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Abstract
Current PC- and web-based applications provide insuf-
ficient security for the information they access, because
vulnerabilities anywhere in a large client software stack
can compromise confidentiality and integrity. We pro-
pose a new architecture for secure applications, Cloud
Terminal, in which the only software running on the end
host is a lightweight secure thin terminal, and most appli-
cation logic is in a remote cloud rendering engine. The
secure thin terminal has a very small TCB (23 KLOC)
and no dependence on the untrusted OS, so it can be
easily checked and remotely attested to. The terminal is
also general-purpose: it simply supplies a secure display
and input path to remote software. The cloud render-
ing engine runs an off-the-shelf application in a restricted
VM hosted by the provider, but resource sharing between
VMs lets one server support hundreds of users. We im-
plement a secure thin terminal that runs on standard PC
hardware and provides a responsive interface to applica-
tions like banking, email, and document editing. We also
show that our cloud rendering engine can provide secure
online banking for 5–10 cents per user per month.

1 Introduction
The ultimate motivation for much of computer security
is protecting access to information: preventing unautho-
rized users from learning or altering sensitive data. How-
ever, current systems do a poor job of end-to-end infor-
mation protection: applications are divided across mul-
tiple tiers, and each tier has many points of potential se-
curity vulnerability. One of the most vulnerable tiers is
the software stack on end-user personal computers. To
support a wide array of applications, operating systems
and libraries contain millions of lines of code and evolve
constantly. This complexity inevitably leads to vulnera-
bilities, and bugs anywhere in the stack can open the door
for malware. For instance, if you use your PC for on-
line banking, malware in your browser, your OS, or your
drivers might log your keystrokes, steal your account in-

formation, or make transactions on your behalf. Com-
mon security mechanisms that run inside the OS can only
offer limited protection, as the OS itself has a large attack
surface. To provide the level of security needed by sensi-
tive applications, we need to take the user-administered
desktop OS out of the trusted computing base.

One frequently proposed approach to protect sensi-
tive applications is to run them in their own virtual ma-
chines [12, 5]. This is a good first step, because virtual-
ization offers strong isolation, but it is too heavyweight
a solution to be secure and easy-to-use on end-user sys-
tems. Multiplexing hardware between several general-
purpose OS VMs requires either a virtual machine moni-
tor that itself runs on a general OS (e.g., VMware Work-
station [1]), or a hypervisor that is almost as complex
as a general OS (e.g., Xen [3]), so the client-side trusted
computing base (TCB) is still too large to reliably secure.
Managing multiple VMs also puts an administrative bur-
den on users: installation tasks are multiplied, users may
not know which VM to use for each task, and users must
roll back any VMs that get compromised. Furthermore,
it is difficult to introduce a general hypervisor, such as
Xen, below an existing installation of a commodity OS.
Security and usability could both be improved by keep-
ing VM-style isolation, but changing how an application
is decomposed between the client and server, so that the
client can be both small and general-purpose.

Thus we propose a new architecture, which we call
Cloud Terminal, for protecting applications from client-
side security risks. We are motivated by the observa-
tion that the client side of many security-sensitive ap-
plications is predominantly concerned with providing
an interface to information, rather than performing in-
tensive computation or high-framerate animation. Thus
we propose to move application-specific computations
away from the hard-to-defend end-user platform. In-
stead, when accessing a sensitive application, we pro-
pose to use the end-user PC simply as a secure I/O path
to access application logic in the cloud.
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This architecture allows for a radically simpler client-
side platform: the client-side secure thin terminal (STT)
software only needs to render graphical data from a
remote application and forward keyboard and mouse
events to it. The STT isolates itself from the user’s
untrusted OS through a small hypervisor-like layer that
we call a “microvisor.” Because its scope is limited
to running the STT, the microvisor is substantially sim-
pler than a hypervisor: it does not need logic for time-
sharing across multiple VMs, or even drivers for network
and storage hardware (instead, it tunnels encrypted data
through the untrusted OS). The simplicity of the STT
makes it easier to assess the correctness of the software,
and facilitates remote attestation. Leveraging a hardware
root of trust, the client can prove to the server that it is
running unmodified STT software, directly on the real
CPU. The combination of strong isolation and attestation
allows our STT to be installed and to securely function
on any running system, even one infected with malware.

To complement the reduced client, we move applica-
tion and rendering logic into a cloud rendering engine
(CRE), which goes beyond cloud applications like web-
based office suites. The cloud rendering engine executes
an application all the way to producing a bitmap image
to appear on the user’s screen. It then sends that bitmap
to the STT over an encrypted protocol. To provide strong
isolation, the cloud rendering engine for each STT runs
in a separate VM, but we show that because VMs can
share state, one server can support hundreds of concur-
rent users. Hosting the application logic in a central lo-
cation also allows providers to more easily manage soft-
ware updates and protect information.

We argue that Cloud Terminal has the minimal client-
side TCB needed for accessing remote applications from
an untrusted system. Any system with this goal would
need code for isolating itself from the OS, capturing user
input, and displaying bitmaps on the screen, but these
functions make up the majority of the code in our STT.
Thus, Cloud Terminal achieves a unique and previously
unmet sweet-spot between security and generality.

To summarize, our contributions in this paper are two-
fold. First, we introduce the Cloud Terminal architecture,
including the secure thin terminal and cloud rendering
engine abstractions, as an effective new tool for building
applications with strong information security. Second,
we evaluate this architecture with realistic applications.
We implement a secure thin terminal that runs on stan-
dard PC hardware, providing a small 23 KLOC TCB and
TPM-based remote attestation. We build a cloud render-
ing engine from off-the-shelf software, and show that it
supports hundreds of concurrent users per server. We
then evaluate this infrastructure for applications includ-
ing online banking, secure document editing, and email.

2 Overview
This section gives an overview of our architecture, in-
cluding use cases, our threat model, a comparison with
existing systems, and an overview of the design.

