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Abstract
We present Mesos, a platform for sharing commod-
ity clusters between multiple diverse cluster computing
frameworks, such as Hadoop and MPI. Sharing improves
cluster utilization and avoids per-framework data repli-
cation. Mesos shares resources in a fine-grained man-
ner, allowing frameworks to achieve data locality by
taking turns reading data stored on each machine. To
support the sophisticated schedulers of today’s frame-
works, Mesos introduces a distributed two-level schedul-
ing mechanism called resource offers. Mesos decides
how many resources to offer each framework, while
frameworks decide which resources to accept and which
computations to run on them. Our results show that
Mesos can achieve near-optimal data locality when shar-
ing the cluster among diverse frameworks, can scale to
50,000 (emulated) nodes, and is resilient to failures.

1 Introduction
Clusters of commodity servers have become a major
computing platform, powering both large Internet ser-
vices and a growing number of data-intensive scientific
applications. Driven by these applications, researchers
and practitioners have been developing a diverse array of
cluster computing frameworks to simplify programming
the cluster. Prominent examples include MapReduce
[18], Dryad [24], MapReduce Online [17] (which sup-
ports streaming jobs), Pregel [28] (a specialized frame-
work for graph computations), and others [27, 19, 30].

It seems clear that new cluster computing frameworks1

will continue to emerge, and that no framework will be
optimal for all applications. Therefore, organizations
will want to run multiple frameworks in the same cluster,
picking the best one for each application. Multiplexing
a cluster between frameworks improves utilization and
allows applications to share access to large datasets that
may be too costly to replicate across clusters.

1By “framework,” we mean a software system that manages and
executes one or more jobs on a cluster.

Two common solutions for sharing a cluster today are
either to statically partition the cluster and run one frame-
work per partition, or to allocate a set of VMs to each
framework. Unfortunately, these solutions achieve nei-
ther high utilization nor efficient data sharing. The main
problem is the mismatch between the allocation granular-
ities of these solutions and of existing frameworks. Many
frameworks, such as Hadoop and Dryad, employ a fine-
grained resource sharing model, where nodes are subdi-
vided into “slots” and jobs are composed of short tasks
that are matched to slots [25, 38]. The short duration of
tasks and the ability to run multiple tasks per node allow
jobs to achieve high data locality, as each job will quickly
get a chance to run on nodes storing its input data. Short
tasks also allow frameworks to achieve high utilization,
as jobs can rapidly scale when new nodes become avail-
able. Unfortunately, because these frameworks are de-
veloped independently, there is no way to perform fine-
grained sharing across frameworks, making it difficult to
share clusters and data efficiently between them.

In this paper, we propose Mesos, a thin resource shar-
ing layer that enables fine-grained sharing across diverse
cluster computing frameworks, by giving frameworks a
common interface for accessing cluster resources.

The main design question for Mesos is how to build
a scalable and efficient system that supports a wide ar-
ray of both current and future frameworks. This is chal-
lenging for several reasons. First, each framework will
have different scheduling needs, based on its program-
ming model, communication pattern, task dependencies,
and data placement. Second, the scheduling system must
scale to clusters of tens of thousands of nodes running
hundreds of jobs with millions of tasks. Finally, because
all the applications in the cluster depend on Mesos, the
system must be fault-tolerant and highly available.

One approach would be for Mesos to implement a cen-
tralized scheduler that takes as input framework require-
ments, resource availability, and organizational policies,
and computes a global schedule for all tasks. While this
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approach can optimize scheduling across frameworks, it
faces several challenges. The first is complexity. The
scheduler would need to provide a sufficiently expres-
sive API to capture all frameworks’ requirements, and
to solve an online optimization problem for millions
of tasks. Even if such a scheduler were feasible, this
complexity would have a negative impact on its scala-
bility and resilience. Second, as new frameworks and
new scheduling policies for current frameworks are con-
stantly being developed [37, 38, 40, 26], it is not clear
whether we are even at the point to have a full specifi-
cation of framework requirements. Third, many existing
frameworks implement their own sophisticated schedul-
ing [25, 38], and moving this functionality to a global
scheduler would require expensive refactoring.

Instead, Mesos takes a different approach: delegating
control over scheduling to the frameworks. This is ac-
complished through a new abstraction, called a resource
offer, which encapsulates a bundle of resources that a
framework can allocate on a cluster node to run tasks.
Mesos decides how many resources to offer each frame-
work, based on an organizational policy such as fair shar-
ing, while frameworks decide which resources to accept
and which tasks to run on them. While this decentral-
ized scheduling model may not always lead to globally
optimal scheduling, we have found that it performs sur-
prisingly well in practice, allowing frameworks to meet
goals such as data locality nearly perfectly. In addition,
resource offers are simple and efficient to implement, al-
lowing Mesos to be highly scalable and robust to failures.

Mesos also provides other benefits to practitioners.
First, even organizations that only use one framework
can use Mesos to run multiple instances of that frame-
work in the same cluster, or multiple versions of the
framework. Our contacts at Yahoo! and Facebook in-
dicate that this would be a compelling way to isolate
production and experimental Hadoop workloads and to
roll out new versions of Hadoop [11, 10]. Second,
Mesos makes it easier to develop and immediately ex-
periment with new frameworks. The ability to share re-
sources across multiple frameworks frees the developers
to build and run specialized frameworks targeted at par-
ticular problem domains rather than one-size-fits-all ab-
stractions. Frameworks can therefore evolve faster and
provide better support for each problem domain.

We have implemented Mesos in 10,000 lines of C++.
The system scales to 50,000 (emulated) nodes and uses
ZooKeeper [4] for fault tolerance. To evaluate Mesos, we
have ported three cluster computing systems to run over
it: Hadoop, MPI, and the Torque batch scheduler. To val-
idate our hypothesis that specialized frameworks provide
value over general ones, we have also built a new frame-
work on top of Mesos called Spark, optimized for itera-
tive jobs where a dataset is reused in many parallel oper-
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Figure 1: CDF of job and task durations in Facebook’s Hadoop
data warehouse (data from [38]).

ations, and shown that Spark can outperform Hadoop by
10x in iterative machine learning workloads.

This paper is organized as follows. Section 2 details
the data center environment that Mesos is designed for.
Section 3 presents the architecture of Mesos. Section 4
analyzes our distributed scheduling model (resource of-
fers) and characterizes the environments that it works
well in. We present our implementation of Mesos in Sec-
tion 5 and evaluate it in Section 6. We survey related
work in Section 7. Finally, we conclude in Section 8.

