security architecture we faced an in-
teresting problem while choosing the encryption scheme. The
traditional approach to ensuring end-to-end secure communi-
cation is to use Public Key encryption to generate a shared
secret and use it as a session key for ciphers such as AES.
However due to the delay-tolerant nature of the network the
time taken by the handshake necessary for generating a shared
secret precludes this approach. Using Public Key encryption
exclusively is also not feasible as it is computationally very
expensive for large data sizes. We therefore use AES-CBC
with randomly generated 256 bit keys to encrypt data. This
key is encrypted using the public key of the recipient and
appended to the bundle. Hence recipients can decrypt the data
by first decrypting the AES key using their own private keys.

We have developed several applications that utilize the
secure and non-secure Directory API. We now present three
main applications: email, database synchronization, and an
opportunistic Flickr3 client.

1) Email: The store-and-forward, delay-tolerant nature of
SMTP fits perfectly within the KioskNet architecture. We
expect that email will be the killer application of KioskNet
deployments and have designed the application to serve many
users. Email service within KioskNet consists of five compo-
nents:
• Client: The client application can be any standard email

client such as Thunderbird or Outlook Express. The client
runs on the recycled PC. The email client is configured to
fetch a user’s email from the kiosk controller using IMAP.
Its outbound SMTP server address is also configured to

3http://www.flickr.com

be the kiosk. From the perspective of the email client and
its users, emails are sent and received as if the recycled
PC was connected to the Internet.

• uw-imap: Any IMAP server can be used to serve emails
from the kiosk controller to the email client running
on the recycled PC. We chose to use UW-IMAP purely
because it supports the mbox family of email collection
formats, has a small memory footprint, and was simple
to deploy compared to other open source IMAP servers.

• sendmail: Sendmail implements the SMTP protocol be-
tween the email client and kiosk controller and between
the proxy and legacy SMTP servers.

• Kiosk: The kiosk component of KioskNet’s email service
is implemented as a plugin to sendmail (milter). When
handing emails sent from the recycled PC, the plugin
is responsible for intercepting SMTP traffic from the
email client and compressing it for transport across to
the disconnected network. When receiving an email, this
component translates email from SMTP format into mbox
format and adds it to the user’s inbox.

• Proxy: The proxy component is also implemented as a
sendmail filter. This component receives emails destined
for KioskNet users from SMTP servers on the Internet.
Like its kiosk counterpart, emails are compressed for
transport. When handing emails sent from kiosk users,
the proxy component simply decompresses the outbound
message and passes it to sendmail for delivery.

2) Database Synchronization: We anticipate that a major
use of KioskNet will be information distribution for data such
as agricultural databases and property records. Furthermore,
every kiosk must have access to the whitepages directory of
public certificates in order to initiate secure communication.
Therefore, we wrote DBSync, a robust database synchroniza-
tion mechanism. DBSync periodically takes a snapshot of a
central Postgres database. The snapshot is distributed to all
kiosk controllers via the Directory API. When a controller
receives a snapshot it applies updates its local database with
the snapshot. However, this approach is not scalable since
updates have to be broadcast and a single update will require
the transmission of the entire database. To ameliorate this
problem we generate a diff at the central database using
the most recent prior snapshot and the current snapshot. The
diff is transmitted to kiosk controllers which use the patch
utility to combine the current snapshot with updates before
restoring database state. In this manner we are able to keep
large database synchronized with minimal overhead.

3) Flickr: A user can take pictures with his/her WiFi-
enabled camera phone. The client-side application will submit
the picture files to OCMP using the Directory API. When the
user goes past a kiosk or a ferry, the files will be automatically
transferred to the kiosk or the ferry, and eventually arrive at
the proxy. The proxy-side plug-in for the Flickr application
then automatically uploads the pictures to the user’s album
using the user’s credentials through the XML-RPC based API
provided by flickr.com.

IV. COST STRUCTURE

By design, our solution is low-cost. For instance, we es-
timate that to provide minimal connectivity to a population
of about one million people will require a total capital ex-
penditure of only about $300,000 or 30 cents/person. More
extensive coverage will probably cost ten times as much, but
still less than a one-time cost of $five per person.

We now present some cost figures. These figures are merely
indicative because much depends on the actual deployment
environment, and issues such as the rate of interest for
small business loans, the import duty rate on electronics, and
purchase volumes.