2.1 Use Cases

Cloud Terminal is designed for public and corporate ap-
plications that require high information security but not
intensive computation or rendering. Many use cases
satisfy these properties, including financial applications
such as online banking, and communication applications
that let corporate users access work data from their per-
sonal devices, such as a corporate email client.

In the public service scenario, users would install a
single secure thin terminal that lets them access multi-
ple services, such as banks and financial organizations,
each hosting its own cloud rendering engine in its own
datacenter. Financial services are a natural use case be-
cause they are a major target of fraud, end-users and in-
stitutions both have incentives to prevent attacks, and UI
requirements are simple.

In the corporate scenario, employees would install a
secure thin terminal distributed by their organizations to
securely access applications like email, document view-
ing, and document editing from their personal comput-
ers. Accessing documents via Cloud Terminal, instead
of downloading them to a personal device, significantly
reduces the attack surface for data theft and malware.

2.2 Goals and Threat Model

Our aim is to design a solution that significantly im-
proves the security of sensitive applications but requires
minimal effort to adopt and use. Specifically, we seek to
meet the following goals:
1. The solution should be installable on existing PCs

alongside a potentially compromised commodity OS,
without requiring the user to re-image her system.

2. The solution should not require trust in the host OS.

3. The solution should be able to attest its presence
to both users and application providers, to protect
against spoofing and phishing.

4. The system should support a wide range of sensitive
applications.

5. The TCB of the system should be small.
We assume an adversary that controls the OS on the

user’s PC and can intercept all its network traffic, but
does not have physical access to the machine to mount
hardware attacks like cold-boot memory recovery [13].
We also assume that the attacker cannot reliably infer the
user’s input from sensors on the machine (e.g., by listen-
ing for keystroke timings on the microphone). Our goal
is to prevent the attacker from viewing and modifying in-
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Property
Red/Green
VMs [18]

Per-app VMs
[12, 29]

Browser OS (e.g.
Chrome OS [7])

Virtual Desktops
& Thin Clients

Flicker [20]
Cloud

Terminal
Installable below an

existing system
8 8 8 4 4 4

Remote attestation 8 8 8 8 4 4

Generic applications 4 4 8 4 8 4

Fine-grained isolation 8 4 4 8 4 4

No trust in host OS 4 4 8 8 4 4

User interface arbitrary arbitrary browser only arbitrary 8 arbitrary
Management effort medium high low low low low

TCB size >1MLOC >1MLOC >1MLOC >1MLOC
250 LOC

+ app logic
23 KLOC

Table 1: Properties of Cloud Terminal compared to other security architectures.

teractions between the user and a secure application, and
from logging into it as the user.

Cloud Terminal also protects against some social engi-
neering attacks, such as users being tricked to run a false
client, through remote attestation. In addition, it provides
two defenses against phishing: a shared secret between
the user and the secure thin terminal, in the form of a
graphical theme for the terminal’s UI, and the ability to
use the user’s TPM as a second, un-phishable authenti-
cation factor and detect logins from a new device. These
mechanisms are similar to common mechanisms in web
applications (e.g., SiteKey [32] and cookies for detecting
logins from a new machine), with the important distinc-
tion that the secret image and the TPM private key cannot
be retrieved by malware or by man-in-the-middle attacks.
Nonetheless, we recognize that there are open problems
in protecting users against social engineering and we do
not aim to innovate on this front, as the problems are or-
thogonal to our focus on designing a well-isolated client.

Finally, because Cloud Terminal must coexist with the
untrusted OS, it is not designed to prevent denial-of-
service attacks from the untrusted OS: for instance, the
untrusted OS could prevent the installation of the client
in the first place, or block its network traffic.

2.3 Existing Approaches and Comparison

Although many architectures to improve the security of
end-user systems have been proposed, it is challenging to
simultaneously meet all the goals identified in the previ-
ous section. In this section, we compare several existing
proposals (Table 1) and explain the elements of our ap-
proach that let it meet the goals.

One frequently proposed approach is to isolate sensi-
tive applications using virtual machines, either by having
a “red” VM for untrusted applications and a “green” VM
for trusted ones [18], or one VM for each sensitive ap-
plication [12, 29]. While VM-based solutions provide
strong isolation, any hypervisor aiming for wide deploy-
ability needs a TCB comparable in size to an OS ker-
nel, including drivers for all the the network and storage

devices common on consumer PCs. Attacks targeting
these components in popular hypervisors have already
been demonstrated [17, 23, 41]. In addition, we need
to include the applications inside the trusted VM (e.g., a
web browser) in the TCB. Finally, VM-based systems
are not readily installable below an existing commodity
OS without requiring the user to reimage his machine,
and they increase the administrative burden on users by
requiring users to manage each VM separately.

In contrast, browser OSes like Chrome OS [7] limit
their attack surface by disallowing binary applications
and provide strong isolation between web applications.
However, this means that they cannot run the user’s ex-
isting legacy software or access non-web applications.

The approach closest to ours is virtual desktop infras-
tructure (VDI), where users access centrally managed
virtual desktop VMs through thin client software [37].
While thin client systems allow organizations to centrally
manage their desktops and remove infections, they still
suffer from a fundamental limitation compared to Cloud
Terminal, in that all of the user’s applications run in the
same VM and are not protected from each other. For
example, a user’s VM might become infected through a
drive-by download from personal web browsing, which
would then put all other applications at risk. Another
limitation of current VDI systems is that the thin client
software runs within the untrusted OS on the user’s PC
and is unprotected from malware on that machine.