2 Target Environment

As an example of a workload we aim to support, con-
sider the Hadoop data warehouse at Facebook [5]. Face-
book loads logs from its web services into a 2000-node
Hadoop cluster, where they are used for applications
such as business intelligence, spam detection, and ad
optimization. In addition to “production” jobs that run
periodically, the cluster is used for many experimental
jobs, ranging from multi-hour machine learning compu-
tations to 1-2 minute ad-hoc queries submitted interac-
tively through an SQL interface called Hive [3]. Most
jobs are short (the median job being 84s long), and the
jobs are composed of fine-grained map and reduce tasks
(the median task being 23s), as shown in Figure 1.

To meet the performance requirements of these jobs,
Facebook uses a fair scheduler for Hadoop that takes ad-
vantage of the fine-grained nature of the workload to al-
locate resources at the level of tasks and to optimize data
locality [38]. Unfortunately, this means that the cluster
can only run Hadoop jobs. If a user wishes to write an ad
targeting algorithm in MPI instead of MapReduce, per-
haps because MPI is more efficient for this job’s commu-
nication pattern, then the user must set up a separate MPI
cluster and import terabytes of data into it. This problem
is not hypothetical; our contacts at Yahoo! and Facebook
report that users want to run MPI and MapReduce Online
(a streaming MapReduce) [11, 10]. Mesos aims to pro-
vide fine-grained sharing between multiple cluster com-
puting frameworks to enable these usage scenarios.
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Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy

Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [20]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview

Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource offer
is a list of free resources on multiple slaves. The master
decides how many resources to offer to each framework
according to an organizational policy, such as fair sharing
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Figure 3: Resource offer example.

or priority. To support a diverse set of inter-framework
allocation policies, Mesos lets organizations define their
own policies via a pluggable allocation module.

Each framework running on Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources to of-
fer to each framework, the frameworks’ schedulers select
which of the offered resources to use. When a framework
accepts offered resources, it passes Mesos a description
of the tasks it wants to launch on them.

Figure 3 shows an example of how a framework gets
scheduled to run tasks. In step (1), slave 1 reports
to the master that it has 4 CPUs and 4 GB of mem-
ory free. The master then invokes the allocation mod-
ule, which tells it that framework 1 should be offered
all available resources. In step (2), the master sends a
resource offer describing these resources to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using 〈2 CPUs, 1 GB RAM〉 for the first task, and
〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted borders). Because 1 CPU and 1 GB of RAM are
still free, the allocation module may now offer them to
framework 2. In addition, this resource offer process re-
peats when tasks finish and new resources become free.

To maintain a thin interface and enable frameworks
to evolve independently, Mesos does not require frame-
works to specify their resource requirements or con-
straints. Instead, Mesos gives frameworks the ability to
reject offers. A framework can reject resources that do
not satisfy its constraints in order to wait for ones that
do. Thus, the rejection mechanism enables frameworks
to support arbitrarily complex resource constraints while
keeping Mesos simple and scalable.

One potential challenge with solely using the rejec-
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tion mechanism to satisfy all framework constraints is
efficiency: a framework may have to wait a long time
before it receives an offer satisfying its constraints, and
Mesos may have to send an offer to many frameworks
before one of them accepts it. To avoid this, Mesos also
allows frameworks to set filters, which are Boolean pred-
icates specifying that a framework will always reject cer-
tain resources. For example, a framework might specify
a whitelist of nodes it can run on.

There are two points worth noting. First, filters repre-
sent just a performance optimization for the resource of-
fer model, as the frameworks still have the ultimate con-
trol to reject any resources that they cannot express filters
for and to choose which tasks to run on each node. Sec-
ond, as we will show in this paper, when the workload
consists of fine-grained tasks (e.g., in MapReduce and
Dryad workloads), the resource offer model performs
surprisingly well even in the absence of filters. In par-
ticular, we have found that a simple policy called delay
scheduling [38], in which frameworks wait for a limited
time to acquire nodes storing their data, yields nearly op-
timal data locality with a wait time of 1-5s.

In the rest of this section, we describe how Mesos per-
forms two key functions: resource allocation (§3.3) and
resource isolation (§3.4). We then describe filters and
several other mechanisms that make resource offers scal-
able and robust (§3.5). Finally, we discuss fault tolerance
in Mesos (§3.6) and summarize the Mesos API (§3.7).

3.3 Resource Allocation

Mesos delegates allocation decisions to a pluggable al-
location module, so that organizations can tailor alloca-
tion to their needs. So far, we have implemented two
allocation modules: one that performs fair sharing based
on a generalization of max-min fairness for multiple re-
sources [21] and one that implements strict priorities.
Similar policies are used in Hadoop and Dryad [25, 38].

In normal operation, Mesos takes advantage of the
fact that most tasks are short, and only reallocates re-
sources when tasks finish. This usually happens fre-
quently enough so that new frameworks acquire their
share quickly. For example, if a framework’s share is
10% of the cluster, it needs to wait approximately 10%
of the mean task length to receive its share. However,
if a cluster becomes filled by long tasks, e.g., due to a
buggy job or a greedy framework, the allocation module
can also revoke (kill) tasks. Before killing a task, Mesos
gives its framework a grace period to clean it up.

We leave it up to the allocation module to select the
policy for revoking tasks, but describe two related mech-
anisms here. First, while killing a task has a low impact
on many frameworks (e.g., MapReduce), it is harmful for
frameworks with interdependent tasks (e.g., MPI). We al-
low these frameworks to avoid being killed by letting al-

location modules expose a guaranteed allocation to each
framework—a quantity of resources that the framework
may hold without losing tasks. Frameworks read their
guaranteed allocations through an API call. Allocation
modules are responsible for ensuring that the guaranteed
allocations they provide can all be met concurrently. For
now, we have kept the semantics of guaranteed alloca-
tions simple: if a framework is below its guaranteed al-
location, none of its tasks should be killed, and if it is
above, any of its tasks may be killed.

Second, to decide when to trigger revocation, Mesos
must know which of the connected frameworks would
use more resources if they were offered them. Frame-
works indicate their interest in offers through an API call.

3.4 Isolation

Mesos provides performance isolation between frame-
work executors running on the same slave by leveraging
existing OS isolation mechanisms. Since these mecha-
nisms are platform-dependent, we support multiple iso-
lation mechanisms through pluggable isolation modules.

We currently isolate resources using OS container
technologies, specifically Linux Containers [9] and So-
laris Projects [13]. These technologies can limit the
CPU, memory, network bandwidth, and (in new Linux
kernels) I/O usage of a process tree. These isolation tech-
nologies are not perfect, but using containers is already
an advantage over frameworks like Hadoop, where tasks
from different jobs simply run in separate processes.

3.5 Making Resource Offers Scalable and Robust

Because task scheduling in Mesos is a distributed pro-
cess, it needs to be efficient and robust to failures. Mesos
includes three mechanisms to help with this goal.