Using off-the-shelf technology, the cost of an average kiosk
(which does not require solar power) would be about $450.
The main costs at a kiosk are for a single-board computer (such
as a Soekris net4501with an 802.11a/b/g mini-PCI Atheros
wireless card) which costs about $250, for power remediation
(using car batteries), which costs about $100, and for a $100-
recycled PC. Note that this cost would be lower with volume
purchases. Moreover, the cost of a single-board computer will
be lower if local single-board computer manufacturers can be
found, or if the single-board computer is replaced with an XO
laptop [11]. On the other hand, costs can be higher if there is
need for solar cells (which cost around $150), or high-power
external antennas, which can add another $250 to the cost.

Assuming an initial capital expenditure of $450, the opera-
tional expense, including the cost of field technicians and capi-
tal depreciation on an 18-month schedule is about $65/month.
The main costs are for a field technician, who can service
about 20 kiosks, and the cost of capital depreciation. Even
assuming 10% penetration of a target population of 2500 users,
with a service charge of $3.00/year, an operator can break
even. Additional profit can be generated by charging more
per user, by increasing penetration, or by offering additional
services, such as computer literacy or digital photographs.

V. PILOT DEPLOYMENT

We deployed a prototype of our solution in Anandapuram,
a village in South India, during the week of May 16th, 2006.
Each kiosk already had a Windows XP PC. We deployed a
Soekris net4801 at the kiosk, with a 40 GB Toshiba hard disk
drive for local storage. The system was connected to a roof-
mounted omnidirectional antenna.

Power came from a 42 AH deep discharge car battery that
was charged by two 1200 mA (12V) Powerflex solar panels
mounted on the roof of the kiosk. We could also have run our
system from AC mains and relied on battery/solar power only
for backup.

In the car (see Figure 4), we used power from the car
battery, but through an inverter and the Soekris power supply,
to mitigate against voltage spikes. The car had a magnetically
mounted omnidirectional antenna.

The gateway was in Vishakapatnam. Because the car was
parked below the computer room, it was necessary to place
the omni antenna outside the building. Figure 4 is a composite
figure showing the deployed system.

Fig. 4. Composite picture of the pilot deployment.

The purpose of the pilot deployment was to gain confidence
in the physical system (antennas, power supplies, single board
computers) and their ability to operate with minimal infras-
tructure and in poor operating conditions – temperatures in
the vehicle reached almost 50 degrees celsius! The software
infrastructure in the pilot, though, was not well-tested. In the
last year, we have thoroughly stress-tested every component of
the system, and we released a robust implementation on July
20, 2007. We plan to release the security, SMS, and DNS
components of our system in the fourth quarter of 2007.

VI. DISCUSSION

Based on our experiences with the prototype deployed in the
field [2], we have refined several key architectural components
as described below.

A. IBC vs. PKI

The initial design of the system provided privacy by means
of Hierarchical Identity Based Cryptography (HIBC) [12].
This allows a kiosk user to send authenticated and encrypted
messages to another user without the need to know that user’s
public key. Although useful, using HIBC turned out to be
problematic in practice. HIBC is essentially controlled by
a single entity (Voltage Inc), which has stringent licensing
conditions for commercial use. We therefore decided to replace
HIBC with our own PKI. There is a wide assortment of open-
source tools available for PKI, and we were able to use them
to build our own PKI in a matter of a few developer-months.

B. Flat names and DHT vs. Hierarchical names and DNS

Our initial design used flat names and a DHT as a Home
Location Register to keep track of user location. Again,
although this is academically interesting, we found that the
DHT we used (OpenDHT) was both slow and unstable.
Moreover, OpenDHT is hosted on PlanetLab nodes that are
not found in most developing countries. From a technical
perspective, a DHT does not allow us to delegate location
management for sets of users to third parties. We therefore

decided to use hierarchical names for users (of the form
user.kioskname.regionname.organizationname.kiosknet.org).
This allowed us to use stable, well-tested, and fast off-the-
shelf DNS implementations for location management - the
location of a user is just an MX record that points to its
kiosk. Besides, we can now delegate part of the name space
to the organization responsible for a deployment. We think
that these two benefits more than compensated for the loss of
a flat name space and an infinitely-scaleable DHT.

C. Mechanical backhaul vs. Use of all interfaces

We initially assumed that the only way to reach a kiosk
would be using mechanical backhaul. In fact, kiosks are
increasingly being reached by GPRS, and soon, will also have
WiMAX coverage. Therefore, we decided to support a wide
variety of connectivities, with mechanical backhaul reserved
for slow and delay-tolerant data. It turns out that using SMS for
a control channel brings numerous benefits, such as allowing
us to detect ferry failures, and to alert kiosks to turn on their
WiFi interface in anticipation of a ferry arrival. We believe
that this acceptance of multiple-connectivity makes our system
more widely applicable.