Finally, remote attestation is challenging in VM-based
approaches, browser OSes and VDI because of the wide
range of software that can run on the client. For exam-
ple, even if a system could prove that it is running a par-
ticular OS kernel and only a trusted set of binaries, the
system could still be executing malware in the form of a
shell script or a malicious browser extension. Thus, these
approaches miss an opportunity to provide powerful se-
curity guarantees via TPM attestation. One example of
a system that does support attestation is Flicker [20],
which allows applications to run small pieces of applica-
tion logic (PALs) in an isolated, attestable environment,
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Figure 1: Cloud Terminal architecture, showing the secure thin terminal (left) and cloud rendering engine (right). The shaded areas
make up the secure thin terminal.

for purposes such as key signing and password handling.
However, executing a client for a remote application as a
Flicker PAL would be difficult, because a PAL cannot in-
teract with the user through the GUI, as Flicker suspends
the untrusted OS during PAL execution.

Cloud Terminal achieves deployability on existing
systems, support for general applications, remote attes-
tation, and a small TCB through two design elements:

• Small, general client: Cloud Terminal accesses all
sensitive applications through the same, simple com-
ponent: a secure thin terminal capable of displaying
arbitrary remote UIs. Thus, the user does not need to
manage multiple VMs, and service providers can run
their applications in their own datacenters under tight
control. Unlike in virtual desktop systems, the sen-
sitive applications are also isolated from each other
(rather than running in the same VM), and the thin
terminal is protected from the untrusted host OS.

• Microvisor: The secure thin terminal isolates itself
from the OS through a hypervisor-like layer, but this
“microvisor” is substantially smaller than a full hy-
pervisor because it is not designed to run multiple
VMs. For example, the microvisor accesses the net-
work and storage devices through the untrusted OS
(but it encrypts its data), leveraging the OS’s exist-
ing drivers without having to trust them. Likewise, it
does not need code for managing multiple VMs, or
even for booting the untrusted OS; it can install itself
below a running instance of the OS, and only needs
to protect an area of memory from the OS.

This design lets Cloud Terminal achieve a sweet-spot
between security, trusted code size, and generality: it can
access a wide range of applications through a small, well-
isolated, and remotely verifiable client.

2.4 Architecture

Figure 1 shows the overall Cloud Terminal architecture.
Our approach centers on two abstractions: the secure thin
terminal on the client and the cloud rendering engine on
the server. We now describe these abstractions and show
how they interact with other system components.

Secure Thin Terminal (STT). The STT is software that
runs on a user’s computer and provides secure access to
a remote application, without requiring trust in any other
software on the device. The STT temporarily takes over
a general-purpose system, and turns it into a more lim-
ited but trustworthy device for accessing generic remote
applications. The STT has the following features:
• The STT provides a common graphical terminal

functionality that can be used by many applications.

• The STT isolates itself so that the untrusted system
cannot access its data.

• The STT implementation is lightweight, making it
easier to check its correctness.

• Using a hardware root of trust, the STT can remotely
attest that it is running unmodified on real hardware.

The security of the STT comes from its simplicity:
it focuses solely on providing an interface to applica-
tions running elsewhere. It provides this interface simply
by relaying input events and remotely-rendered bitmaps.
The STT co-exists with a pre-existing untrusted OS, but
does not rely on the untrusted system for any security-
critical functionality. Using hardware virtualization, the
STT isolates itself from the untrusted OS: the OS never
has unencrypted access to the STT’s data, and cannot
read input events or access the video memory when the
STT is active. A hardware root of trust allows the STT
to prove to remote parties that it has complete control of
the machine, namely that its code is unmodified and that
it has direct access to a real (non-emulated) CPU.

The STT consists of the microvisor, which provides
isolation from the OS; the Cloud Terminal client, which
communicates with the remote application and renders
its display; and an untrusted user-space helper that tun-
nels encrypted data through the untrusted OS.
Cloud Rendering Engine (CRE). The CRE is STT’s
server-side counterpart. It has the following attributes:
• The CRE contains almost all the application func-

tionality, to the point of producing bitmaps to display.

• The CRE runs an isolated instance of the application
for each STT, in a separate virtual machine.
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• CRE VMs run a minimal software stack needed to
render the remote application, rather than allowing
the user to install her own software.

• CREs are managed centrally by the application
provider, facilitating administration and protection.

From some uses, such as document viewing, the CRE
can be almost completely self-contained. For other uses,
the CRE can provide access to a service on other ma-
chines, such as an existing web application, by running
standard rendering software such as a web browser.

Our CRE implementation executes the application in-
stance for each user session in a separate VM to provide
strong isolation. These VMs run a stripped-down com-
modity desktop environment, connected to an unmodi-
fied VNC server that we proxy through a dispatcher for
access by the appropriate STT. The main challenge in im-
plementing the CRE is scalability: the system needs to be
able to support a large enough number of users per server
to be cost-effective. We employ aggressive sharing of
disk and memory pages between application VMs to sup-
port several hundred concurrent users per CRE server.

Finally, although the CRE hosts a “cloud” of VMs, we
expect it to run in a private provider-owned datacenter.
Cloud Terminal Protocol. The secure thin terminal and
cloud rendering engine communicate over the network
using the Cloud Terminal protocol. The Cloud Termi-
nal protocol extends an existing framebuffer-level remote
desktop protocol (VNC) by adding additional levels of
security. Specifically, the Cloud Terminal protocol uses
end-to-end encryption between the Cloud Terminal client
in the STT and the CRE, performs remote attestation of
the client, and provides mutual authentication between
the user and application.
Public Infrastructure Services. If Cloud Terminal is
deployed as a public service for accessing multiple appli-
cations via a single STT (e.g., financial websites that en-
roll in the system), rather than as a private service within
a corporation, it must also host two infrastructure ser-
vices. The directory service provides the client with a
list of CREs to connect to (e.g., the CREs for various
online banks). The verification service lets users check
that they installed a genuine STT. Nonetheless, even in
this use case, each application provider still hosts its own
CRE on its own hardware. We describe this usage sce-
nario in more detail below.