First, because some frameworks will always reject cer-
tain resources, Mesos lets them short-circuit the rejection
process and avoid communication by providing filters to
the master. We currently support two types of filters:
“only offer nodes from list L” and “only offer nodes with
at least R resources free”. However, other types of pred-
icates could also be supported. Note that unlike generic
constraint languages, filters are Boolean predicates that
specify whether a framework will reject one bundle of
resources on one node, so they can be evaluated quickly
on the master. Any resource that does not pass a frame-
work’s filter is treated exactly like a rejected resource.

Second, because a framework may take time to re-
spond to an offer, Mesos counts resources offered to a
framework towards its allocation of the cluster. This is
a strong incentive for frameworks to respond to offers
quickly and to filter resources that they cannot use.

Third, if a framework has not responded to an offer
for a sufficiently long time, Mesos rescinds the offer and
re-offers the resources to other frameworks.
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Scheduler Callbacks 

resourceOffer(offerId, offers) 
offerRescinded(offerId) 
statusUpdate(taskId, status) 
slaveLost(slaveId) 
  

Executor Callbacks 

launchTask(taskDescriptor) 
killTask(taskId) 

Executor Actions 

sendStatus(taskId, status) 
  

Scheduler Actions 

replyToOffer(offerId, tasks) 
setNeedsOffers(bool) 
setFilters(filters) 
getGuaranteedShare() 
killTask(taskId) 

Table 1: Mesos API functions for schedulers and executors.

3.6 Fault Tolerance

Since all the frameworks depend on the Mesos master, it
is critical to make the master fault-tolerant. To achieve
this, we have designed the master to be soft state, so that
a new master can completely reconstruct its internal state
from information held by the slaves and the framework
schedulers. In particular, the master’s only state is the list
of active slaves, active frameworks, and running tasks.
This information is sufficient to compute how many re-
sources each framework is using and run the allocation
policy. We run multiple masters in a hot-standby config-
uration using ZooKeeper [4] for leader election. When
the active master fails, the slaves and schedulers connect
to the next elected master and repopulate its state.

Aside from handling master failures, Mesos reports
node failures and executor crashes to frameworks’ sched-
ulers. Frameworks can then react to these failures using
the policies of their choice.

Finally, to deal with scheduler failures, Mesos allows a
framework to register multiple schedulers such that when
one fails, another one is notified by the Mesos master to
take over. Frameworks must use their own mechanisms
to share state between their schedulers.

3.7 API Summary

Table 1 summarizes the Mesos API. The “callback”
columns list functions that frameworks must implement,
while “actions” are operations that they can invoke.

4 Mesos Behavior
In this section, we study Mesos’s behavior for different
workloads. Our goal is not to develop an exact model of
the system, but to provide a coarse understanding of its
behavior, in order to characterize the environments that
Mesos’s distributed scheduling model works well in.

In short, we find that Mesos performs very well when
frameworks can scale up and down elastically, tasks
durations are homogeneous, and frameworks prefer all
nodes equally (§4.2). When different frameworks pre-
fer different nodes, we show that Mesos can emulate a
centralized scheduler that performs fair sharing across
frameworks (§4.3). In addition, we show that Mesos can
handle heterogeneous task durations without impacting

the performance of frameworks with short tasks (§4.4).
We also discuss how frameworks are incentivized to im-
prove their performance under Mesos, and argue that
these incentives also improve overall cluster utilization
(§4.5). We conclude this section with some limitations
of Mesos’s distributed scheduling model (§4.6).

4.1 Definitions, Metrics and Assumptions

In our discussion, we consider three metrics:
• Framework ramp-up time: time it takes a new

framework to achieve its allocation (e.g., fair share);

• Job completion time: time it takes a job to complete,
assuming one job per framework;

• System utilization: total cluster utilization.
We characterize workloads along two dimensions: elas-
ticity and task duration distribution. An elastic frame-
work, such as Hadoop and Dryad, can scale its resources
up and down, i.e., it can start using nodes as soon as it
acquires them and release them as soon its task finish. In
contrast, a rigid framework, such as MPI, can start run-
ning its jobs only after it has acquired a fixed quantity of
resources, and cannot scale up dynamically to take ad-
vantage of new resources or scale down without a large
impact on performance. For task durations, we consider
both homogeneous and heterogeneous distributions.

We also differentiate between two types of resources:
mandatory and preferred. A resource is mandatory if a
framework must acquire it in order to run. For example, a
graphical processing unit (GPU) is mandatory if a frame-
work cannot run without access to GPU. In contrast, a re-
source is preferred if a framework performs “better” us-
ing it, but can also run using another equivalent resource.
For example, a framework may prefer running on a node
that locally stores its data, but may also be able to read
the data remotely if it must.

We assume the amount of mandatory resources re-
quested by a framework never exceeds its guaranteed
share. This ensures that frameworks will not deadlock
waiting for the mandatory resources to become free.2 For
simplicity, we also assume that all tasks have the same re-
source demands and run on identical slices of machines
called slots, and that each framework runs a single job.

4.2 Homogeneous Tasks

We consider a cluster with n slots and a framework, f ,
that is entitled to k slots. For the purpose of this analy-
sis, we consider two distributions of the task durations:
constant (i.e., all tasks have the same length) and expo-
nential. Let the mean task duration be T , and assume that
framework f runs a job which requires βkT total com-

2In workloads where the mandatory resource demands of the ac-
tive frameworks can exceed the capacity of the cluster, the allocation
module needs to implement admission control.

5



Elastic Framework Rigid Framework
Constant dist. Exponential dist. Constant dist. Exponential dist.

Ramp-up time T T ln k T T ln k

Completion time (1/2 + β)T (1 + β)T (1 + β)T (ln k + β)T

Utilization 1 1 β/(1/2 + β) β/(ln k − 1 + β)

Table 2: Ramp-up time, job completion time and utilization for both elastic and rigid frameworks, and for both constant and
exponential task duration distributions. The framework starts with no slots. k is the number of slots the framework is entitled under
the scheduling policy, and βT represents the time it takes a job to complete assuming the framework gets all k slots at once.

putation time. That is, when the framework has k slots,
it takes its job βT time to finish.

Table 2 summarizes the job completion times and sys-
tem utilization for the two types of frameworks and the
two types of task length distributions. As expected, elas-
tic frameworks with constant task durations perform the
best, while rigid frameworks with exponential task dura-
tion perform the worst. Due to lack of space, we present
only the results here and include derivations in [23].

Framework ramp-up time: If task durations are con-
stant, it will take framework f at most T time to acquire
k slots. This is simply because during a T interval, every
slot will become available, which will enable Mesos to
offer the framework all k of its preferred slots. If the du-
ration distribution is exponential, the expected ramp-up
time can be as high as T ln k [23].