VII. RELATED WORK

Our work is most closely related to, and was inspired by, the
pioneering work by Daknet [3], [13]. However, we differ from
Daknet in several ways. To begin with, Daknet focuses only
on communication, but KioskNet also supports a computing
platform based on recycled PCs. Unlike DakNet, KioskNet
leverages DTN for disconnection tolerance, and uses PKI
for privacy, confidentiality, and integrity. Moreover, KioskNet
supports multiple networks at each kiosk.

The work described here enhances our previously described
system for ’mechanical backhaul’ described in [2]. Our current
system uses different naming, addressing, and routing, as well
as PKI-based security as discussed in Section VI.

The goal of low-cost Internet access is shared by the
CorDECT project [14] and two well-known long-range wire-
less projects- Digital Gangetic Plains [15] and WildNet [16].
These are essentially communication technologies and can
potentially be integrated into KioskNet as connection objects.

In an alternative use of vehicles, the VIDAL Computer on
Wheels project [17] provides a laptop equipped with a CDMA
modem in a car that periodically visits villages. Although
equally low-cost, this forces villagers to adjust their schedule
to that of the vehicle, instead of having their data available to
them at a kiosk when they need it.

The use of mechanical backhaul has also been studied
in pioneering work on data ferrying [18], and recent work
on DieselNet [19]. However, the focus of these projects has
primarily been on routing - instead, we take a whole-systems
perspective for the specific purpose of rural connectivity.

VIII. CONCLUSIONS

Rural communities worldwide can benefit from low-cost
Internet access. KioskNet attempts to meet this need, focusing
not only on the communication path but also many related
components, such as security, user management, and log
collection. By carefully examining the problem constraints,
and integrating well-tested and appropriate existing solutions,
we have been able to build a robust system for Internet
access without increasing its cost. We look forward to widely
deploying it in the field.

REFERENCES

[1] K. Toyama, “Review of Research on Rural PC Kiosks,”
http://research.microsoft.com/research/tem/kiosks/, 2007.

[2] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav, “Low-cost
communication for rural internet kiosks using mechanical backhaul,” in
Proc. ACM MOBICOM, 2006.

[3] “United villages,” http://www.unitedvillages.com/, 2007.
[4] S. Guo and S. Keshav, “Fair and Efficient Scheduling in Data Ferrying

Networks,” Proc. CoNEXT, 2007.
[5] S. Guo, M. Falaki, E. Oliver, S. Ur Rahman, A. Seth, M. Zaharia,

U. Ismail, and S. Keshav, “Design and Implementation of the KioskNet
System,” University of Waterloo Technical Report, CS-2007-40, 2007.

[6] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra,
“Implementing Delay Tolerant Networking,” Intel Research, Berkeley,
Technical Report, IRB-TR-04-020, Dec, 2004.

[7] A. Seth, M. Zaharia, S. Keshav, and S. Bhattacharyya, “A Policy-
Oriented Architecture for Opportunistic Communication on Multiple
Wireless Networks,” http://tinyurl.com/2j9ewt, 2006.

[8] M. Zaharia and S. Keshav, “Fast and Optimal Scheduling Over Multiple
Network Interfaces,” University of Waterloo Technical Report, CS-2007-
36, 2007.

[9] S. Ur Rahman, U. Hengartner, U. Ismail, and S. Keshav, “Securing
kiosknet: A systems approach,” University of Waterloo Technical Report,
CS-2007-43, 2007.

[10] M. Lukac, L. Girod, and D. Estrin, “Disruption tolerant shell,” Proceed-
ings of the 2006 SIGCOMM CHANTS, pp. 189–196, 2006.

[11] “One laptop per child,” http://www.laptop.org/, 2007.
[12] A. Seth and S. Keshav, “Practical Security for Disconnected Nodes,”

Proceedings of First Workshop on Secure Network Protocols (NPSEC),
2005.

[13] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: rethinking
connectivity in developing nations,” Computer, vol. 37, no. 1, pp.
78–83, 2004. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=1260729

[14] A. Jhunjhunwala, B. Ramamurthi, and T. Gonsalves, “The role of
technology in telecom expansion in india,” Communications Magazine,
IEEE, vol. 36, no. 11, pp. 88–94, 1998.

[15] “Ruralnet: Low-cost networking for rural india,”
http://www.cse.iitk.ac.in/users/braman/dgp.html, 2007.

[16] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, and
E. Brewer, “WiLDNet: Design and Implementation of High Performance
WiFi Based Long Distance Networks,” Proceedings of NSDI, 2007.

[17] “Vidal computer on wheels project,” http://www.vidal.org.in/node/6,
2007.

[18] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” Proc. ACM MOBIHOC,
2004.

[19] “University of massachusetts dieselnet project,”
http://tinyurl.com/37kcfg, 2007.