3 Secure Thin Terminal
The secure thin terminal has three components. The first
is the microvisor, a small hypervisor-like layer provid-
ing isolation from the untrusted system and simple APIs
for the following functionalities: keyboard and mouse
input, video output, sealed storage, and networking. The
microvisor can also attest (i.e., cryptographically prove)

Figure 2: Screenshot of the STT. The textured border around
the browser (the strawberries) is a secret image configured by
the user that will only be shown correctly by the genuine STT.

the integrity of its code to a remote third party through
a measurement (a signed hash) from the TPM. The sec-
ond component is the Cloud Terminal client, which runs
within the microvisor. The third component is an un-
trusted user-space helper to which we delegate the han-
dling of networking and storage API calls. We refer
to this subset of the API calls as untrusted API calls.
Through the helper, we can exploit the drivers present in
the untrusted OS, and thus use any type of network con-
troller (including WiFi and 3G cards), without having to
take over and configure the network hardware.

The secure thin terminal can be installed on a system
at any time, even if malware is present. Once the STT has
been installed, the user can bring up the Cloud Terminal
client by pressing a designated secure attention key (e.g.,
Ctrl-F12). While the client is running, the untrusted OS
and its applications continue to run, but blindly: we pre-
vent them from seeing the user’s inputs and the contents
of video memory. Figure 2 shows the STT’s UI.

3.1 Microvisor

The simplicity and small code size of the microvisor
come from its limited scope (e.g., no network and stor-
age drivers) and from leveraging hardware virtualization
support (Intel VT [22, 14]). For attestation, we employ
Intel’s trusted execution extension, TXT [15]. The com-
bination of hardware-supported virtualization and trusted
execution allows us to establish a tamper-proof, mea-
sured execution environment.

When the Cloud Terminal client is not running, the mi-
crovisor is responsible only for isolating itself from the
untrusted OS and applications. Specifically, the micro-
visor makes its address space inaccessible by preventing
the untrusted system and the I/O devices from access-
ing those ranges of physical memory. Additionally, the
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microvisor intercepts keystrokes to detect when the user
requests to bring up the Cloud Terminal client. It does
so by trapping reads made by the untrusted system to the
PS/2 port, emulating the read, and updating the state of
the untrusted system accordingly, as if the read had been
performed directly. As we shall describe, we use a sim-
ilar approach to capture the user’s input securely when
the Cloud Terminal client is running. For video output,
the microvisor maps the video memory into its virtual
address space and then renders images on the screen by
directly writing to the memory.1

In our current implementation, the microvisor is in-
stalled after the untrusted OS has started running; nev-
ertheless, it assumes complete control of the system, in
a similar manner to malicious hypervisors [9, 28]. This
approach does not require any prior setup of the system.

To securely install the microvisor, we use code from
the Flicker secure execution infrastructure [20], which
in turn uses Intel TXT [15]. This primitive allows us to
establish a dynamic root of trust for measurement and
attestation: it ensures that the code for performing the
installation of the microvisor and the code of the mi-
crovisor cannot be tampered with (the code is executed
atomically and it is stored in a region of memory that
is completely isolated, even from hardware devices) and
stores a measurement (hash) of this code in the TPM.
The Flicker-attested code also generates a key pair whose
private component is kept only by the microvisor, link-
ing future communications to the attested execution. The
private key is kept in volatile RAM whose contents will
be lost if the untrusted OS forces a reboot, so no other
code can masquerade as the microvisor.

We start the installation by saving the current state of
the untrusted system so that we can later resume it as a
“guest” of the microvisor. Then, we invoke the senter
instruction and run the code performing the necessary
steps to enable the microvisor. Finally, we resume the
execution of the untrusted system from where it was in-
terrupted. From this point on, the microvisor has full
control of the system and it is responsible for isolating
itself from the untrusted OS. As described in Section 5,
the measurement stored in the TPM is used to prove to
the cloud rendering engine that the client is genuine.

3.2 Cloud Terminal Client

The Cloud Terminal client is essentially a process that
runs in the context of the microvisor and interacts only
through the microvisor’s API. The client starts by mak-
ing a backup of the contents of video memory and ends
with restoring these contents and redrawing the screen.

1We currently do not support USB keyboards and mice, though we
plan to do so in the future. We also require the host OS to be configured
with hardware graphics acceleration disabled so that we can correctly
manipulate its graphics state.

The rest of the execution implements the Cloud Termi-
nal protocol. Untrusted API calls and API calls to get
user input block the client and resume the execution of
the untrusted OS (without access to the video memory,
as we describe later). The client is then resumed when
a blocking call returns. To ensure that no sensitive data
can be accessed outside the Cloud Terminal client, before
and after an untrusted API call the client respectively en-
crypts the input arguments and decrypts the output argu-
ments. Data transmitted over the network are encrypted
using the shared session key established during the initial
stage of the protocol. Data stored on disk are encrypted
with a symmetric key that we store persistently in the
TPM using sealed storage [20], ensuring that the key can
only be retrieved by a genuine STT.

3.3 Securing the Execution of the Client

During the execution of the client, the microvisor trans-
parently dispatches untrusted API calls to the untrusted
helper. Since the untrusted system must continue to run
while the client is running, we have to ensure that an at-
tacker cannot see the video output of the secure thin ter-
minal and that he cannot sniff inputs coming from the
keyboard and the mouse.

To read keystrokes and mouse events from the client,
we intercept and emulate reads from the PS/2 port, but do
not deliver sensitive events to the untrusted system. To
prevent an attacker from seeing what is being rendered
on the screen, we hijack the virtual mapping of the video
memory in the untrusted system. Specifically, we config-
ure the MMU to redirect accesses to the memory region
mapping the video memory to the region that we use as a
backup. Then, we ensure that the untrusted system can-
not map the real video memory. When the Cloud Termi-
nal client is terminated, we restore the original mapping,
content, and permissions of the video memory.

3.4 Untrusted User-Space Helper

The helper program runs in user-space in the untrusted
system and is very simple: it provides basic networking
and storage capabilities but is aware of the data it man-
ages. Since sensitive data do not leave the microvisor
unencrypted, a compromised helper cannot violate data
confidentiality or integrity.