Job completion time: The expected completion time3

of an elastic job is at most (1 + β)T , which is within T
(i.e., the mean task duration) of the completion time of
the job when it gets all its slots instantaneously. Rigid
jobs achieve similar completion times for constant task
durations, but exhibit much higher completion times for
exponential job durations, i.e., (ln k + β)T . This is sim-
ply because it takes a framework T ln k time on average
to acquire all its slots and be able to start its job.

System utilization: Elastic jobs fully utilize their al-
located slots, because they can use every slot as soon
as they get it. As a result, assuming infinite demand, a
system running only elastic jobs is fully utilized. Rigid
frameworks achieve slightly worse utilizations, as their
jobs cannot start before they get their full allocations, and
thus they waste the resources held while ramping up.

4.3 Placement Preferences

So far, we have assumed that frameworks have no slot
preferences. In practice, different frameworks prefer dif-
ferent nodes and their preferences may change over time.
In this section, we consider the case where frameworks
have different preferred slots.

The natural question is how well Mesos will work
compared to a central scheduler that has full information
about framework preferences. We consider two cases:

3When computing job completion time we assume that the last tasks
of the job running on the framework’s k slots finish at the same time.

(a) there exists a system configuration in which each
framework gets all its preferred slots and achieves its full
allocation, and (b) there is no such configuration, i.e., the
demand for some preferred slots exceeds the supply.

In the first case, it is easy to see that, irrespective of the
initial configuration, the system will converge to the state
where each framework allocates its preferred slots after
at most one T interval. This is simple because during a
T interval all slots become available, and as a result each
framework will be offered its preferred slots.

In the second case, there is no configuration in which
all frameworks can satisfy their preferences. The key
question in this case is how should one allocate the pre-
ferred slots across the frameworks demanding them. In
particular, assume there are p slots preferred bym frame-
works, where framework i requests ri such slots, and∑m

i=1 ri > x. While many allocation policies are pos-
sible, here we consider a weighted fair allocation policy
where the weight associated with framework i is its in-
tended total allocation, si. In other words, assuming that
each framework has enough demand, we aim to allocate
p·si/(

∑m
i=1 si) preferred slots to framework i.

The challenge in Mesos is that the scheduler does
not know the preferences of each framework. Fortu-
nately, it turns out that there is an easy way to achieve
the weighted allocation of the preferred slots described
above: simply perform lottery scheduling [36], offer-
ing slots to frameworks with probabilities proportional to
their intended allocations. In particular, when a slot be-
comes available, Mesos can offer that slot to framework i
with probability si/(

∑n
i=1 si), where n is the total num-

ber of frameworks in the system. Furthermore, because
each framework i receives on average si slots every T
time units, the results for ramp-up times and completion
times in Section 4.2 still hold.

4.4 Heterogeneous Tasks

So far we have assumed that frameworks have homo-
geneous task duration distributions, i.e., that all frame-
works have the same task duration distribution. In this
section, we discuss frameworks with heterogeneous task
duration distributions. In particular, we consider a work-
load where tasks that are either short and long, where the
mean duration of the long tasks is significantly longer
than the mean of the short tasks. Such heterogeneous
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workloads can hurt frameworks with short tasks. In the
worst case, all nodes required by a short job might be
filled with long tasks, so the job may need to wait a long
time (relative to its execution time) to acquire resources.

We note first that random task assignment can work
well if the fraction φ of long tasks is not very close to 1
and if each node supports multiple slots. For example,
in a cluster with S slots per node, the probability that a
node is filled with long tasks will be φS . When S is large
(e.g., in the case of multicore machines), this probability
is small even with φ > 0.5. If S = 8 and φ = 0.5, for ex-
ample, the probability that a node is filled with long tasks
is 0.4%. Thus, a framework with short tasks can still ac-
quire many preferred slots in a short period of time. In
addition, the more slots a framework is able to use, the
likelier it is that at least k of them are running short tasks.

To further alleviate the impact of long tasks, Mesos
can be extended slightly to allow allocation policies to
reserve some resources on each node for short tasks. In
particular, we can associate a maximum task duration
with some of the resources on each node, after which
tasks running on those resources are killed. These time
limits can be exposed to the frameworks in resource of-
fers, allowing them to choose whether to use these re-
sources. This scheme is similar to the common policy of
having a separate queue for short jobs in HPC clusters.

4.5 Framework Incentives

Mesos implements a decentralized scheduling model,
where each framework decides which offers to accept.
As with any decentralized system, it is important to un-
derstand the incentives of entities in the system. In this
section, we discuss the incentives of frameworks (and
their users) to improve the response times of their jobs.

Short tasks: A framework is incentivized to use short
tasks for two reasons. First, it will be able to allocate any
resources reserved for short slots. Second, using small
tasks minimizes the wasted work if the framework loses
a task, either due to revocation or simply due to failures.

Scale elastically: The ability of a framework to use re-
sources as soon as it acquires them–instead of waiting
to reach a given minimum allocation–would allow the
framework to start (and complete) its jobs earlier. In ad-
dition, the ability to scale up and down allows a frame-
work to grab unused resources opportunistically, as it can
later release them with little negative impact.

Do not accept unknown resources: Frameworks are
incentivized not to accept resources that they cannot use
because most allocation policies will count all the re-
sources that a framework owns when making offers.

We note that these incentives align well with our goal
of improving utilization. If frameworks use short tasks,
Mesos can reallocate resources quickly between them,

reducing latency for new jobs and wasted work for revo-
cation. If frameworks are elastic, they will opportunis-
tically utilize all the resources they can obtain. Finally,
if frameworks do not accept resources that they do not
understand, they will leave them for frameworks that do.

We also note that these properties are met by many
current cluster computing frameworks, such as MapRe-
duce and Dryad, simply because using short independent
tasks simplifies load balancing and fault recovery.

4.6 Limitations of Distributed Scheduling

Although we have shown that distributed scheduling
works well in a range of workloads relevant to current
cluster environments, like any decentralized approach, it
can perform worse than a centralized scheduler. We have
identified three limitations of the distributed model:

Fragmentation: When tasks have heterogeneous re-
source demands, a distributed collection of frameworks
may not be able to optimize bin packing as well as a cen-
tralized scheduler. However, note that the wasted space
due to suboptimal bin packing is bounded by the ratio be-
tween the largest task size and the node size. Therefore,
clusters running “larger” nodes (e.g., multicore nodes)
and “smaller” tasks within those nodes will achieve high
utilization even with distributed scheduling.

There is another possible bad outcome if allocation
modules reallocate resources in a naı̈ve manner: when
a cluster is filled by tasks with small resource require-
ments, a framework f with large resource requirements
may starve, because whenever a small task finishes, f
cannot accept the resources freed by it, but other frame-
works can. To accommodate frameworks with large per-
task resource requirements, allocation modules can sup-
port a minimum offer size on each slave, and abstain from
offering resources on the slave until this amount is free.

Interdependent framework constraints: It is possi-
ble to construct scenarios where, because of esoteric in-
terdependencies between frameworks (e.g., certain tasks
from two frameworks cannot be colocated), only a sin-
gle global allocation of the cluster performs well. We
argue such scenarios are rare in practice. In the model
discussed in this section, where frameworks only have
preferences over which nodes they use, we showed that
allocations approximate those of optimal schedulers.

Framework complexity: Using resource offers may
make framework scheduling more complex. We argue,
however, that this difficulty is not onerous. First, whether
using Mesos or a centralized scheduler, frameworks need
to know their preferences; in a centralized scheduler,
the framework needs to express them to the scheduler,
whereas in Mesos, it must use them to decide which of-
fers to accept. Second, many scheduling policies for ex-
isting frameworks are online algorithms, because frame-
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works cannot predict task times and must be able to han-
dle failures and stragglers [18, 40, 38]. These policies
are easy to implement over resource offers.

5 Implementation
We have implemented Mesos in about 10,000 lines of
C++. The system runs on Linux, Solaris and OS X, and
supports frameworks written in C++, Java, and Python.

To reduce the complexity of our implementation, we
use a C++ library called libprocess [7] that provides
an actor-based programming model using efficient asyn-
chronous I/O mechanisms (epoll, kqueue, etc). We
also use ZooKeeper [4] to perform leader election.

Mesos can use Linux containers [9] or Solaris projects
[13] to isolate tasks. We currently isolate CPU cores and
memory. We plan to leverage recently added support for
network and I/O isolation in Linux [8] in the future.

We have implemented four frameworks on top of
Mesos. First, we have ported three existing cluster com-
puting systems: Hadoop [2], the Torque resource sched-
uler [33], and the MPICH2 implementation of MPI [16].
None of these ports required changing these frameworks’
APIs, so all of them can run unmodified user programs.
In addition, we built a specialized framework for iterative
jobs called Spark, which we discuss in Section 5.3.

5.1 Hadoop Port

Porting Hadoop to run on Mesos required relatively few
modifications, because Hadoop’s fine-grained map and
reduce tasks map cleanly to Mesos tasks. In addition, the
Hadoop master, known as the JobTracker, and Hadoop
slaves, known as TaskTrackers, fit naturally into the
Mesos model as a framework scheduler and executor.

To add support for running Hadoop on Mesos, we took
advantage of the fact that Hadoop already has a plug-
gable API for writing job schedulers. We wrote a Hadoop
scheduler that connects to Mesos, launches TaskTrackers
as its executors, and maps each Hadoop task to a Mesos
task. When there are unlaunched tasks in Hadoop, our
scheduler first starts Mesos tasks on the nodes of the
cluster that it wants to use, and then sends the Hadoop
tasks to them using Hadoop’s existing internal interfaces.
When tasks finish, our executor notifies Mesos by listen-
ing for task finish events using an API in the TaskTracker.

We used delay scheduling [38] to achieve data locality
by waiting for slots on the nodes that contain task in-
put data. In addition, our approach allowed us to reuse
Hadoop’s existing logic for re-scheduling of failed tasks
and for speculative execution (straggler mitigation).

We also needed to change how map output data is
served to reduce tasks. Hadoop normally writes map
output files to the local filesystem, then serves these to
reduce tasks using an HTTP server included in the Task-
Tracker. However, the TaskTracker within Mesos runs

as an executor, which may be terminated if it is not run-
ning tasks. This would make map output files unavailable
to reduce tasks. We solved this problem by providing a
shared file server on each node in the cluster to serve
local files. Such a service is useful beyond Hadoop, to
other frameworks that write data locally on each node.

In total, our Hadoop port is 1500 lines of code.

5.2 Torque and MPI Ports

We have ported the Torque cluster resource manager to
run as a framework on Mesos. The framework consists
of a Mesos scheduler and executor, written in 360 lines
of Python code, that launch and manage different com-
ponents of Torque. In addition, we modified 3 lines of
Torque source code to allow it to elastically scale up and
down on Mesos depending on the jobs in its queue.

After registering with the Mesos master, the frame-
work scheduler configures and launches a Torque server
and then periodically monitors the server’s job queue.
While the queue is empty, the scheduler releases all tasks
(down to an optional minimum, which we set to 0) and
refuses all resource offers it receives from Mesos. Once
a job gets added to Torque’s queue (using the standard
qsub command), the scheduler begins accepting new
resource offers. As long as there are jobs in Torque’s
queue, the scheduler accepts offers as necessary to sat-
isfy the constraints of as many jobs in the queue as pos-
sible. On each node where offers are accepted, Mesos
launches our executor, which in turn starts a Torque
backend daemon and registers it with the Torque server.
When enough Torque backend daemons have registered,
the torque server will launch the next job in its queue.

Because jobs that run on Torque (e.g. MPI) may not be
fault tolerant, Torque avoids having its tasks revoked by
not accepting resources beyond its guaranteed allocation.

In addition to the Torque framework, we also created
a Mesos MPI “wrapper” framework, written in 200 lines
of Python code, for running MPI jobs directly on Mesos.

5.3 Spark Framework

Mesos enables the creation of specialized frameworks
optimized for workloads for which more general exe-
cution layers may not be optimal. To test the hypoth-
esis that simple specialized frameworks provide value,
we identified one class of jobs that were found to per-
form poorly on Hadoop by machine learning researchers
at our lab: iterative jobs, where a dataset is reused across
a number of iterations. We built a specialized framework
called Spark [39] optimized for these workloads.

One example of an iterative algorithm used in ma-
chine learning is logistic regression [22]. This algorithm
seeks to find a line that separates two sets of labeled data
points. The algorithm starts with a random line w. Then,
on each iteration, it computes the gradient of an objective
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Figure 4: Data flow of a logistic regression job in Dryad
vs. Spark. Solid lines show data flow within the framework.
Dashed lines show reads from a distributed file system. Spark
reuses in-memory data across iterations to improve efficiency.

function that measures how well the line separates the
points, and shifts w along this gradient. This gradient
computation amounts to evaluating a function f(x,w)
over each data point x and summing the results. An
implementation of logistic regression in Hadoop must
run each iteration as a separate MapReduce job, because
each iteration depends on thew computed at the previous
one. This imposes overhead because every iteration must
re-read the input file into memory. In Dryad, the whole
job can be expressed as a data flow DAG as shown in Fig-
ure 4a, but the data must still must be reloaded from disk
at each iteration. Reusing the data in memory between
iterations in Dryad would require cyclic data flow.