The helper and microvisor share a memory region.
The microvisor makes requests by writing to the region,
and the helper signals completion using a hypercall (the
vmcall instruction, similar to a system call). The helper
using polling, with a frequency set by the microvisor, to
avoid the need to modify the untrusted OS.

4 Cloud Rendering Engine
The cloud rendering engine (CRE) runs instances of an
application to render bitmaps displayed by the STT. It
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consists of a dispatcher that accepts connections from
STTs and one application VM for each session. The soft-
ware to run in each VM is chosen by the service provider,
but may include a web browser to render an existing web
application, a word processor for secure document edit-
ing, or in-house enterprise applications.2

When a client connects to the CRE, the dispatcher as-
signs a VM cloned from a base image to run its applica-
tion instance. We run a remote desktop server, such as a
VNC server, inside each VM to render the application’s
UI to bitmaps, and send these to the client.

4.1 CRE Scalability

The main challenge in designing the CRE is scalability:
for cost efficiency, we wish to support hundreds of ap-
plication VMs per CRE server. We leverage two prop-
erties of the CRE workload to achieve this. First, inter-
active applications spend most of their time waiting for
input, allowing for statistical multiplexing of CPU and
network resources. Second, because the VMs all run the
same software, they can share a high fraction of mem-
ory [38, 40, 39]. Although the specific sharing mech-
anisms we use are not new, our contribution is the ob-
servation that these techniques work especially well for
a CRE workload, providing far higher savings than in
traditional server consolidation, and thus making CREs
cost-effective.

By leveraging these features of the workload, we can
support several hundred concurrent users running rich
desktop applications, such as Firefox, on a single com-
modity server at a cost of few cents per user-hour (see
Section 6.3). We describe the key optimizations below.

Memory sharing. We coalesce identical memory pages
from the application VMs into a single page with copy-
on-write behavior. We found that this can reduce the
footprint of each guest VM by 38% to 61%.

Disk sharing. Each VM uses a copy-on-write disk im-
age based on a single master image. This minimizes the
number of extra blocks needed per VM and keeps the
base image in the server’s buffer cache for fast access.

Stripped-down OS. The guest VMs run only the soft-
ware needed to support the desired application.

Reduced timer interrupts. We lowered the CPU usage
of our guests substantially by configuring them to run a
“tickless” Linux kernel, which uses ACPI to set timers
instead of needing a periodic 100 Hz interrupt [31]. This
change reduced the CPU usage of each idle guest from
10% of a core to less than 1%.

2 We used VMs for isolation instead of lighter-weight containers to
show that high scalability can be achieved even with strong isolation.

4.2 CRE Security

The CRE provides significantly more protection to the
application than an operating system on the user’s ma-
chine because it accepts only sessions from attested
STTs, receives only keyboard and mouse input from
these clients, runs up-to-date software chosen only by the
service provider, and does not expose guest VMs to the
Internet. Nonetheless, there is a risk that users running
sessions on the same CRE server could interfere with
each other. We mitigate this risk in three ways:
Network isolation. The client VMs run on separate vir-
tual networks behind a NAT, so that they cannot send
traffic to each other. We also restrict their access to the
external network using a firewall, so that they can only
communicate with servers necessary for their applica-
tions (e.g., a web server for the banking use case).
Resource isolation. We use standard VM isolation fea-
tures to cap guests’ memory, disk, network and CPU use.
Restricted user environment. The applications in each
guest VM run on a Linux user account with minimal
privileges, inside a desktop environment that does not let
the user launch any other applications.

In the end it may still be possible for a malicious user
to subvert the software running inside a CRE VM, such
as a web browser or the Linux kernel, but the CRE should
have no more authority that the user it is assigned to.
Even if the user gained full control of her VM, she would
not be able to access other users’ VMs over the network.
Cross-VM information leakage [27] may be a concern,
but we believe that the information gain from such leak-
age is limited, especially because of the high number of
VMs running on each CRE server.

5 Setup and Session Protocols
We now discuss how users install Cloud Terminal (Sec-
tion 5.1) and how the STT and the CRE communicate
(Section 5.2). We focus on the first use case in Section
2.1, where the user installs a single STT to access mul-
tiple public applications, such as banking sites. The pri-
vate deployment case is similar. We include some exten-
sions to the protocol, such as multi-factor authentication
and copy-and-paste support, in an extended version [11].

5.1 Cloud Terminal Installation

The STT installation process seeks to achieve two goals:
(1) certifying to the user that she is installing a genuine
STT and (2) establishing a shared secret between the
STT and the user, so that the user can check whether she
is accessing the real STT in the future.

For the first goal, we include a verification service
as part of the public Cloud Terminal infrastructure that
communicates with users through a secondary channel
(a phone) to let them verify their STT. When the STT
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Figure 3: Process for a Cloud Terminal session. The user presses a key (1) to open an STT UI authenticated by the reverse password
(2). She then picks an application (3). We use an application key to set up a secure transport session (4), attest the validity of the
STT using the TPM (5), then set up a remote UI session (6). The user logs in through this UI (7) to access the application (8).

starts for the first time, it connects to the verification ser-
vice, attests its presence on the machine using the TPM,
and receives a random nonce value from the verification
service which it displays to the user. The user then calls
the verification service at a well-known number, enters
the nonce, and is told whether the nonce corresponds to
a correctly attested STT. Due to space constraints, we
discuss this process in more detail in [11].3

For the second goal, we have the user select a back-
ground image to be shown on the STT’s UI, which we
call a reverse password because its role is to authenti-
cate the software to the user rather than the user to the
software [32]. The STT keeps this image in sealed stor-
age, so that malware cannot obtain it and phishers cannot
guess it. However, because users have been shown prone
to social engineering attacks against similar authentica-
tion schemes in web applications [30], the reverse pass-
word is not our only defense against phishing; as we
will discuss in Section 5.2, applications can also use the
TPM’s private key can as a second authentication factor
to detect logins that are not from the user’s device.