Spark’s execution is shown in Figure 4b. Spark uses
the long-lived nature of Mesos executors to cache a slice
of the dataset in memory at each executor, and then run
multiple iterations on this cached data. This caching is
achieved in a fault-tolerant manner: if a node is lost,
Spark remembers how to recompute its slice of the data.

By building Spark on top of Mesos, we were able to
keep its implementation small (about 1300 lines of code),
yet still capable of outperforming Hadoop by 10× for
iterative jobs. In particular, using Mesos’s API saved us
the time to write a master daemon, slave daemon, and
communication protocols between them for Spark. The
main pieces we had to write were a framework scheduler
(which uses delay scheduling for locality) and user APIs.

6 Evaluation
We evaluated Mesos through a series of experiments on
the Amazon Elastic Compute Cloud (EC2). We begin
with a macrobenchmark that evaluates how the system
shares resources between four workloads, and go on to
present a series of smaller experiments designed to eval-
uate overhead, decentralized scheduling, our specialized
framework (Spark), scalability, and failure recovery.

6.1 Macrobenchmark

To evaluate the primary goal of Mesos, which is enabling
diverse frameworks to efficiently share a cluster, we ran a

Bin Job Type Map Tasks Reduce Tasks # Jobs Run
1 selection 1 NA 38
2 text search 2 NA 18
3 aggregation 10 2 14
4 selection 50 NA 12
5 aggregation 100 10 6
6 selection 200 NA 6
7 text search 400 NA 4
8 join 400 30 2

Table 3: Job types for each bin in our Facebook Hadoop mix.

macrobenchmark consisting of a mix of four workloads:
• A Hadoop instance running a mix of small and large

jobs based on the workload at Facebook.

• A Hadoop instance running a set of large batch jobs.

• Spark running a series of machine learning jobs.

• Torque running a series of MPI jobs.
We compared a scenario where the workloads ran as

four frameworks on a 96-node Mesos cluster using fair
sharing to a scenario where they were each given a static
partition of the cluster (24 nodes), and measured job re-
sponse times and resource utilization in both cases. We
used EC2 nodes with 4 CPU cores and 15 GB of RAM.

We begin by describing the four workloads in more
detail, and then present our results.

6.1.1 Macrobenchmark Workloads

Facebook Hadoop Mix Our Hadoop job mix was
based on the distribution of job sizes and inter-arrival
times at Facebook, reported in [38]. The workload con-
sists of 100 jobs submitted at fixed times over a 25-
minute period, with a mean inter-arrival time of 14s.
Most of the jobs are small (1-12 tasks), but there are also
large jobs of up to 400 tasks.4 The jobs themselves were
from the Hive benchmark [6], which contains four types
of queries: text search, a simple selection, an aggrega-
tion, and a join that gets translated into multiple MapRe-
duce steps. We grouped the jobs into eight bins of job
type and size (listed in Table 3) so that we could com-
pare performance in each bin. We also set the framework
scheduler to perform fair sharing between its jobs, as this
policy is used at Facebook.

Large Hadoop Mix To emulate batch workloads that
need to run continuously, such as web crawling, we had
a second instance of Hadoop run a series of IO-intensive
2400-task text search jobs. A script launched ten of these
jobs, submitting each one after the previous one finished.

Spark We ran five instances of an iterative machine
learning job on Spark. These were launched by a script
that waited 2 minutes after each job ended to submit
the next. The job we used was alternating least squares

4We scaled down the largest jobs in [38] to have the workload fit a
quarter of our cluster size.
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Figure 5: Comparison of cluster shares (fraction of CPUs) over time for each of the frameworks in the Mesos and static partitioning
macrobenchmark scenarios. On Mesos, frameworks can scale up when their demand is high and that of other frameworks is low, and
thus finish jobs faster. Note that the plots’ time axes are different (e.g., the large Hadoop mix takes 3200s with static partitioning).

Figure 6: Framework shares on Mesos during the macrobench-
mark. By pooling resources, Mesos lets each workload scale
up to fill gaps in the demand of others. In addition, fine-grained
sharing allows resources to be reallocated in tens of seconds.

(ALS), a collaborative filtering algorithm [42]. This job
is CPU-intensive but also benefits from caching its input
data on each node, and needs to broadcast updated pa-
rameters to all nodes running its tasks on each iteration.

Torque / MPI Our Torque framework ran eight in-
stances of the tachyon raytracing job [35] that is part of
the SPEC MPI2007 benchmark. Six of the jobs ran small
problem sizes and two ran large ones. Both types used 24
parallel tasks. We submitted these jobs at fixed times to
both clusters. The tachyon job is CPU-intensive.

6.1.2 Macrobenchmark Results

A successful result for Mesos would show two things:
that Mesos achieves higher utilization than static parti-
tioning, and that jobs finish at least as fast in the shared
cluster as they do in their static partition, and possibly
faster due to gaps in the demand of other frameworks.
Our results show both effects, as detailed below.

We show the fraction of CPU cores allocated to each
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Figure 7: Average CPU and memory utilization over time
across all nodes in the Mesos cluster vs. static partitioning.

framework by Mesos over time in Figure 6. We see that
Mesos enables each framework to scale up during peri-
ods when other frameworks have low demands, and thus
keeps cluster nodes busier. For example, at time 350,
when both Spark and the Facebook Hadoop framework
have no running jobs and Torque is using 1/8 of the clus-
ter, the large-job Hadoop framework scales up to 7/8 of
the cluster. In addition, we see that resources are reallo-
cated rapidly (e.g., when a Facebook Hadoop job starts
around time 360) due to the fine-grained nature of tasks.
Finally, higher allocation of nodes also translates into in-
creased CPU and memory utilization (by 10% for CPU
and 17% for memory), as shown in Figure 7.

A second question is how much better jobs perform
under Mesos than when using a statically partitioned
cluster. We present this data in two ways. First, Fig-
ure 5 compares the resource allocation over time of
each framework in the shared and statically partitioned
clusters. Shaded areas show the allocation in the stat-
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Framework 
Sum of Exec Times w/
Static Partitioning (s) 

Sum of Exec Times 
with Mesos (s) 

Speedup 

Facebook 
Hadoop Mix 

7235 6319 1.14 

Large Hadoop 
Mix 

3143 1494 2.10 

Spark 1684 1338 1.26 

Torque / MPI 3210 3352 0.96 

Table 4: Aggregate performance of each framework in the mac-
robenchmark (sum of running times of all the jobs in the frame-
work). The speedup column shows the relative gain on Mesos.

ically partitioned cluster, while solid lines show the
share on Mesos. We see that the fine-grained frame-
works (Hadoop and Spark) take advantage of Mesos to
scale up beyond 1/4 of the cluster when global demand
allows this, and consequently finish bursts of submit-
ted jobs faster in Mesos. At the same time, Torque
achieves roughly similar allocations and job durations
under Mesos (with some differences explained later).