5.2 Session Protocol

Once the user has installed the STT, she can launch its
UI at any time by pressing a special key intercepted
by the microvisor. This UI displays a list of available
applications that the STT obtains from a directory ser-
vice managed by the Cloud Terminal provider. We ex-

3 One challenge with this process is knowing that the STT that con-
tacted the verification service is running on the user’s machine. Parno
observed that any verification process with current TPMs is vulnerable
to a “cuckoo attack” where an adversary gives the user a trojan horse
to install but runs a real TPM on a different machine and relays its UI
to the user [24]. He proposes several solutions, the most attractive of
which is to have PC vendors engrave a hash of the TPM’s public key
on each device. The user could then confirm this hash to the verifier by
sending a verified-selected subset in an SMS message. Another mea-
sure that reduces the viability of this attack is to only accept TPM keys
signed by a hardware manufacturer and to only accept each key once,
so that the adversary must acquire a new TPM chip for each attack.

pect providers to require substantial verification before
adding applications to this directory (e.g., similar to Ex-
tended Validation SSL certificates). The STT connects to
the directory service securely using a master public key
for the service stored in the STT binary, and gets back an
application public key for each application.

Once the user selects an application, the STT opens a
session to it through the Cloud Terminal protocol. This
is a simplified TLS-like protocol that also uses the TPM
to attest that the user is running a valid STT, and shows
a remote UI through a subset of VNC. Through the re-
mote UI, the user can log into the service as usual (e.g.,
with a password). Overall, session setup consists of the
following steps, also shown in Figure 3:

1. The user presses a special key to bring up the STT.

2. The user checks that this screen displays the correct
reverse password image to authenticate the STT.

3. The user selects the application to access.

4. The STT connects to a CRE for the application using
its known DNS name, by tunneling network access
through the helper in the OS. It uses the application’s
public key to authenticate the server and sets up an
encrypted connection through a subset of TLS [10].4

5. The CRE verifies that it is talking to a valid STT
through TPM attestation: it sends a nonce to the STT
and gets back a combination of the nonce and a hash
of the executing code, signed by the TPM. The STT
also sends the CRE a hash of the key of the applica-
tion it connected to, also signed by the TPM, so that
a malicious CRE cannot proxy a session to another
CRE by forwarding its nonce.

6. The CRE renders the application’s UI through a
framebuffer protocol similar to VNC.5

4We used RSA for key exchange, 128-bit AES CBC for symmetric
encryption, and HMAC-SHA256 for the MAC.

5 We chose a subset of the RFB protocol [26] used by VNC. RFB
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7. Within this remote UI, the application displays an in-
terface of its choice to authenticate the user.

In addition to letting the CRE verify that it is commu-
nicating with an unmodified STT running on the physi-
cal CPU, the TPM attestation step can also be used by
applications to defend against phishing. The key idea is
that even if an attacker obtains the user’s account name
and password, she cannot obtain the private key of the
TPM on the user’s device: even the user herself does not
know it! Thus, the application can remember the TPM
public key it saw for each user and treat sessions that
employ a different TPM as suspicious, asking the user
to confirm that they are using a new device through a
secondary channel like SMS. Many current web appli-
cations similarly detect logins from a new device using
browser cookies, but the TPM private key has the advan-
tage that it cannot be read by malware, unlike cookies.

6 Implementation and Evaluation
To evaluate the Cloud Terminal architecture, we have
implemented a secure thin terminal that runs on stan-
dard PCs and a cloud rendering engine based on off-the-
shelf software. This section describes our implementa-
tion (§6.1) and four applications: banking, secure docu-
ment viewing, document editing, and email (§6.2). We
then evaluate the system’s performance (§6.3) and esti-
mate the cost for a provider to run Cloud Terminal (§6.4).

6.1 Implementation

Secure Thin Terminal. We have implemented all the
client components of our architecture. All components
are available for Linux, but the attestation in Linux is cur-
rently only partially secured (i.e., not all the code of the
system is measured). For simplicity, the address space of
the Cloud Terminal client is currently not isolated from
the address space of the microvisor, though this could be
achieved by running the client in an unprivileged ring.
We have not yet implemented support to protect the STT
from malicious device DMAs (using VT-d) or from ma-
licious SMI handlers. Also for simplicity, our implemen-
tation of the RFB protocol supports only raw image en-
coding and does not perform any compression.

Our trusted computing base consists of 20.5K lines of
C and 1.4K lines of assembly, distributed as follows. The
microvisor consists of 7K lines of C and 0.7K lines of as-
sembly. The client consists of 3K lines of C (excluding
two large array initializers for a bitmap font and the sys-
tem logo). Our cryptographic routines are from the Po-
larSSL library [25] (we borrowed 5.5K lines of C) and
our TPM based attestation code is based on Flicker (5K
lines of C and 0.7K lines of assembly). (Measurements

explicitly allows clients to support a subset of protocol options, which
allows our cloud rendering engines to use an off-the-shelf VNC server.

Operation Time (msec)
PCR Extend of Flicker (PCR-18) 3.43

Key Generation 24.25

Table 2: Time in milliseconds required for some of the opera-
tions in the attestation protocol of the Thin Client over averaged
over 100 trials. All of the operations occur within the TCB.

are all non-comment-non-blank physical lines.)
We tested the Linux implementation of the secure thin

terminal on a Lenovo W510 laptop. This laptop has a
PS/2 keyboard and mouse, supports virtualization tech-
nology and trusted execution, and includes an STMi-
croeletronics TPM.

Table 2 depicts some of the main operations that are
necessary in performing the remote attestation. The
Thin Client is responsible for performing these opera-
tions within its TCB.
Cloud Rendering Engine. We implemented the CRE on
Linux, using KVM [16] as our virtual machine manager.
We leverage Linux’s Kernel Samepage Merging (KSM)
daemon [2] to share identical memory pages. We keep a
pool of fresh VMs for new sessions to hide startup times.