Second, Tables 4 and 5 show a breakdown of job per-
formance for each framework. In Table 4, we compare
the aggregate performance of each framework, defined
as the sum of job running times, in the static partitioning
and Mesos scenarios. We see the Hadoop and Spark jobs
as a whole are finishing faster on Mesos, while Torque is
slightly slower. The framework that gains the most is the
large-job Hadoop mix, which almost always has tasks to
run and fills in the gaps in demand of the other frame-
works; this framework performs 2x better on Mesos.

Table 5 breaks down the results further by job type.
We observe two notable trends. First, in the Facebook
Hadoop mix, the smaller jobs perform worse on Mesos.
This is due to an interaction between the fair sharing per-
formed by Hadoop (among its jobs) and the fair sharing
in Mesos (among frameworks): During periods of time
when Hadoop has more than 1/4 of the cluster, if any jobs
are submitted to the other frameworks, there is a delay
before Hadoop gets a new resource offer (because any
freed up resources go to the framework farthest below its
share), so any small job submitted during this time is de-
layed for a long time relative to its length. In contrast,
when running alone, Hadoop can assign resources to the
new job as soon as any of its tasks finishes. This prob-
lem with hierarchical fair sharing is also seen in networks
[34], and could be mitigated by running the small jobs on
a separate framework or using a different allocation pol-
icy (e.g., using lottery scheduling instead of offering all
freed resources to the framework with the lowest share).

Lastly, Torque is the only framework that performed
worse, on average, on Mesos. The large tachyon jobs
took on average 2 minutes longer, while the small ones
took 20s longer. Some of this delay is due to Torque hav-
ing to wait to launch 24 tasks on Mesos before starting
each job, but the average time this takes is 12s. We be-

Framework Job Type 
Exec Time w/ Static 

Partitioning (s) 
Avg. Speedup 

on Mesos 
Facebook Hadoop 

Mix 
selection (1) 24 0.84 

text search (2) 31 0.90 
aggregation (3) 82 0.94 

selection (4) 65 1.40 
aggregation (5) 192 1.26 

selection (6) 136 1.71 
text search (7) 137 2.14 

join (8) 662 1.35 
Large Hadoop Mix text search 314 2.21 

Spark ALS 337 1.36 
Torque / MPI small tachyon 261 0.91 

large tachyon 822 0.88 

Table 5: Performance of each job type in the macrobenchmark.
Bins for the Facebook Hadoop mix are in parentheses.
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Figure 8: Data locality and average job durations for 16
Hadoop instances running on a 93-node cluster using static par-
titioning, Mesos, or Mesos with delay scheduling.

lieve that the rest of the delay is due to stragglers (slow
nodes). In our standalone Torque run, we saw two jobs
take about 60s longer to run than the others (Fig. 5d). We
discovered that both of these jobs were using a node that
performed slower on single-node benchmarks than the
others (in fact, Linux reported 40% lower bogomips on
it). Because tachyon hands out equal amounts of work
to each node, it runs as slowly as the slowest node.

6.2 Overhead

To measure the overhead Mesos imposes when a single
framework uses the cluster, we ran two benchmarks us-
ing MPI and Hadoop on an EC2 cluster with 50 nodes,
each with 2 CPU cores and 6.5 GB RAM. We used the
High-Performance LINPACK [15] benchmark for MPI
and a WordCount job for Hadoop, and ran each job three
times. The MPI job took on average 50.9s without Mesos
and 51.8s with Mesos, while the Hadoop job took 160s
without Mesos and 166s with Mesos. In both cases, the
overhead of using Mesos was less than 4%.

6.3 Data Locality through Delay Scheduling

In this experiment, we evaluated how Mesos’ resource
offer mechanism enables frameworks to control their
tasks’ placement, and in particular, data locality. We
ran 16 instances of Hadoop using 93 EC2 nodes, each
with 4 CPU cores and 15 GB RAM. Each node ran a
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map-only scan job that searched a 100 GB file spread
throughout the cluster on a shared HDFS file system and
outputted 1% of the records. We tested four scenarios:
giving each Hadoop instance its own 5-6 node static par-
tition of the cluster (to emulate organizations that use
coarse-grained cluster sharing systems), and running all
instances on Mesos using either no delay scheduling, 1s
delay scheduling or 5s delay scheduling.

Figure 8 shows averaged measurements from the 16
Hadoop instances across three runs of each scenario. Us-
ing static partitioning yields very low data locality (18%)
because the Hadoop instances are forced to fetch data
from nodes outside their partition. In contrast, running
the Hadoop instances on Mesos improves data locality,
even without delay scheduling, because each Hadoop in-
stance has tasks on more nodes of the cluster (there are
4 tasks per node), and can therefore access more blocks
locally. Adding a 1-second delay brings locality above
90%, and a 5-second delay achieves 95% locality, which
is competitive with running one Hadoop instance alone
on the whole cluster. As expected, job performance im-
proves with data locality: jobs run 1.7x faster in the 5s
delay scenario than with static partitioning.

6.4 Spark Framework

We evaluated the benefit of running iterative jobs using
the specialized Spark framework we developed on top
of Mesos (Section 5.3) over the general-purpose Hadoop
framework. We used a logistic regression job imple-
mented in Hadoop by machine learning researchers in
our lab, and wrote a second version of the job using
Spark. We ran each version separately on 20 EC2 nodes,
each with 4 CPU cores and 15 GB RAM. Each exper-
iment used a 29 GB data file and varied the number of
logistic regression iterations from 1 to 30 (see Figure 9).

With Hadoop, each iteration takes 127s on average,
because it runs as a separate MapReduce job. In contrast,
with Spark, the first iteration takes 174s, but subsequent
iterations only take about 6 seconds, leading to a speedup
of up to 10x for 30 iterations. This happens because the
cost of reading the data from disk and parsing it is much
higher than the cost of evaluating the gradient function
computed by the job on each iteration. Hadoop incurs the
read/parsing cost on each iteration, while Spark reuses
cached blocks of parsed data and only incurs this cost
once. The longer time for the first iteration in Spark is
due to the use of slower text parsing routines.