For our guest OS, we used a Debian GNU/Linux 6
installation with minimal packages to run the desired
application (e.g., Firefox), a simple window manager
(XFWM) and a VNC server. Our experiments used a
resolution of 800x600 pixels and 8 bits-per-pixel of color
depth, which we found sufficient for a single application
(see Figure 2). We also configured the window manager
to prevent the user from launching other programs.

6.2 Applications

We built four applications over Cloud Terminal: online
banking, document viewing, document editing, and se-
cure email. Very little effort was required to implement
these applications: two give access to existing web appli-
cations, while the other two use existing Linux software.
Online banking. We built a CRE for the Wells Fargo
website, which displays the existing site using Firefox.
We run Firefox in kiosk mode: the page fills the en-
tire desktop and the user cannot execute other applica-
tions. We block off-site resources and links with an
HTTP proxy. The bank can easily configure a whitelist
for this proxy.
Document viewing. As an example of a corporate ap-
plication for Cloud Terminal, we built a CRE for view-
ing sensitive PDF documents via Evince, a Linux PDF
viewer. We currently show a local document in each VM,
though it would be easy to give the VMs access to the
company’s network file system after users authenticate.
Document editing. In addition to viewing documents,
we let users edit them through a CRE that runs AbiWord,
a word processor compatible with Microsoft Word.
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Application Activity Baseline STT (ms) Network Usage
(ms) with # of concurrent clients = (bytes)

1 50 100 150 200 300 inbound outbound

Doc. editing Launch app. 2,844 1,732 2,000 2,033 2,208 2,441 2,553 487,047 3,888
Type a key 30 50 52 51 53 50 54 1,607 346
Move the mouse 32 47 48 53 49 59 51 480 138

Doc. viewing Launch app. 1,699 1,817 1,947 2,066 2,093 2,147 2,493 483,219 2,040
Scroll a page 114 1,175 1,208 1,281 1,270 1,380 1,704 352,358 5,497

Online banking Launch app. 6,911 1,581 2,047 2,232 2,319 2,563
——

490,149 4,680
Browse a new page 1,183 2,302 2,516 2,573 2,610 2,661 415,732 10,939

Secure email Launch app. 6,936 1,865 1,992 2,054 2,254
—— ——

488,367 3,954
Display an e-mail 992 1,976 2,160 2,106 2,254 318,300 8,416

Table 3: End-to-end UI latency and network traffic at the STT for various actions. Measurements are averaged over 30 runs.

Secure email. As an example of a richer web applica-
tion, we also used Firefox to provide access to Gmail.
For example, an organization might implement this ser-
vice to let employees access sensitive email from their
home PCs. Although Gmail is more CPU-intensive than
our other applications, we could still support more than
a hundred concurrent sessions on one server.

6.3 Performance Evaluation

We sought to answer two questions with our performance
evaluation. First, how responsive is the STT as a means
for accessing remote applications? And second, how far
can a CRE scale while providing a good user experience?
We omit an evaluation of time to launch the STT and
overhead imposed by the microvisor on the user’s OS,
because these overheads are negligible and have been
measured in detail for similar primitives [19].

To answer these questions, we ran a CRE on a 16-
core server with 2.0 GHz Opteron processors and 64 GB
RAM. We then connected up to 300 emulated clients to
it to generate load. These clients replayed packet traces
from our STT implementation to loop a 3–5 minute
recorded UI session.6 Finally, we connected a “probe”
STT instance running on a laptop that we interacted with
manually to measure UI responsiveness. This client ex-
perienced a 23 ms network latency from the Berkeley
campus network to our CRE hosting provider in Seattle.

In summary, our results show that each of our applica-
tions scaled to 150–300 simultaneous sessions on a sin-
gle server while providing a responsive experience. Fur-
thermore, the network bandwidth per session was well
within the means of current ISPs. The main limiting re-
source on the CRE server was the CPU. We stopped scal-
ing each application when its CPU load reached 90%.

6.3.1 Qualitative Usability

Most importantly from a usability perspective, the sys-
tem felt usable qualitatively. We were able to type para-

6 The sessions were: opening an account on Wells Fargo, reading a
PDF, editing a Word document, and reading/writing emails.

graphs of text unhindered by the refresh speed (typing
latencies were similar to SSH), and to comfortably nav-
igate through the applications. The slowest action was
scrolling the page, which we have not yet optimized.

6.3.2 Client-side Metrics

To quantitatively demonstrate the usability of STT, we
measure the end-to-end UI latency at the client for vari-
ous user activities, such as typing a key, navigating to a
new page, and loading an application. End-to-end UI la-
tency for a user activity is the amount of time taken from
when the user begins an action and until the system fin-
ishes rendering the result of that action. Table 3 presents
the average UI latency on an STT client when running
with different levels of CRE server load, as well as the
amount of bandwidth used. We compare these measure-
ments against a baseline where we run the application
locally. For startup time, this baseline is after a reboot,
so it includes the time to load the program from disk.

The results in Table 3 show that the latency introduced
by the STT is low for most activities. For keystrokes,
Cloud Terminal adds up to 24 ms of latency even when
the CRE is serving 300 concurrent users, bringing the to-
tal latency up to 54 ms. This is substantially lower than
the average inter-keystroke timing of 100 ms [33]. For
activities that refresh a large part of the screen as op-
posed to displaying one new character, like navigating to
a new page, we see between 1.0 and 1.6 seconds of extra
latency. Much of this is due to unoptimized rendering
and image compression that we believe can be improved
without substantial effort (e.g., we can speed up scrolling
by sending a command to translate part of the image).

Interestingly, launching an application for the first
time was often faster via Cloud Terminal than locally,
because the application was pre-loaded in a CRE VM.

6.3.3 Server-side Metrics

We report the load on the CRE server running each ap-
plication with varying numbers of clients in Table 4. We
see several interesting trends. First, CPU was always the
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Application Document editing Document viewing Online banking Secure email
and # clients 100 200 300 100 200 300 100 150 200 50 100 150
CPU load 27% 54% 84% 34% 66% 96% 37% 60% 81% 28% 57% 84%
Mem. GB 8.4 15.1 22.1 8.4 15.7 25.2 25.5 38.3 47.6 15.1 26.4 38.1
KB/s in 367 708 1067 286 553 769 1059 1607 1931 251 392 591
KB/s out 2054 4360 8951 2993 5562 7709 2568 3527 4395 1802 3468 4888

Table 4: CRE load for each application with various numbers of concurrent clients.

limiting resource for our server configuration. This in-
cludes both the cost of encrypting traffic and of running
the application itself. Second, both CPU and memory
usage were 2–4× higher for the browser-based applica-
tions (Wells Fargo and Gmail) than the standalone Linux
applications. Gmail was especially CPU-intensive due to
its heavy use of JavaScript. Nonetheless, even these ap-
plications were able to scale to 150 and 200 sessions on
a single CRE server, while running in Firefox 3. Finally,
bandwidth usage stayed below 9 MB/s in total, or, on av-
erage, at most 32 KB/s per session, which is within the
capabilities of both home ISPs and hosting providers.

6.4 Cost Analysis

We estimate the per-user cost of running a Cloud Termi-
nal service based on our measurements and on hosting
prices at one provider (CariNet [6]). CariNet offers a 12-
core server with 40 GB RAM and unmetered 100 Mbps
connectivity for $1010/month. Assuming that this server
can run 3/4 of our 16-core load, it can host 82,000 to
164,000 user-hours per month. This makes the overall
cost between 1.2 and 2.5 cents per user-hour. For an on-
line banking service, the average user is unlikely to log
in for more than 2 hours per month (based on an infor-
mal poll of our group), making the cost up to 5 cents per
user per month. For a corporate application, the cost is at
most $3 per employee per month even if the employees
use the service 8 hours per day.

7 Related Work
Section 2.3 has already compared Cloud Terminal to
several previous approaches for secure access to appli-
cations, including systems that isolate applications us-
ing VMs [18, 12, 29], browser OSes [7], thin clients
[37], and Flicker [20]. Cloud Terminal distinguishes
itself from these systems by simultaneously providing
five properties: installability under an existing (poten-
tially compromised) OS, remote attestation, support for
general applications, isolation across applications, and
a small enough TCB to make verification feasible (23
KLOC). The main insight allowing this is the choice of
a much simpler, but still general client: a thin terminal.
This client is simple enough to remotely attest yet capa-
ble of displaying arbitrary UIs.

Several other related projects include Tahoma [8], a
browser OS that isolates web applications using virtu-

alization, and IBOS [35], a microkernel-based browser
OS. Both approaches reduce the trusted code base on
the client (although, unlike Cloud Terminal, they must
include drivers for network and storage devices in the
TCB), but they are limited to protecting web applications
and they do not provide remote attestation. Proxos [34]
partitions a system call interface so that a “private ap-
plication” has certain requests serviced a VMM-isolated
“private OS” and others by a commodity OS, similarly
to how the STT interacts with some devices directly
and others via the untrusted helper. One application of
Proxos is to protect a web browser, but for this applica-
tion the TCB includes both Xen and an X server.

Remote attestation has been explored by several
projects, including Tboot, which can perform a measured
and verified bootstrap of an OS or of a hypervisor [36],
and TrustVisor, a hypervisor that relies on hardware at-
testation to ensure code integrity and secrecy for selected
portions of an application [19]. In contrast to these sys-
tems, Cloud Terminal can run an entire, interactive UI
session in an attestable execution environment.

Several projects have looked at small-TCB approaches
to secure sensitive inputs to online services, such as
credit card numbers and passwords, in the presence of
malware. Bumpy [21] allows users to type a secure
attention sequence to encrypt input for a web service,
but takes a hardware approach (using an encrypting key-
board) in contrast to our software approach. The Trusted
Input Proxy (TIP) [4] uses a hypervisor and a separate
VM to pop up dialog boxes for sensitive input whose re-
sponses are injected in a TLS stream. However, TIP does
not provide confidentiality for the whole UI session—for
example, malware can still see the account statements
sent back by a bank or the contents of a document being
edited. In contrast, the STT hides an entire UI session.

In concurrent work, Zhou et al. [42] describe how to
protect trusted I/O paths from device-level attacks such
as overlapping memory-mapped I/O and spoofed inter-
rupts. The STT relies on such trusted paths to the key-
board and display, and could benefit from many of the
techniques they propose.

Finally, the cloud rendering engine can be seen as
an extreme form of Software as a Service (SaaS). By
running almost all of the application logic centrally—
everything except the I/O path—the CRE offers two ad-
vantages to application providers: it makes it easier to
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update the application (without requiring users to down-
load a binary client in order to benefit from new features
or security fixes to most of the code), and it allows for a
simpler, more secure, and remotely verifiable client.

8 Conclusion
We presented Cloud Terminal, a new architecture for se-
cure applications built around two primitives: a small se-
cure thin terminal (STT) on the client and a cloud ren-
dering engine (CRE) that contains almost all the appli-
cation logic. The STT can be installed under a run-
ning operating system on standard PC hardware, even on
compromised machines, and can be verified remotely. It
achieves a sweet-spot between security, trusted code size,
and generality by implementing a remote display proto-
col that can render arbitrary applications. The CRE runs
applications in a provider-managed cloud and can scale
to hundreds of sessions per machine. We have shown that
Cloud Terminal is implementable on standard hardware
and can provide secure access to a variety of applications
at a low cost of 1.2 to 2.5 cents per user-hour.
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