6.5 Mesos Scalability

To evaluate Mesos’ scalability, we emulated large clus-
ters by running up to 50,000 slave daemons on 99 Ama-
zon EC2 nodes, each with 8 CPU cores and 6 GB RAM.
We used one EC2 node for the master and the rest of the
nodes to run slaves. During the experiment, each of 200
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Figure 9: Hadoop and Spark logistic regression running times.
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Figure 10: Mesos master’s scalability versus number of slaves.

frameworks running throughout the cluster continuously
launches tasks, starting one task on each slave that it re-
ceives a resource offer for. Each task sleeps for a period
of time based on a normal distribution with a mean of
30 seconds and standard deviation of 10s, and then ends.
Each slave runs up to two tasks at a time.

Once the cluster reached steady-state (i.e., the 200
frameworks achieve their fair shares and all resources
were allocated), we launched a test framework that runs a
single 10 second task and measured how long this frame-
work took to finish. This allowed us to calculate the extra
delay incurred over 10s due to having to register with the
master, wait for a resource offer, accept it, wait for the
master to process the response and launch the task on a
slave, and wait for Mesos to report the task as finished.

We plot this extra delay in Figure 10, showing aver-
ages of 5 runs. We observe that the overhead remains
small (less than one second) even at 50,000 nodes. In
particular, this overhead is much smaller than the aver-
age task and job lengths in data center workloads (see
Section 2). Because Mesos was also keeping the clus-
ter fully allocated, this indicates that the master kept up
with the load placed on it. Unfortunately, the EC2 vir-
tualized environment limited scalability beyond 50,000
slaves, because at 50,000 slaves the master was process-
ing 100,000 packets per second (in+out), which has been
shown to be the current achievable limit on EC2 [12].

6.6 Failure Recovery

To evaluate recovery from master failures, we conducted
an experiment with 200 to 4000 slave daemons on 62
EC2 nodes with 4 cores and 15 GB RAM. We ran 200
frameworks that each launched 20-second tasks, and two
Mesos masters connected to a 5-node ZooKeeper quo-
rum.We synchronized the two masters’ clocks using NTP
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and measured the mean time to recovery (MTTR) after
killing the active master. The MTTR is the time for all of
the slaves and frameworks to connect to the second mas-
ter. In all cases, the MTTR was between 4 and 8 seconds,
with 95% confidence intervals of up to 3s on either side.

6.7 Performance Isolation

As discussed in Section 3.4, Mesos leverages existing
OS isolation mechanism to provide performance isola-
tion between different frameworks’ tasks running on the
same slave. While these mechanisms are not perfect,
a preliminary evaluation of Linux Containers [9] shows
promising results. In particular, using Containers to iso-
late CPU usage between a MediaWiki web server (con-
sisting of multiple Apache processes running PHP) and a
“hog” application (consisting of 256 processes spinning
in infinite loops) shows on average only a 30% increase
in request latency for Apache versus a 550% increase
when running without Containers. We refer the reader to
[29] for a fuller evaluation of OS isolation mechanisms.

7 Related Work
HPC and Grid Schedulers. The high performance
computing (HPC) community has long been managing
clusters [33, 41]. However, their target environment typ-
ically consists of specialized hardware, such as Infini-
band and SANs, where jobs do not need to be scheduled
local to their data. Furthermore, each job is tightly cou-
pled, often using barriers or message passing. Thus, each
job is monolithic, rather than composed of fine-grained
tasks, and does not change its resource demands during
its lifetime. For these reasons, HPC schedulers use cen-
tralized scheduling, and require users to declare the re-
quired resources at job submission time. Jobs are then
given coarse-grained allocations of the cluster. Unlike
the Mesos approach, this does not allow jobs to locally
access data distributed across the cluster. Furthermore,
jobs cannot grow and shrink dynamically. In contrast,
Mesos supports fine-grained sharing at the level of tasks
and allows frameworks to control their placement.

Grid computing has mostly focused on the problem
of making diverse virtual organizations share geograph-
ically distributed and separately administered resources
in a secure and interoperable way. Mesos could well be
used within a virtual organization inside a larger grid.

Public and Private Clouds. Virtual machine clouds
such as Amazon EC2 [1] and Eucalyptus [31] share
common goals with Mesos, such as isolating applica-
tions while providing a low-level abstraction (VMs).
However, they differ from Mesos in several important
ways. First, their relatively coarse grained VM allocation
model leads to less efficient resource utilization and data
sharing than in Mesos. Second, these systems generally
do not let applications specify placement needs beyond

the size of VM they require. In contrast, Mesos allows
frameworks to be highly selective about task placement.

Quincy. Quincy [25] is a fair scheduler for Dryad
that uses a centralized scheduling algorithm for Dryad’s
DAG-based programming model. In contrast, Mesos
provides the lower-level abstraction of resource offers to
support multiple cluster computing frameworks.

Condor. The Condor cluster manager uses the Class-
Ads language [32] to match nodes to jobs. Using a re-
source specification language is not as flexible for frame-
works as resource offers, since not all requirements may
be expressible. Also, porting existing frameworks, which
have their own schedulers, to Condor would be more dif-
ficult than porting them to Mesos, where existing sched-
ulers fit naturally into the two-level scheduling model.

Next-Generation Hadoop. Recently, Yahoo! an-
nounced a redesign for Hadoop that uses a two-level
scheduling model, where per-application masters request
resources from a central manager [14]. The design aims
to support non-MapReduce applications as well. While
details about the scheduling model in this system are cur-
rently unavailable, we believe that the new application
masters could naturally run as Mesos frameworks.

8 Conclusion and Future Work
We have presented Mesos, a thin management layer that
allows diverse cluster computing frameworks to effi-
ciently share resources. Mesos is built around two de-
sign elements: a fine-grained sharing model at the level
of tasks, and a distributed scheduling mechanism called
resource offers that delegates scheduling decisions to the
frameworks. Together, these elements let Mesos achieve
high utilization, respond quickly to workload changes,
and cater to diverse frameworks while remaining scalable
and robust. We have shown that existing frameworks
can effectively share resources using Mesos, that Mesos
enables the development of specialized frameworks pro-
viding major performance gains, such as Spark, and that
Mesos’s simple design allows the system to be fault tol-
erant and to scale to 50,000 nodes.

In future work, we plan to further analyze the re-
source offer model and determine whether any exten-
sions can improve its efficiency while retaining its flex-
ibility. In particular, it may be possible to have frame-
works give richer hints about offers they would like to
receive. Nonetheless, we believe that below any hint
system, frameworks should still have the ability to re-
ject offers and to choose which tasks to launch on each
resource, so that their evolution is not constrained by the
hint language provided by the system.

We are also currently using Mesos to manage re-
sources on a 40-node cluster in our lab and in a test de-
ployment at Twitter, and plan to report on lessons from
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these deployments in future work.
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